DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Accommodating High Transformation Strains in Battery Electrodes via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePO4 [Accommodation of High Transformation Strain in Battery Electrodes via Formation of Nanoscale Intermediate Phases: Operando Structure Investigation of Olivine Sodium Iron Phosphate]

Abstract

Virtually all intercalation compounds used as battery electrodes exhibit significant changes in unit cell volume during use. NaxFePO4 (0 < x < 1, NFP) olivine, of interest as a cathode for sodium-ion batteries, is a model for topotactic, high strain systems as it exhibits one of the largest discontinuous volume changes (~17% by volume) during its first-order transition between two otherwise isostructural phases. Using synchrotron radiation powder X-ray diffraction (PXD) and pair distribution function (PDF) analysis, we discover a new strain-accommodation mechanism wherein a third, <10 nm scale nanocrystalline phase forms to buffer the large lattice mismatch between primary phases. The new phase has a and b lattice parameters matching one crystalline endmember phase and c lattice parameter matching the other, and is not detectable by powder diffraction alone. Finally, we suggest that this strain-accommodation mechanism may apply to systems with large transformation strains but in which true “amorphization” does not occur.

Authors:
ORCiD logo [1];  [1];  [2];  [3];  [3];  [1];  [4];  [4];  [4];  [4]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. of Southern Denmark (Denmark)
  3. Rice Univ., Houston, TX (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1373931
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 17; Journal Issue: 3; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; olivines; operando; phase transformations; sodium iron phosphate; pair-distribution function

Citation Formats

Xiang, Kai, Xing, Wenting, Ravnsbaek, Dorthe B., Hong, Liang, Tang, Ming, Li, Zheng, Wiaderek, Kamila M., Borkiewicz, Olaf J., Chapman, Karena W., Chupas, Peter J., and Chiang, Yet -Ming. Accommodating High Transformation Strains in Battery Electrodes via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePO4 [Accommodation of High Transformation Strain in Battery Electrodes via Formation of Nanoscale Intermediate Phases: Operando Structure Investigation of Olivine Sodium Iron Phosphate]. United States: N. p., 2017. Web. doi:10.1021/acs.nanolett.6b04971.
Xiang, Kai, Xing, Wenting, Ravnsbaek, Dorthe B., Hong, Liang, Tang, Ming, Li, Zheng, Wiaderek, Kamila M., Borkiewicz, Olaf J., Chapman, Karena W., Chupas, Peter J., & Chiang, Yet -Ming. Accommodating High Transformation Strains in Battery Electrodes via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePO4 [Accommodation of High Transformation Strain in Battery Electrodes via Formation of Nanoscale Intermediate Phases: Operando Structure Investigation of Olivine Sodium Iron Phosphate]. United States. https://doi.org/10.1021/acs.nanolett.6b04971
Xiang, Kai, Xing, Wenting, Ravnsbaek, Dorthe B., Hong, Liang, Tang, Ming, Li, Zheng, Wiaderek, Kamila M., Borkiewicz, Olaf J., Chapman, Karena W., Chupas, Peter J., and Chiang, Yet -Ming. Tue . "Accommodating High Transformation Strains in Battery Electrodes via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePO4 [Accommodation of High Transformation Strain in Battery Electrodes via Formation of Nanoscale Intermediate Phases: Operando Structure Investigation of Olivine Sodium Iron Phosphate]". United States. https://doi.org/10.1021/acs.nanolett.6b04971. https://www.osti.gov/servlets/purl/1373931.
@article{osti_1373931,
title = {Accommodating High Transformation Strains in Battery Electrodes via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePO4 [Accommodation of High Transformation Strain in Battery Electrodes via Formation of Nanoscale Intermediate Phases: Operando Structure Investigation of Olivine Sodium Iron Phosphate]},
author = {Xiang, Kai and Xing, Wenting and Ravnsbaek, Dorthe B. and Hong, Liang and Tang, Ming and Li, Zheng and Wiaderek, Kamila M. and Borkiewicz, Olaf J. and Chapman, Karena W. and Chupas, Peter J. and Chiang, Yet -Ming},
abstractNote = {Virtually all intercalation compounds used as battery electrodes exhibit significant changes in unit cell volume during use. NaxFePO4 (0 < x < 1, NFP) olivine, of interest as a cathode for sodium-ion batteries, is a model for topotactic, high strain systems as it exhibits one of the largest discontinuous volume changes (~17% by volume) during its first-order transition between two otherwise isostructural phases. Using synchrotron radiation powder X-ray diffraction (PXD) and pair distribution function (PDF) analysis, we discover a new strain-accommodation mechanism wherein a third, <10 nm scale nanocrystalline phase forms to buffer the large lattice mismatch between primary phases. The new phase has a and b lattice parameters matching one crystalline endmember phase and c lattice parameter matching the other, and is not detectable by powder diffraction alone. Finally, we suggest that this strain-accommodation mechanism may apply to systems with large transformation strains but in which true “amorphization” does not occur.},
doi = {10.1021/acs.nanolett.6b04971},
journal = {Nano Letters},
number = 3,
volume = 17,
place = {United States},
year = {Tue Feb 21 00:00:00 EST 2017},
month = {Tue Feb 21 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 40 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

“Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis
journal, January 2010

  • Woodford, William H.; Chiang, Yet-Ming; Carter, W. Craig
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3464773

Design criteria for electrochemical shock resistant battery electrodes
journal, January 2012

  • Woodford, William H.; Carter, W. Craig; Chiang, Yet-Ming
  • Energy & Environmental Science, Vol. 5, Issue 7, p. 8014-8024
  • DOI: 10.1039/c2ee21874g

Reversible work by electrochemical intercalation of graphitic materials
conference, May 2005

  • Massey, Cameron; McKnight, Geoffrey; Barvosa-Carter, William
  • Smart Structures and Materials, SPIE Proceedings
  • DOI: 10.1117/12.601491

Harnessing the Actuation Potential of Solid-State Intercalation Compounds
journal, March 2006

  • Koyama, Y.; Chin, T. E.; Rhyner, U.
  • Advanced Functional Materials, Vol. 16, Issue 4
  • DOI: 10.1002/adfm.200500633

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Phase Diagram of Li[sub x](Mn[sub y]Fe[sub 1−y])PO[sub 4] (0≤x, y≤1)
journal, January 2001

  • Yamada, Atsuo; Kudo, Yoshihiro; Liu, Kuang-Yu
  • Journal of The Electrochemical Society, Vol. 148, Issue 10
  • DOI: 10.1149/1.1401083

Phase Diagram of Li[sub x]FePO[sub 4]
journal, January 2006

  • Dodd, J. L.; Yazami, R.; Fultz, B.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 3
  • DOI: 10.1149/1.2164548

Study of the LiFePO 4 /FePO 4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy
journal, November 2006

  • Laffont, L.; Delacourt, C.; Gibot, P.
  • Chemistry of Materials, Vol. 18, Issue 23
  • DOI: 10.1021/cm0617182

Electron Microscopy Study of the LiFePO[sub 4] to FePO[sub 4] Phase Transition
journal, January 2006

  • Chen, Guoying; Song, Xiangyun; Richardson, Thomas J.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 6
  • DOI: 10.1149/1.2192695

Direct Observation of Lithium Staging in Partially Delithiated LiFePO 4 at Atomic Resolution
journal, April 2011

  • Gu, Lin; Zhu, Changbao; Li, Hong
  • Journal of the American Chemical Society, Vol. 133, Issue 13
  • DOI: 10.1021/ja109412x

Highly ordered staging structural interface between LiFePO4 and FePO4
journal, January 2012

  • Suo, Liumin; Han, Wenze; Lu, Xia
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 16
  • DOI: 10.1039/c2cp40610a

In Situ Observation of Random Solid Solution Zone in LiFePO 4 Electrode
journal, June 2014

  • Niu, Junjie; Kushima, Akihiro; Qian, Xiaofeng
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501415b

In Situ Atomic-Scale Imaging of Phase Boundary Migration in FePO 4 Microparticles During Electrochemical Lithiation
journal, July 2013


Room-temperature miscibility gap in LixFePO4
journal, April 2006

  • Yamada, Atsuo; Koizumi, Hiroshi; Nishimura, Shin-ichi
  • Nature Materials, Vol. 5, Issue 5
  • DOI: 10.1038/nmat1634

Size-Dependent Lithium Miscibility Gap in Nanoscale Li[sub 1−x]FePO[sub 4]
journal, January 2007

  • Meethong, Nonglak; Huang, Hsiao-Ying Shadow; Carter, W. Craig
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 5
  • DOI: 10.1149/1.2710960

Strain Accommodation during Phase Transformations in Olivine-Based Cathodes as a Materials Selection Criterion for High-Power Rechargeable Batteries
journal, March 2007

  • Meethong, N.; Huang, H. -Y. S.; Speakman, S. A.
  • Advanced Functional Materials, Vol. 17, Issue 7
  • DOI: 10.1002/adfm.200600938

Can Vanadium Be Substituted into LiFePO 4 ?
journal, November 2011

  • Omenya, Fredrick; Chernova, Natasha A.; Upreti, Shailesh
  • Chemistry of Materials, Vol. 23, Issue 21
  • DOI: 10.1021/cm2017032

Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4
journal, July 2008

  • Gibot, Pierre; Casas-Cabanas, Montse; Laffont, Lydia
  • Nature Materials, Vol. 7, Issue 9
  • DOI: 10.1038/nmat2245

Kinetics of non-equilibrium lithium incorporation in LiFePO4
journal, July 2011

  • Malik, Rahul; Zhou, Fei; Ceder, G.
  • Nature Materials, Vol. 10, Issue 8
  • DOI: 10.1038/nmat3065

Direct Evidence of Concurrent Solid-Solution and Two-Phase Reactions and the Nonequilibrium Structural Evolution of LiFePO 4
journal, April 2012

  • Sharma, Neeraj; Guo, Xianwei; Du, Guodong
  • Journal of the American Chemical Society, Vol. 134, Issue 18
  • DOI: 10.1021/ja301187u

Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes
journal, June 2014


Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles
journal, August 2016


Extended Solid Solutions and Coherent Transformations in Nanoscale Olivine Cathodes
journal, February 2014

  • Ravnsbæk, D. B.; Xiang, K.; Xing, W.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404679t

Engineering the Transformation Strain in LiMn y Fe 1– y PO 4 Olivines for Ultrahigh Rate Battery Cathodes
journal, March 2016


LiMnPO[sub 4] as the Cathode for Lithium Batteries
journal, January 2002

  • Li, Guohua; Azuma, Hideto; Tohda, Masayuki
  • Electrochemical and Solid-State Letters, Vol. 5, Issue 6
  • DOI: 10.1149/1.1475195

Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage
journal, February 2003


Reversible Cycling of Crystalline Silicon Powder
journal, January 2007

  • Obrovac, M. N.; Krause, L. J.
  • Journal of The Electrochemical Society, Vol. 154, Issue 2
  • DOI: 10.1149/1.2402112

25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries
journal, August 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Nix, William D.
  • Advanced Materials, Vol. 25, Issue 36
  • DOI: 10.1002/adma.201301795

Orientation-Dependent Interfacial Mobility Governs the Anisotropic Swelling in Lithiated Silicon Nanowires
journal, January 2012

  • Yang, Hui; Huang, Shan; Huang, Xu
  • Nano Letters, Vol. 12, Issue 4
  • DOI: 10.1021/nl204437t

Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design
journal, January 2015

  • An, Yonghao; Wood, Brandon C.; Ye, Jianchao
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 27
  • DOI: 10.1039/C5CP01385B

Abnormal operando structural behavior of sodium battery material: Influence of dynamic on phase diagram of NaxFePO4
journal, January 2014


The mechanism of NaFePO 4 (de)sodiation determined by in situ X-ray diffraction
journal, January 2014

  • Galceran, Montserrat; Saurel, Damien; Acebedo, Begoña
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 19
  • DOI: 10.1039/c4cp01089b

The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements
journal, November 2012

  • Borkiewicz, Olaf J.; Shyam, Badri; Wiaderek, Kamila M.
  • Journal of Applied Crystallography, Vol. 45, Issue 6
  • DOI: 10.1107/S0021889812042720

Best Practices for Operando Battery Experiments: Influences of X-ray Experiment Design on Observed Electrochemical Reactivity
journal, May 2015

  • Borkiewicz, Olaf J.; Wiaderek, Kamila M.; Chupas, Peter J.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 11
  • DOI: 10.1021/acs.jpclett.5b00891

Phase Diagram of Olivine Na x FePO 4 (0 < x < 1)
journal, October 2013

  • Lu, Jiechen; Chung, Sai Cheong; Nishimura, Shin-ichi
  • Chemistry of Materials, Vol. 25, Issue 22
  • DOI: 10.1021/cm402617b

Structure and Stability of Sodium Intercalated Phases in Olivine FePO 4
journal, July 2010

  • Moreau, P.; Guyomard, D.; Gaubicher, J.
  • Chemistry of Materials, Vol. 22, Issue 14
  • DOI: 10.1021/cm101377h

Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4
journal, January 2012

  • Casas-Cabanas, Montse; Roddatis, Vladimir V.; Saurel, Damien
  • Journal of Materials Chemistry, Vol. 22, Issue 34
  • DOI: 10.1039/c2jm33639a

Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes
journal, November 2010

  • Kao, Yu-Hua; Tang, Ming; Meethong, Nonglak
  • Chemistry of Materials, Vol. 22, Issue 21
  • DOI: 10.1021/cm101698b

Modeling the competing phase transition pathways in nanoscale olivine electrodes
journal, December 2010


Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines
journal, June 2010


Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements
journal, May 2007

  • Chupas, Peter J.; Chapman, Karena W.; Lee, Peter L.
  • Journal of Applied Crystallography, Vol. 40, Issue 3
  • DOI: 10.1107/S0021889807007856

Analysis of Amorphous and Nanocrystalline Solids from Their X-Ray Diffraction Patterns
journal, September 2006


Works referencing / citing this record:

High‐Abundance and Low‐Cost Metal‐Based Cathode Materials for Sodium‐Ion Batteries: Problems, Progress, and Key Technologies
journal, February 2019

  • Chen, Mingzhe; Liu, Qiannan; Wang, Shi‐Wen
  • Advanced Energy Materials, Vol. 9, Issue 14
  • DOI: 10.1002/aenm.201803609

Electrochemical Patterns of Phase Transforming Intercalation Materials: Diagnostic Criteria for the Case of Slow Nucleation Rate Control
journal, January 2019

  • Vassiliev, Sergey Yu.; Levin, Eduard E.; Presnov, Denis E.
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.1241904jes

When Crystals Go Nano - The Role of Advanced X-ray Total Scattering Methods in Nanotechnology
journal, September 2018

  • Bertolotti, Federica; Moscheni, Daniele; Guagliardi, Antonietta
  • European Journal of Inorganic Chemistry, Vol. 2018, Issue 34
  • DOI: 10.1002/ejic.201801052

Evidence of anatase intergrowths formed during slow cooling of reduced ilmenite
journal, February 2018

  • D'Angelo, Anita M.; Webster, Nathan A. S.
  • Journal of Applied Crystallography, Vol. 51, Issue 1
  • DOI: 10.1107/s1600576718000493

Phase-field model for diffusion-induced grain boundary migration: An application to battery electrodes
journal, June 2019


When Crystals Go Nano - The Role of Advanced X-ray Total Scattering Methods in Nanotechnology: When Crystals Go Nano - The Role of Advanced X-ray Total Scattering Methods in Nanotechnology
journal, August 2018

  • Bertolotti, Federica; Moscheni, Daniele; Guagliardi, Antonietta
  • European Journal of Inorganic Chemistry, Vol. 2018, Issue 34
  • DOI: 10.1002/ejic.201800534

Evidence of anatase intergrowths formed during slow cooling of reduced ilmenite
journal, August 2019

  • D'Angelo, Anita; Webster, Nathan
  • Acta Crystallographica Section A Foundations and Advances, Vol. 75, Issue a2
  • DOI: 10.1107/s2053273319093203

Order–disorder transition in nano-rutile TiO$_{2}$ anodes: a high capacity low-volume change Li-ion battery material
text, January 2019

  • Christensen, Christian Kolle; Mamakhel, Mohammad Aref Hasen; Balakrishna, Ananya Renuka
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-03284