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Beam debunching due to ISR-induced energy diffusion

Nikolai Yampolsky and Bruce E. Carlsten

Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA

Abstract

One of the options for increasing longitudinal coherency of X-ray free elec-
tron lasers (XFELs) is seeding with a microbunched electron beam. Several
schemes leading to significant amplitude of the beam bunching at X-ray wave-
lengths were recently proposed. All these schemes rely on beam optics having
several magnetic dipoles. While the beam passes through a dipole, its en-
ergy spread increases due to quantum effects of synchrotron radiation. As a
result, the bunching factor at small wavelengths reduces since electrons hav-
ing different energies follow different trajectories in the bend. We rigorously
calculate the reduction in the bunching factor due to incoherent synchrotron
the radiation while the beam travels in an arbitrary beamline. We apply gen-
eral results to estimate reduction of harmonic current in common schemes
proposed for XFEL seeding.

Keywords: Beam dynamics, synchrotron radiation, free electron lasers,
seeding schemes
PACS: 41.60.Ap, 41.85.Ja, 42.50.Wk, 41.60.Cr, 52.59.Wd

1. Introduction

Free electron lasers (FELs) can be scaled to generate narrowband radia-
tion in a wide frequency range. Currently existing FELs cover bandwidths
from THz to hard X-rays. A conventional method for decreasing the FEL
bandwidth is done by placing the undulator inside the optical cavity. How-
ever, this approach fails for X-ray FELs (XFELs) due to lack of high quality
reflecting mirrors at these frequencies. As a result, modern XFELs typically
operate in a single pass self-amplified spontaneous emission (SASE) regime
in which broadband shot noise due to discreetness of the electron beam is
amplified within the FEL bandwidth [1]. The bandwidth of these XFELs
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can be reduced by seeding them with a narrowband signal rather than white
noise.

A growing FEL mode couples radiation with particle motion. There-
fore, an XFEL can be seeded either with narrowband radiation [2, 3] or
with an electron beam modulated at the X-ray wavelength [4]. The sec-
ond option looks attractive since electrons are charged particles and they
can interact with electromagnetic fields unlike radiation which only weakly
interacts with materials at X-ray frequencies. Several schemes predicting
significant bunching at high harmonics for available coherent light sources
were recently proposed [5, 6, 7]. All these schemes utilize magnetic bends for
manipulating a modulated electron bunch. Electrons passing through bends
emit synchrotron radiation. At high energies electrons emit radiation at high
frequencies and quantum effects should be included to find the correct elec-
tron energy loss. Incoherent synchrotron radiation (ISR) has a nearly 100%
frequency spread which results in electron energy diffusion when quantum
effects are accounted for since the electron energy loss can be described by
a random walk model. Electron energy diffusion translates into diffusion in
longitudinal position since bends are dispersive elements (electrons with dif-
ferent energies travel along different trajectories). As a result, a prebunched
electron beam smears out when it passes through bends and the bunching
factor reduces.

The effect of the beam debunching becomes stronger for FELs seeded at
smaller wavelengths. First of all, an energetic electron bunch is required to
generate short wavelength FEL radiation which increases ISR-induced energy
diffusion in the beamline bends. At the same time, even a small longitudinal
spread could cause significant debunching at a shorter wavelength modula-
tion. These two effects combined result in stronger smearing of harmonic
current for short wavelength XFELs. Therefore, there is a physical limit on
the shortest wavelength bunching which can be created in various schemes
for generating high harmonic content. This effect was estimated for various
XFEL seeding schemes [5, 8, 9] but those estimates were qualitative or nu-
merical and did not include detailed trade-off studies. It is the purpose of this
paper to study this effect rigorously and find accurate quantitative estimates
of the degradation of harmonic current in various beamline configurations.
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2. Qualitative estimate for smearing of harmonic current

First, we estimate the parameter region in which smearing of harmonic
current due to ISR-induced energy spread is significant. We consider the last
dipole of some beamline optics which leads to longitudinal bunching from
an imposed energy modulation. The argument bellow is valid for any such
seeding scheme.

Quantum effects in ISR at high energies result in energy diffusion as
described in Ref. [10]

〈
∆E2

〉
= 2Ds, D =

55

48
√
3

~e2c
ρ3

γ7, (1)

where D is the energy diffusion coefficient, ρ = βγmc/(eB) is the electron
gyroradius in the magnetic field B; ~ is the reduced Planck constant, and s is
the path length. Two identical electrons entering the dipole exit at different
longitudinal positions since their energies become different inside the dipole
due to ISR and the dipole energy dispersion transforms this energy difference
into different longitudinal positions. As a result, a bunched beam smears out.
We approximate this effect assuming energies of two electrons to be constant
along the bend but to be different by the overall induced energy spread due
to ISR, ∆E =

√
2Ds. The path length of an electron inside the magnet of

length L is equal to

s = ρ arcsin
L

ρ
. (2)

Then the path difference of electrons having different energies is

∆s =
∂s

∂ρ

∂ρ

∂E
∆E ≈ −L

3
α2∆E

E
, (3)

where α is the bend angle of the test electron inside the bend.
This path difference results in smearing of the imposed modulation. Smear-

ing is significant if the path difference is on the order of a half wavelength of
the modulation. Then one obtains the qualitative estimate for parameters
region in which ISR-induced debunching is not significant.

55

54
√
3

~e2

m2c3
α7γ5

λ2
= 90.6

α7[deg]

λ2[
◦
A]

(
E

10GeV

)5

≪ 1. (4)
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This estimate shows that beam bunching for hard X-ray FELs (λ ∼ 1
◦
A,

E ∼ 10GeV) requires the use of optical elements with weak bends having
sub-degree bend angles. However, this estimate does not predict how fast
the bunching degrades along the bend. In particular, it is not clear how fast
the bunching drops to zero and how far one can go beyond this limit without
dramatic loss in bunching amplitude.

3. Smearing of harmonic current in arbitrary beamline

3.1. Vlasov equation

Any electron beam can be described as an ensemble of electrons occupying
some phase space volume. This ensemble can be described by the phase space
distribution function f(ζ), where ζ is the 6D phase space coordinate of each
electron

ζ = (x, px, y, py,∆t,−∆E), (5)

where x and y are the transverse electron coordinates in respect to the refer-
ence trajectory, px and py are the corresponding momenta, ∆t is the deviation
of arrival time to position s along the beamline, and ∆E is the deviation of
particle energy from the average bunch energy.

The bunch interacts with electro-magnetic fields while it travels along the
beamline. These forces satisfy Maxwell equations which indicates that beam
dynamics is Hamiltonian and it is fully described by a Hamiltonian H(ζ, s).
The evolution of the distribution function satisfies Vlasov equation which
can be considered as a continuity equation in phase space

df

ds
= ∂sf(ζ, s) + {f,H} = ∂sf + (∇f)TJ(∇H) = 0, (6)

where {f,H} = (∇f)TJ(∇H) is the Poison bracket, J is the unit block-
diagonal antisymmetric symplectic matrix, ∇ is the 6D gradient in the phase
space, and superscript T stands for transposition.

Typically the electron bunch can be considered well localized and quasi-
monoenergetic. Under this assumption, forces can be well approximated by a
linear function in respect to their phase space coordinates. The correspond-
ing Hamiltonian describing beam dynamics is quadratic then, H(ζ, s) =
1/2ζTH(s)ζ, H = HT . The trajectory of each electron defines the map in
the phase space which can be described with the transform matrix R(s, s0)
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for linear beamlines. Then the formal solution for the Vlasov equation (6)
can be presented in the following form

f (ζ, s) = f
(
R−1(s, s0)ζ, s0

)
, (7)

dR(s, s0)

ds
= JHR(s, s0), R(s0, s0) = I. (8)

Alternatively, the dynamics of modulated beams can be conveniently de-
scribed in the spectral domain as illustrated in Ref. [11]. This representation
is particularly useful for the description of modulated beams since they are
well localized in the spectral domain for quasi-monochromatic modulations.
For linear optics, the beam can be fully described by the Hamiltonian evo-
lution of its 6D spectral distribution which evolution as

fk(k, s) =

∫
f(ζ, s)eik

T ζd6ζ, (9)

dfk
ds

=
∂fk
ds

+ {fk, Hk} = 0, Hk = −1

2
kTJHJk. (10)

The solution of the spectral Vlasov equation was found in Ref. [11]

fk(k, s0) = fk(R
T (s, s0)k, s0). (11)

This solution indicates that the spectral distribution function remains con-
stant along characteristics in the spectral domain

k(s) = R−T (s, s0)k(s0), (12)

which reduces the evolution of each spectral component to a linear transform
of its modulation wavevector.

3.2. Boltzmann equation in phase space domain

Synchrotron radiation of highly relativistic electrons is confined within a
small angle with respect to the electron instantaneous velocity, ∆θ ∼ 1/γ ≪
1. Therefore, emission of a photon with angular frequency ω mainly results in
the reduction of the electron energy by ∆E = ~ω. The change of the electron
transverse momenta is on the order of 1/γ smaller then the change of the
longitudinal momentum and can be ignored to the first order. Assuming that
the emission process is instantaneous in time, one can use the Vlasov equa-
tion (6) to describe the electron dynamics between photon emission events.
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Electron energy loss due to photon emission results in a collision operator
which changes the density in phase space. A large number of electrons within
the bunch and the ergodicity property allows one to reduce discrete emission
events to a continuous change of the ensemble distribution. As a result, the
evolution of an electron bunch can be described with the following Boltzmann
equation

df

ds
= ∂sf + {f,H} = CISR[f ], (13)

CISR[f ] =

∞∫

0

f(E + ~ω)
dN(ω,E + ~ω)

dω
dω − (14)

−
∞∫

0

f(E)
dN(ω,E)

dω
dω,

where CISR[f ] is the collision operator for ISR energy loss which describes
the detailed balance between electron states. H is the beamline Hamiltonian
if synchrotron radiation is neglected, (dN/dω)dωds is the probability for a
photon emission within bandwidth dω while electron travels distance ds. The
probability of photon emission is related to the power spectrum dP/dω of a
single electron synchrotron radiation [12]

dN

dω
=

1

~ω
dP

dω
=

1

~ω

√
3e2

2πρc
γ
ω

ωc

∞∫

ω/ωc

K5/3(x)dx, (15)

ωc =
3

2

γ3c

ρ
. (16)

Note that collision operator CISR[f ] describing ISR-induced energy losses is
linear with respect to the electron distribution function. This property re-
flects the fact that ISR is a single particle effect. Superposition of radiation
fields from many particles and the influence of the resulting Coherent Syn-
chrotron Radiation (CSR) force on particle dynamics is not included in this
model. The presented model also assumes that photons do not interact with
other electrons once they are emitted.

The Boltzmann equation described by Eq. (13) can be used to determine
the main parameters of ISR. For example, one can easily find the overall
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energy loss and the energy diffusion

(
d 〈E〉
ds

)

ISR

=

∫
ECISR[f ]d6ζ = −P, (17)

(
d〈∆E2〉

ds

)

ISR

=

∫
(E − 〈E〉)2CISR[f ]d6ζ = 2D, (18)

where 〈E〉 =
∫
Efd6ζ is the mean electron energy and 〈∆E2〉 =

∫
(E −

〈E〉)2fd6ζ is the rms energy spread. These coefficients can be expressed
through the synchrotron radiation power spectrum.

P =

∞∫

0

dP

dω
dω =

2

3

e2

ρ2
γ4, (19)

D =
1

2

∞∫

0

~ω
dP

dω
dω =

55

48
√
3

~e2c
ρ3

γ7. (20)

Note that the overall change of beam energy and energy spread are described
with Eqns. (17) and (18) if the beam is not accelerated and the beamline
does not contain elements having nonzero R6i beam matrix elements (where
i = 1, ..., 6), e.g high order mode RF cavities introducing energy slews.

3.3. Boltzmann equation and its solution in spectral domain

The Boltzmann equation described with Eq. (13) — (14) is a compli-
cated integro-differential equation. On the other hand, this equation takes
a much simpler form in the spectral domain. The appropriate equation can
be found by taking the Fourier transform of the Boltzmann equation (13).
Its left-hand side is the same as the Vlasov equation (6) and, therefore, its
Fourier transform reduces to the spectral Vlasov equation (10). The Fourier
transform of the ISR collision operator results in the corresponding collision
operator in the spectral domain. One can find it to be equal to

CISR
k =

∫
f(ζ)e−ikT ζ

∞∫

0

(eikE~ω − 1)
dN

dω
dωd6ζ. (21)

where kE is the component of the modulation wavevector k along the energy
coordinate.
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These integrals can be evaluated under assumption that the electron
bunch is quasi-monoenergetic. In this case, the ISR spectrum can be assumed
to be the same for all the particles and the integral over photon frequency
can be evaluated independently from the integral over the phase space and
yields the spectral distribution function. This assumption is equivalent to ne-
glecting the radiation cooling effect which is a valid approximation for high
brightness linear machines.

The integral over photon frequencies can be evaluated using the spectral
distribution of the ISR power (15) and then the spectral Boltzmann equation
takes the following form

dfk
ds

=
∂fk
ds

+ {fk, Hk} = CISR
k , (22)

CISR
k = (−ikEP

eff − k2
ED

eff)fk, (23)

P eff(κ) =
54

55

5κ
√
1 + κ2 − 3 sinh(5

3
asinh(κ))

κ3
√
1 + κ2

P, (24)

Deff(κ) =
9

8

−
√
1 + κ2 + cosh(5

3
asinh(κ))

κ2
√
1 + κ2

D, (25)

κ = kE~ωc, (26)

One can note that the Boltzmann equation (22) — (23) in the spectral do-
main has much simpler form compared to the Boltzmann equation in the
phase space domain (13) — (14). The ISR collision operator in the spec-
tral domain CISR

k algebraically depends on the spectral distribution func-
tion which indicates that different spectral components evolve independently
from each other. The collision operator depends on two parameters, namely
the effective energy loss P eff and diffusion Deff coefficients, as described by
Eqs. (24) — (26). The effective energy loss term results in the change of
each spectral component phase which corresponds to the loss of the mean
bunch energy while the absolute amplitude of each component is not affected.
However, the effective energy diffusion term results in the reduction of each
spectral component amplitude which manifests as smearing of the associated
harmonic current in the phase space domain.

The effective energy loss and diffusion parameters depend on a single
parameter κ = kE~ωc. The nonzero energy modulation wavenumber kE
indicates presence of energy bands in the phase space distribution separated
by ∆Ebands = 2π/kE. Electrons passing through the bend emit photons
which reduce the electron energy by ∆EISR = ~ω in a single emission event.
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Figure 1: (Color online) Dependence of effective energy loss P eff and diffusion Deff coeffi-
cients on kE~ωc.

If all electrons would lose the same energy in a single photon emission event
〈∆EISR〉 = ~ωc then the distribution function would not change if 〈∆EISR〉 =
∆Ebands since all the electrons would move into the same position within the
next band and all the bands are equally populated. Then the energy diffusion
would vanish at kE~ωc = 2π in this hypothetical scenario. However, photons
emitted due to ISR have nearly 100% frequency distribution, so in reality
electrons do not move into the same position within the next energy band
but also acquire some random misplacement which is manifested as energy
diffusion. At the same time, the diffusion coefficient at κ = 2π is much
smaller compared to the case of κ ≪ 1 (as illustrated in Fig. 1) since a large
fraction of electrons do not significantly change their relative positions within
the corresponding band.

The Boltzmann equation in the spectral domain is a linear hyperbolic
equation which can be solved using method of characteristics. The charac-
teristics describing trajectories in the spectral domain are the same as for
the Vlasov equation (12). This property indicates that the transform of the
modulation wavevector is independent whether ISR is accounted for or not.
Taking ISR into account (both overall energy loss and energy diffusion) re-
sults in a change of the harmonic current amplitude and phase along the
beamline. Note that the optics required to transform an initial modulation
into a designed microbunched beam, including the bunching wavelength, are
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not affected by ISR. This property is highly useful in studies of XFEL seed-
ing schemes since the beamline optics can be designed without accounting for
ISR, which can then be included at the last stage for estimating the reduction
of the final bunching factor.

The absolute amplitude of the spectral distribution changes due to the
effective energy diffusion effect but it is not affected by the overall energy
loss. One can find the solution of linear Eqs. (22) — (23) in the following
form which can be used to find the smearing of the harmonic current due to
ISR in any arbitrary linear beamline

∣∣∣∣
fk (k(sf), sf)

fk(k(s0), s0)

∣∣∣∣ = exp


−

sf∫

s0

k2
E(s)D

eff(s)ds


 , (27)

k(s) = R−T (s, s0)k(s0). (28)

There are several properties which follow from Eq. (27). First of all, the har-
monic current amplitude always reduces along the beamline. This property
reflects the diffusive nature of ISR which smears out small scale variations
in the distribution function. Another property states that the rate of mod-
ulation smearing is proportional to k2

E. This property reflects the fact that
ISR-induced diffusion is the energy diffusion. A uniform energy distribution
is not affected by this effect. Also note that the integral along the beam-
line in Eq. (27) can be substituted as a sum of integrals along each element.
Importantly, as a result, the overall attenuation of the harmonic current is
equal to the product of attenuations in each dipole.

3.4. Fokker-Planck approximation

The Boltzmann equation in the phase space domain (13) — (14) can be
simplified under the assumption that the characteristic energy scale of the
distribution function f/∂Ef is much larger than the characteristic energy
~ωc of the emitted photons. Then the distribution function in the collision
operator (14) can be expanded and the following Fokker-Planck equation
recovered

df

ds
= ∂E(Pf) + ∂2

EE(Df), (29)

where energy loss P and diffusion D coefficients are described by Eqns. (17)
and (18).

The Fokker-Planck equation can be solved in the spectral domain in the
same way as was done in Sec. 3.3 for the Boltzmann equation. However, this

10



analysis is not required since the Fokker-Planck equation is an approximation
of a more general Boltzmann equation and its solution can be recovered
from a general solution. The Boltzmann equation (13) yields the Fokker-
Planck approximation when the typical energy of the emitted photons is
much smaller than the characteristic energy scale of the electron distribution
function. This assumption corresponds to the limit of kE~ωc ≪ 1 as discussed
in Sec. 3.3. Therefore, the solution of the Fokker-Planck equation (29) can be
found as a small photon energy limit of the general solution for the Boltzmann
equation (27), when Deff = D.

The smearing of the harmonic current depends on the energy modulation
wavenumber along the beamline which can be found using the transform
(28). Consider, for example, some beamline for XFEL seeding scheme. As
discussed in Ref. [11] such a beamline is designed to recover an imposed
modulation as longitudinal bunching at a given wavenumber, k(sf) = k̂zk =
(0, 0, 0, 0, k, 0)T . Then the modulation wavevector at any given position along
the beamline can be expressed through the modulation wavevector at the final
position and the linear transform matrix as k(s) = RT (sf , s)k(sf). Then one
can find that the overall attenuation of harmonic current due to ISR-induced
energy spread in the Fokker-Planck approximation is equal to

A ≡
∣∣∣∣
fk(k(sf), sf)

fk(k(s0), s0)

∣∣∣∣ = exp


−k2

sf∫

s0

DR2
56(sf , s)ds


 (30)

This result agrees with qualitative estimate presented in Ref. [9]. The so-
lution shows that the degradation of harmonic current strongly increases in
beamlines having large energy dispersion. Therefore, conventional XFEL
seeding schemes utilizing chicanes [4, 6, 5] might be affected by ISR since
chicanes are specifically designed to have large energy dispersion R56.

4. Smearing of bunching in various XFEL seeding schemes

In this section we calculate the attenuation of the harmonic current in
various beamlines designed for seeding XFELs with microbunched electron
beams. In these schemes the beam is typically modulated in an undulator by
interacting with an external laser at a resonant wavelength and longitudinal
bunching at high harmonics is recovered in the following linear beamline.
This dynamics can be conveniently described in the spectral domain as was
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illustrated in Ref. [11]. This formalism describes the change of the spectral
distribution function along characteristics which can be considered as trajec-
tories of the modulation wavevector in the spectral domain. The trajectory
of each spectral component does not depend whether ISR energy diffusion
is neglected or taken into account which follows from Eq. (28) since it is
independent on the diffusion coefficient. Taking into account ISR-induced
energy diffusion manifests as a next order effect and results in the reduc-
tion of the harmonic current along the beamline. The exponential factors in
Eqs. (27) and (30) can be interpreted as attenuation of harmonic current due
to ISR-induced energy diffusion.

In our analysis we limit ourselves to modulations which are recovered as
longitudinal bunching at a designed wavelength at the end of a chosen beam-
line element. Then the beam modulation at the beginning of the beamline
element is well defined since its transform is described by Eq. (28). From
this perspective, the precise mechanism of imposing initial modulation is not
important. Therefore, the attenuation factor for each element will depend
on the output bunching wavelength and beamline parameters.

We will present estimates for the attenuation factor based on the the so-
lution of the Fokker-Planck equation described by Eq. (30) since it is much
simpler than the solution of the Boltzmann equation (27) and the integrals
can be calculated analytically. This approximation is valid when the con-
dition kE~ωc ≪ 1 is held. The energy wavenumber of modulation can be
expressed through the wavelength of the final longitudinal bunching and the
beamline dispersion. In this section we will use conventional units used in
beam physics, particularly we will use the relative energy spread instead
of the full energy deviation, ∆E = γmc2(∆γ/γ). Then the condition for
validity of the Fokker-Planck equation expressed in common units reads as

(R56(sf , s))max ≪
2λρ

3λeγ2
= 2.39

λ[
◦
A]

B[T ]

10GeV

E
µm, (31)

where λ is the output bunching wavelength and λe = 2π~/(mc) ≈ 2.43 ·
10−12m is Compton wavelength.

4.1. Single bend

First, we estimate the attenuation of the harmonic current in a single
bend which can be the last bend of a more complicated linear beamline.
The transform matrix of a bend is described with Eq. (A.10). Then the
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attenuation of the harmonic current can be found from Eq. (30) and for a
single bend it is equal to

Abend = exp


−k2D

c

α∫

0

R2
56(θ)d(ρθ)


 =

= exp

(
− 55π2

63 · 48
√
3

α7γ5

αfine

(re
λ

)2)
≈

≈ exp

(
−16

(
E

10GeV

)5
α7[deg]

λ2[
◦
A]

)
, (32)

where α is the dipole bend angle, αfine = e2/(~c) ≈ 1/137 is the fine structure
constant, and re = e2/(mc2) ≈ 2.818 · 10−15m is the classical electron radius.

The smearing of the harmonic current can be neglected if the exponent
argument is smaller than unity. That results in a maximum angle of the
bend which can be used in the beamline. Exceeding this critical value results
in a strong smearing of the harmonic current due to the very strong scaling
of attenuation with the bend angle. The parameter region of importance of
the ISR debunching agrees with the qualitative estimate (4). The qualitative
estimate shows the same scaling versus main beam parameters as in the
rigorous analysis but the numerical factor is about a factor of 6 larger since
the ISR-induced energy spread was assumed to be acquired in the beginning
of the bend rather than being uniformly distributed along its length.

4.2. Chicane

Most of the beam-based XFEL seeding schemes utilize chicanes [4, 6, 5, 7].
To estimate the effect of ISR in these schemes we consider that the chicane
is designed to transform an imposed space-energy modulation into a final
longitudinal bunching. The detailed analysis of this setup is presented in
Appendix A and it yields to the attenuation factor of

Ach = exp

{
−6700

α7[deg]

λ2[
◦
A]

(
E

10GeV

)5

×

×
[(

R56

ρα3
+ 0.072

)2

+ 0.022

]}
. (33)

One can note that attenuation of harmonic current is stronger for larger
chicanes. This result follows directly from the general expression (30) for
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the attenuation factor in a general beamline. Typically, the chicane strength
scales as R56 ∼ ρα3. Then this term becomes dominant compared to other
numerical factors and the following approximate expression for attenuation
can be used most of the time:

Ach ≈ exp

{
−α[deg]R2

56[µm]B2[T ]

4.7λ2[
◦
A]

(
E

10GeV

)3
}
. (34)

This expression allows one to estimate the effect of ISR in proposed schemes
for XFEL seeding with microbunched beam.

The High Gain Harmonic Generation (HGHG) scheme [4] uses a single
modulator and a single chicane. The chicane strength required to achieve
maximum bunching is approximately equal to R56(∆γmod/γ) = µn1λ/2π,
where µn1 ∼ n is the first maximum of the n-th order Bessel function,
J ′
n(µn1) = 0 [11]. Then the attenuation of the harmonic current in an HGHG

scheme due to ISR can be estimated as

AHGHG ≈ exp

{
−5.4 · 10−3µ2

n1

(
E

10GeV

)3

×

×
(
∆γrms

∆γmod

)2
α[deg]B2[T ]

(∆γrms/γ[0.01%])2

}
. (35)

Note that the degradation of the harmonic current does not depend on the
wavelength of the output bunching directly. It depends only on the harmonic
number used in the HGHG scheme since µn1 ∼ n at n ≫ 1.

Similar estimates can be made for harmonic current smearing in the
Echo-Enabled Harmonic Generation (EEHG) scheme [5] and Compressed
Harmonic Generation (CHG) scheme [6]. These schemes utilize two chicanes
of different strengths, so the attenuation should be estimated for both chi-
canes. The first chicane in both schemes is used to create energy bands
in the phase space from the modulation which can be considered as mostly
longitudinal bunching, kE(sf) ≫ kE(s0). Therefore, the estimate (33) can
be applied to the first chicane even though it was derived for a chicane
which converts spatio-energetic modulation into purely longitudinal bunch-
ing. Straightforward algebra shows that the ratio of chicane strength and
modulation wavelength is almost the same for both chicanes in EEHG and
CHG schemes, (R56/λ)chicane1 ≈ (R56/λ)chicane2. Therefore, both chicanes in
those schemes result in the same attenuation of harmonic current as if they
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are designed using the same dipoles and the difference in their strengths is
caused by different drift lengths within the doglegs. Then the attenuation of
the harmonic current in an EEHG scheme can be estimated as

AEEHG ≈ exp

{
−10.8 · 10−3µ2

n1

(
E

10GeV

)3

×

×
(

∆γrms

∆γmod2

)2
α[deg]B2[T ]

(∆γrms/γ[0.01%])2

}
, (36)

where ∆γmod2 is the energy modulation imposed in the second modulator.
In this estimate we neglected the energy diffusion due to ISR in the second
undulator which modulates the beam. This effect can be easily accounted for
with the assumption that the undulator energy dispersion is much smaller as
compared to that in the chicanes. Then the energy modulation wavenumber
kE = µn1/(∆γmod2/γ) is constant along the undulator and full attenuation
factor for EEHG scheme should be reduced by exp(−k2

EDundL), where L is
the undulator length and Dund is the undulator energy diffusion coefficient
found in Ref. [13] (the rms energy change by the undulator is (∆γ/γ)2 =
2DundL).

A similar estimate for a CHG seeding scheme yields

ACHG ≈ exp

{
−4.3 · 107(M + 1)2

(
E

10GeV

)3

×

×σ2
z [µm]

λ2[
◦
A]

(
∆γrms

∆γind

)2
α[deg]B2[T ]

(∆γrms/γ[0.01%])2

}
, (37)

where M is the compression factor in the CHG scheme and ∆γind is the
energy slew imposed on the beam inside the cavity (i.e. the additional energy
at the location of the rms bunch length), and σz is the bunch length after
compression. The estimate for smearing the harmonic current in a CHG
scheme indicates that this effect is very strong compared to other seeding
schemes. This result comes from the fact that chicanes used in a CHG
are much stronger than what is required for HGHG and EEHG schemes.
Chicanes in a CHG scheme need to change the relative particle positions
on the order of the pulse length in order to provide significant compression,
unlike harmonic generation schemes which require a change of the electron
relative positions on the order of the modulation wavelength. Therefore,
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a CHG scheme may be not feasible for seeding XFELs due to its inherent
strong ISR-induced smearing of the harmonic current.

4.3. Emittance Exchanger

The smearing of the harmonic current is large in beamlines having a
large energy dispersion R56 as discussed in Sec. 3.4. ISR-induced attenuation
can be reduced by specifically designing beamline without energy dispersion.
This approach implies that conventional schemes for XFEL seeding such as
HGHG, EEHG, and CHG cannot be implemented since they rely on the pres-
ence of dispersive elements to recover imposed spatio-energetic modulation
as longitudinal bunching. Therefore, one should consider imposing a modu-
lation that is different from a modulation in E−z phase plane. For example,
one can consider using Emittance EXchanger (EEX) optics [14] to transform
transverse modulation into bunching [15, 7]. A properly designed EEX swaps
the longitudinal and transverse phase spaces of the beam, and therefore, the
energy dispersion of the beamline R56(sf , s0) is zero. However, the energy
dispersion from the middle of the beamline to the end, R56(sf , s), is not zero,
and the attenuation of the harmonic current does not vanish in this setup as
follows from Eq. (30). Additional minimization of the ISR-induced debunch-
ing can be achieved by using doglegs having zero dispersion so that energy
modulation is kept small in the middle of the EEX optics. Zero energy dis-
persion of the dogleg can be achieved by inserting a quadrupoles triplet in
the dogleg drifts so that the entire drift looks like an effective negative drift
space in terms of linear transform matrix [16].

We design the following setup to recover longitudinal bunching using EEX
optics. First, the beam is transversally modulated by passing it through a
mask. Then the imposed modulation is recovered as longitudinal bunching
with the following EEX optics. The dispersion of each dogleg is chosen to be
zero to minimize ISR-induced smearing of harmonic current. Such a design
requires that the beam is modulated along the x′ phase space coordinate
before the EEX optics. This can be achieved by inserting a focusing lens
just in front of the EEX and placing the transverse mask in the focus plane
of this lens as discussed in Ref. [16]. The attenuation of harmonic current
in this scheme can be calculated using the same algorithm as discussed in
Appendix Appendix A and one can find

AEEX = exp

{
−390

α7[deg]

λ2[
◦
A]

(
E

10GeV

)5
}
. (38)
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We numerically verify the quantitative estimate (38) by simulating the
EEX optics with a simple particle pushing code. All the beamline elements
were considered to be linear and the ISR was included as a random change
of the electron energy at each time step within bends. The results are pre-
sented in Fig. 2 for the regime of kE~ωc ≪ 1 in which the Fokker-Planck
approximation can be used. The following parameters of the EEX optics
were used: beam mean energy of E = 12GeV and rms energy spread of
∆γ/γ = 10−4, normalized transverse emittance ǫn = 0.14 mm-mrad, and
beam sizes σx = σy = σz = 100µm in all dimensions The EEX transforms an

initial transverse modulation with 23nm wavelength into 0.3
◦
A longitudinal

bunching. Using EEX dipoles with B = 1T magnetic field and α = 0.3 de-
gree angles. Fig. 2 shows perfect agreement between numerical simulations
and quantitative analysis.

00.10.20.30.40.5

distance
Figure 2: (Color online) Attenuation of harmonic current in EEX optics calculated nu-
merically (solid blue line) and analytically (dotted red line).

Note that the attenuation of the harmonic current in the EEX optics
described with Eq. (38) is similar to attenuation in a chicane having zero
energy dispersion R56 = 0, as described by Eq. (33). This fact can be ex-
plained by the similarity of these two optics which require the same doglegs
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having zero dispersion. Moreover, the scaling of the attenuation is the same
for both schemes, lnA ∝ −α7γ5/λ2, but the corresponding numerical factors
are different. The numerical factor for attenuation of harmonic current in
the chicane is on the same order as for EEX if R56 = 0 and it is an order of
magnitude larger compared to EEX if R56 ∼ ρα3. Also note that the same
scaling holds for a single bend as described by Eq. (32).

5. Discussion

We developed a quantitative approach which allows one to calculate the
smearing of the harmonic current due to ISR-induced energy spread in an
arbitrary beamline. The approach is based on a beam representation in the
spectral domain where modulation is represented as a well-localized distribu-
tion which evolves along the trajectories. The energy diffusion manifests in
the spectral domain as a damping operator which allows one easily calculate
attenuation of harmonic current amplitude along the beamline. The analysis
can be further simplified using a Fokker-Planck approximation which is valid
when the typical energy of emitted photons is much smaller than the energy
bands of modulation.

We have applied the developed formalism to estimate the smearing of the
harmonic current in various schemes proposed for seeding XFELs in which
an imposed modulation is recovered as longitudinal bunching in following
beamline. We demonstrated that the attenuation of the harmonic current
amplitude increases in beamlines having large energy dispersion R56. The dif-
ferent schemes lead to the same scaling for the attenuation of the harmonic
current, lnA ∝ −α7γ5/λ2, which follows from Eqs. (32), (33), and (38). The
only difference between schemes and their associated beamlines came as dif-
ferent numerical factors in front of the scaling. This scaling indicates very
rapid increase of the ISR-induced debunching effect when either the beam
energy or the dipole bend angle increases. As a result, the proposed XFEL
seeding schemes should utilize elements with small bend angles. The maxi-
mum bend angle can be estimated from the condition that the ISR-induced
diffusion does not reduce the amplitude of harmonic current by more than a
factor of 2. The rapid scaling of the attenuation versus bend angle indicates
that different beamlines having different numerical factors for attenuation
scaling result in similar critical angles for bends. From this perspective, a
significant complication of the beamline optics to reduce ISR-induced de-
bunching does not seem practical.
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Appendix A. Calculation of harmonic current reduction in chi-
cane

In this Appendix we present the algorithm for calculating the attenua-
tion of the harmonic current in a chicane which transforms an initial beam
modulation into longitudinal bunching. However, the same algorithm can be
used to calculate the smearing of an arbitrary short-scale modulation in an
arbitrary beamline.

The Degradation of the harmonic current can be described with the
Fokker-Planck equation (29) which describes beam energy diffusion cou-
pled with the 6D phase space transport. In Secs. 3.3 and 3.4 we assumed
phase space variables to be canonical conjugate. However, the variables do
not have to be canonical in order to correctly describe the beam transport
since our analysis of ISR effect did not use the condition for conjugance
of variables. Therefore, one can choose conventional set of variables, i.e.
ζ(s) = (x, x′, y, y′, c∆t,∆γ/γ), where x′ and y′ are the particle angles in
respect to reference trajectory.

We describe the chicane as two doglegs separated by a drift space as
illustrated in Fig. A.3. To simplify our analysis, we consider hard edge bends.
Then the particle motion in the orthogonal y-plane is decoupled from the
motion in the other phase space planes and it is represented by a simple
drift. Therefore, energy diffusion affects motion only in x and z phase space
planes and the system dynamics can be adequately described by 4D phase
space.

Di pol e Di pol e Di pol e Di pol e
S2S1 d d dS1d

1 2 3 4
Figure A.3: (Color online) Schematic of a chicane.
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The transform matrix of the chicane shown in Fig. A.3 is equal to

Rchicane = RflipRdoglegRflipRdriftRdogleg =

=




1 2L+ S2 0 0
0 1 0 0
0 0 1 2ξ
0 0 0 1


 , (A.1)

Rdrift =




1 S2 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Rflip =




−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


 ,

Rdogleg =




1 L 0 η
0 1 0 0
0 η 1 ξ
0 0 0 1


 . (A.2)

Here the dogleg parameters can be found in the ultra relativistic limit as

L =
2d cosα+ S1

cos2 α
, (A.3)

η =
S1 + 2d cosα− (2d+ S1) cos

2 α

sinα cos2 α
, (A.4)

ξ =
2d sinα cosα− 2dα cos2 α + S1 sin

3 α

sinα cos2 α
, (A.5)

where α is the bend angle of the dipole with parallel pole faces, d is the
dipole length, S1 is the distance between bends in each dogleg, and S2 is the
distance between the two doglegs [17].

Finding the attenuation of the harmonic current requires knowledge of
the modulation wavevector inside each bend. First we find the modulation
wavevector at the edge of each dipole using Eq. (28) which describes its
transform along the beamline. We consider the output modulation of the
beam to be longitudinal bunching, k(4) = 2π/λ × [0, 0, 1, 0]T . Then the
modulation wavevector at positions 1, 2, and 3 along the beamline can be
found as

k(1) = RT
chicanek(4) = 2π/λ[0, 0, 1, 2ξ]T , (A.6)
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k(2) = R−T
doglegk(1) = 2π/λ[0,−η, 1, ξ]T , (A.7)

k(3) = R−T
driftk(2) = 2π/λ[0,−η, 1, ξ]T , (A.8)

k(4) = 2π/λ[0, 0, 1, 0]T . (A.9)

The wavenumber of modulation inside each bend can be found using the
transform matrix of the bend from its edge to some intermediate plane

Rθ =




cos θ ρ sin θ 0 ρ(1− cos θ)
− sin θ/ρ cos θ 0 sin θ
− sin θ ρ(cos θ − 1) 1 ρ(sin θ − θ)

0 0 0 1


 , (A.10)

where the intermediate angle inside the bend is defined as θ to distinguish it
from the overall bend angle α of the dipoles. Then the modulation wavevector
in each bend

k(1)(θ) = R−T
θ k(1), (A.11)

k(2)(α− θ) = (RflipRθRflip)
Tk(2), (A.12)

k(3)(θ) = (RflipRθRflip)
−Tk(3), (A.13)

k(4)(α− θ) = RT
θ k(4). (A.14)

Using Eq. (27) in the limit of kE~ωc ≪ 1 one can find the attenuation
of the harmonic current in each dipole. Note that we use ∆γ/γ instead
of ∆E as an independent energy variable and the bend angle θ instead of
s as the path length variable in the Fokker-Planck equation. This choice
of variables changes the diffusion coefficient to Dθ = ρ/(γmc2)2D and the
energy modulation wavenumber to k∆γ/γ = γmc2 kE. The overall reduction
in the modulation amplitude is equal to the product of attenuation factors in
each element. Calculating the integrals in the limit of small bend angles, α ≪
1, one obtains the following expression for the attenuation of the harmonic
current in the chicane

Achicane = exp



−

4∑

i=1

α∫

0

(
k
(i)
∆γ/γ(θ)

)2
Dθdθ



 ≈

≈ exp

{
−6700

α7[deg]

λ2[
◦
A]

(
E

10GeV

)5

×
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×
[(

R56

ρα3
+ 0.072

)2

+ 0.022

]}
, (A.15)

where R56 ≡ 2ξ is the chicane strength.
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