DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Resonant tunneling and intrinsic bistability in twisted graphene structures

Abstract

We predict that vertical transport in heterostructures formed by twisted graphene layers can reveal a unique bistability mechanism. Intrinsically bistable I - V characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and drain and the middle layer floating. Under bias, the middle layer can be either resonant or nonresonant with the source and drain layers. The bistability is controlled by geometric device parameters easily tunable in experiments. Thus, the nanoscale architecture can enable uniquely fast switching times.

Authors:
 [1];  [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1371391
Alternate Identifier(s):
OSTI ID: 1294727
Grant/Contract Number:  
SC0001088
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 94; Journal Issue: 8; Related Information: CE partners with Massachusetts Institute of Technology (lead); Brookhaven National Laboratory; Harvard University; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; solar (photovoltaic); solid state lighting; photosynthesis (natural and artificial); charge transport; optics; synthesis (novel materials); synthesis (self-assembly); synthesis (scalable processing)

Citation Formats

Rodriguez-Nieva, J. F., Dresselhaus, M. S., and Levitov, L. S. Resonant tunneling and intrinsic bistability in twisted graphene structures. United States: N. p., 2016. Web. doi:10.1103/PhysRevB.94.085412.
Rodriguez-Nieva, J. F., Dresselhaus, M. S., & Levitov, L. S. Resonant tunneling and intrinsic bistability in twisted graphene structures. United States. https://doi.org/10.1103/PhysRevB.94.085412
Rodriguez-Nieva, J. F., Dresselhaus, M. S., and Levitov, L. S. Mon . "Resonant tunneling and intrinsic bistability in twisted graphene structures". United States. https://doi.org/10.1103/PhysRevB.94.085412. https://www.osti.gov/servlets/purl/1371391.
@article{osti_1371391,
title = {Resonant tunneling and intrinsic bistability in twisted graphene structures},
author = {Rodriguez-Nieva, J. F. and Dresselhaus, M. S. and Levitov, L. S.},
abstractNote = {We predict that vertical transport in heterostructures formed by twisted graphene layers can reveal a unique bistability mechanism. Intrinsically bistable I - V characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and drain and the middle layer floating. Under bias, the middle layer can be either resonant or nonresonant with the source and drain layers. The bistability is controlled by geometric device parameters easily tunable in experiments. Thus, the nanoscale architecture can enable uniquely fast switching times.},
doi = {10.1103/PhysRevB.94.085412},
journal = {Physical Review B},
number = 8,
volume = 94,
place = {United States},
year = {Mon Aug 15 00:00:00 EDT 2016},
month = {Mon Aug 15 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Trilayer graphene heterostructure schematics, with layers labeled 1 to 3. Here I$ij$ and d$ij$ are the interlayer currents and distances. (b) Band structure of twisted graphene layers 1 (blue) and 2 (red). The twist angle θ defines a characteristic energy Δ [Eq. (1)] and three superlattice wavemore » vectors qA,B,C [Eq. (12)]. (c) Bistable I -V characteristics. The resonant and nonresonant bistable states are illustrated in the top left inset (details are discussed in Fig. 3). The procedure for finding bistable solutions is illustrated in the bottom right inset [see Eq. (9) and accompanying discussion].« less

Save / Share:

Works referenced in this record:

The missing memristor found
journal, May 2008

  • Strukov, Dmitri B.; Snider, Gregory S.; Stewart, Duncan R.
  • Nature, Vol. 453, Issue 7191
  • DOI: 10.1038/nature06932

Moire bands in twisted double-layer graphene
journal, July 2011

  • Bistritzer, R.; MacDonald, A. H.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 30
  • DOI: 10.1073/pnas.1108174108

Graphene Bilayer with a Twist: Electronic Structure
journal, December 2007

  • Lopes dos Santos, J. M. B.; Peres, N. M. R.; Castro Neto, A. H.
  • Physical Review Letters, Vol. 99, Issue 25
  • DOI: 10.1103/PhysRevLett.99.256802

Space‐charge buildup and bistability in resonant‐tunneling double‐barrier structures
journal, April 1988

  • Sheard, F. W.; Toombs, G. A.
  • Applied Physics Letters, Vol. 52, Issue 15
  • DOI: 10.1063/1.99165

Quantum capacitance devices
journal, February 1988

  • Luryi, Serge
  • Applied Physics Letters, Vol. 52, Issue 6
  • DOI: 10.1063/1.99649

Resonant tunnelling and negative differential conductance in graphene transistors
journal, April 2013

  • Britnell, L.; Gorbachev, R. V.; Geim, A. K.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2817

Resonant tunneling and intrinsic bistability in asymmetric double‐barrier heterostructures
journal, October 1988

  • Zaslavsky, A.; Goldman, V. J.; Tsui, D. C.
  • Applied Physics Letters, Vol. 53, Issue 15
  • DOI: 10.1063/1.99956

Gate-controlled nonvolatile graphene-ferroelectric memory
journal, April 2009

  • Zheng, Yi; Ni, Guang-Xin; Toh, Chee-Tat
  • Applied Physics Letters, Vol. 94, Issue 16
  • DOI: 10.1063/1.3119215

Graphene/Metal Contacts: Bistable States and Novel Memory Devices
journal, April 2012


Tunnelling from a Many-Particle Point of View
journal, January 1961


Nonvolatile Memory Cells Based on MoS 2 /Graphene Heterostructures
journal, March 2013

  • Bertolazzi, Simone; Krasnozhon, Daria; Kis, Andras
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn3059136

Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Memory leads the way to better computing
journal, March 2015

  • Wong, H. -S. Philip; Salahuddin, Sayeef
  • Nature Nanotechnology, Vol. 10, Issue 3
  • DOI: 10.1038/nnano.2015.29

Observation of intrinsic bistability in resonant tunneling structures
journal, March 1987


A new spin on magnetic memories
journal, March 2015

  • Kent, Andrew D.; Worledge, Daniel C.
  • Nature Nanotechnology, Vol. 10, Issue 3
  • DOI: 10.1038/nnano.2015.24

Graphene Flash Memory
journal, August 2011

  • Hong, Augustin J.; Song, Emil B.; Yu, Hyung Suk
  • ACS Nano, Vol. 5, Issue 10
  • DOI: 10.1021/nn201809k

Transport between twisted graphene layers
journal, June 2010


Memristive devices for computing
journal, January 2013

  • Yang, J. Joshua; Strukov, Dmitri B.; Stewart, Duncan R.
  • Nature Nanotechnology, Vol. 8, Issue 1, p. 13-24
  • DOI: 10.1038/nnano.2012.240

Ambipolar bistable switching effect of graphene
journal, December 2010

  • Shin, Young Jun; Kwon, Jae Hyun; Kalon, Gopinadhan
  • Applied Physics Letters, Vol. 97, Issue 26
  • DOI: 10.1063/1.3532849

Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene
journal, December 2008

  • George, Paul A.; Strait, Jared; Dawlaty, Jahan
  • Nano Letters, Vol. 8, Issue 12
  • DOI: 10.1021/nl8019399

Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures
journal, September 2014


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.