DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling the Mesoscale Transport of Lithium-Magnetite Electrodes Using Insight from Discharge and Voltage Recovery Experiments

Abstract

A multi-scale mathematical model, which accounts for mass transport on the crystal and agglomerate length-scales, is used to investigate the electrochemical performance of lithium-magnetite electrochemical cells. Experimental discharge and voltage recovery data are compared to three sets of simulations, which incorporate crystal-only, agglomerate-only, or multi-scale transport effects. Mass transport diffusion coefficients are determined by fitting the simulated voltage recovery times to experimental data. In addition, a further extension of the multi-scale model is proposed which accounts for the impact of agglomerate size distributions on electrochemical performance. The results of the study indicate that, depending on the crystal size, the low utilization of the active material is caused by transport limitations on the agglomerate and/or crystal length-scales. For electrodes composed of small crystals (6 and 8 nm diameters), it is concluded that the transport limitations in the agglomerate are primarily responsible for the long voltage recovery times and low utilization of the active mass. In the electrodes composed of large crystals (32 nm diameter), the slow voltage recovery is attributed to transport limitations on both the agglomerate and crystal length-scales.

Authors:
 [1];  [1];  [2];  [3];  [2];  [1];  [2];  [2];  [4];  [1]
  1. Columbia Univ., New York, NY (United States)
  2. Stony Brook Univ., NY (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
  4. Stony Brook Univ., NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1370757
Grant/Contract Number:  
SC0012673; DGE-11-44155; C090171
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 162; Journal Issue: 14; Related Information: m2M partners with Stony Brook University (lead); Brookhaven National Laboratory; Columbia University; Georgia Institute of Technology; Oak Ridge National Laboratory; Rensselaer Polytechnic Institute; University of California, Berkeley; University of North Carolina at Chapel Hill; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; energy storage (including batteries and capacitors); charge transport; mesostructured materials

Citation Formats

Knehr, K. W., Brady, Nicholas W., Cama, Christina A., Bock, David C., Lin, Zhou, Lininger, Christianna N., Marschilok, Amy C., Takeuchi, Kenneth J., Takeuchi, Esther S., and West, Alan C. Modeling the Mesoscale Transport of Lithium-Magnetite Electrodes Using Insight from Discharge and Voltage Recovery Experiments. United States: N. p., 2015. Web. doi:10.1149/2.0961514jes.
Knehr, K. W., Brady, Nicholas W., Cama, Christina A., Bock, David C., Lin, Zhou, Lininger, Christianna N., Marschilok, Amy C., Takeuchi, Kenneth J., Takeuchi, Esther S., & West, Alan C. Modeling the Mesoscale Transport of Lithium-Magnetite Electrodes Using Insight from Discharge and Voltage Recovery Experiments. United States. https://doi.org/10.1149/2.0961514jes
Knehr, K. W., Brady, Nicholas W., Cama, Christina A., Bock, David C., Lin, Zhou, Lininger, Christianna N., Marschilok, Amy C., Takeuchi, Kenneth J., Takeuchi, Esther S., and West, Alan C. Tue . "Modeling the Mesoscale Transport of Lithium-Magnetite Electrodes Using Insight from Discharge and Voltage Recovery Experiments". United States. https://doi.org/10.1149/2.0961514jes. https://www.osti.gov/servlets/purl/1370757.
@article{osti_1370757,
title = {Modeling the Mesoscale Transport of Lithium-Magnetite Electrodes Using Insight from Discharge and Voltage Recovery Experiments},
author = {Knehr, K. W. and Brady, Nicholas W. and Cama, Christina A. and Bock, David C. and Lin, Zhou and Lininger, Christianna N. and Marschilok, Amy C. and Takeuchi, Kenneth J. and Takeuchi, Esther S. and West, Alan C.},
abstractNote = {A multi-scale mathematical model, which accounts for mass transport on the crystal and agglomerate length-scales, is used to investigate the electrochemical performance of lithium-magnetite electrochemical cells. Experimental discharge and voltage recovery data are compared to three sets of simulations, which incorporate crystal-only, agglomerate-only, or multi-scale transport effects. Mass transport diffusion coefficients are determined by fitting the simulated voltage recovery times to experimental data. In addition, a further extension of the multi-scale model is proposed which accounts for the impact of agglomerate size distributions on electrochemical performance. The results of the study indicate that, depending on the crystal size, the low utilization of the active material is caused by transport limitations on the agglomerate and/or crystal length-scales. For electrodes composed of small crystals (6 and 8 nm diameters), it is concluded that the transport limitations in the agglomerate are primarily responsible for the long voltage recovery times and low utilization of the active mass. In the electrodes composed of large crystals (32 nm diameter), the slow voltage recovery is attributed to transport limitations on both the agglomerate and crystal length-scales.},
doi = {10.1149/2.0961514jes},
journal = {Journal of the Electrochemical Society},
number = 14,
volume = 162,
place = {United States},
year = {Tue Oct 27 00:00:00 EDT 2015},
month = {Tue Oct 27 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermodynamic model development for lithium intercalation electrodes
journal, December 2008


Modeling of Porous Insertion Electrodes with Liquid Electrolyte
journal, January 1982

  • West, K.
  • Journal of The Electrochemical Society, Vol. 129, Issue 7
  • DOI: 10.1149/1.2124188

Predicting Active Material Utilization in LiFePO[sub 4] Electrodes Using a Multiscale Mathematical Model
journal, January 2010

  • Dargaville, S.; Farrell, T. W.
  • Journal of The Electrochemical Society, Vol. 157, Issue 7
  • DOI: 10.1149/1.3425620

Grain boundary diffusion: recent progress and future research
journal, February 1999


Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence
journal, January 2011

  • Safari, M.; Delacourt, C.
  • Journal of The Electrochemical Society, Vol. 158, Issue 2
  • DOI: 10.1149/1.3515902

Modeling Lithium Intercalation of Single-Fiber Carbon Microelectrodes
journal, January 1996

  • Verbrugge, Mark W.
  • Journal of The Electrochemical Society, Vol. 143, Issue 2
  • DOI: 10.1149/1.1836486

Electrochemical discharge of nanocrystalline magnetite: structure analysis using X-ray diffraction and X-ray absorption spectroscopy
journal, January 2013

  • Menard, Melissa C.; Takeuchi, Kenneth J.; Marschilok, Amy C.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 42
  • DOI: 10.1039/c3cp52870g

Mesoscale Modeling of a Li-Ion Polymer Cell
journal, January 2007

  • Wang, Chia-Wei; Sastry, Ann Marie
  • Journal of The Electrochemical Society, Vol. 154, Issue 11
  • DOI: 10.1149/1.2778285

Electrochemical Lithium Insertion of Iron Oxide Spinel Thin Films and Nanoparticles: Changes in Structure and Magnetic Properties
conference, January 2007

  • Sivakumar, Vikram; Kumar, Sundeep; Ross, Caroline
  • 209th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.2424283

Crystallite Size Control and Resulting Electrochemistry of Magnetite, Fe[sub 3]O[sub 4]
journal, January 2009

  • Zhu, Shali; Marschilok, Amy C.; Takeuchi, Esther S.
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 4
  • DOI: 10.1149/1.3078076

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Electrochemical activity of nanocrystalline Fe3O4 in aprotic Li and Na salt electrolytes
journal, September 2008


Intercalation dynamics in rechargeable battery materials: General theory and phase-transformation waves in LiFePO4
journal, November 2008


Mathematical Modeling of Commercial LiFePO 4 Electrodes Based on Variable Solid-State Diffusivity
journal, January 2011

  • Farkhondeh, M.; Delacourt, C.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2
  • DOI: 10.1149/2.073202jes

A Discharge Model for Phase Transformation Electrodes:  Formulation, Experimental Validation, and Analysis
journal, November 2007

  • Wang, Chunsheng; Kasavajjula, Uday S.; Arce, Pedro E.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 44
  • DOI: 10.1021/jp074490u

Tracking lithium transport and electrochemical reactions in nanoparticles
journal, January 2012

  • Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2185

Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material
journal, September 2004


Battery energy storage technology for power systems—An overview
journal, April 2009


Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion
journal, January 1951


Template free construction of a hollow Fe 3 O 4 architecture embedded in an N-doped graphene matrix for lithium storage
journal, January 2015

  • Qin, Guohui; Fang, Zewei; Wang, Chengyang
  • Dalton Transactions, Vol. 44, Issue 12
  • DOI: 10.1039/C4DT03795B

Diffusion in nanocrystalline material
journal, May 1987


Mesoscale Transport in Magnetite Electrodes for Lithium-Ion Batteries
journal, September 2015


The Scherrer Formula for X-Ray Particle Size Determination
journal, November 1939


Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe[sub 3]O[sub 4] and α-Fe[sub 2]O[sub 3] for Rechargeable Batteries
journal, January 2010

  • Komaba, Shinichi; Mikumo, Takashi; Yabuuchi, Naoaki
  • Journal of The Electrochemical Society, Vol. 157, Issue 1
  • DOI: 10.1149/1.3254160

Nanocrystalline Magnetite: Synthetic Crystallite Size Control and Resulting Magnetic and Electrochemical Properties
journal, January 2010

  • Zhu, Shali; Marschilok, Amy C.; Takeuchi, Esther S.
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3478667

High-Yield Gas−Liquid Interfacial Synthesis of Highly Dispersed Fe 3 O 4 Nanocrystals and Their Application in Lithium-Ion Batteries
journal, March 2009

  • Cui, Zhi-Min; Jiang, Ling-Yan; Song, Wei-Guo
  • Chemistry of Materials, Vol. 21, Issue 6
  • DOI: 10.1021/cm8033609

Effective Transport Properties of LiMn2O4 Electrode via Particle-Scale Modeling
journal, January 2011

  • Gupta, Amit; Seo, Jeong Hun; Zhang, Xiangchun
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3560441

Growth and Electrochemical Characterization versus Lithium of Fe3O4 Electrodes Made by Electrodeposition
journal, November 2006

  • Mitra, S.; Poizot, P.; Finke, A.
  • Advanced Functional Materials, Vol. 16, Issue 17
  • DOI: 10.1002/adfm.200500753

2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe 3 O 4
journal, June 2015

  • Bock, David C.; Kirshenbaum, Kevin C.; Wang, Jiajun
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 24
  • DOI: 10.1021/acsami.5b02478

Nonequilibrium Thermodynamics of Porous Electrodes
journal, January 2012

  • Ferguson, Todd R.; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 159, Issue 12
  • DOI: 10.1149/2.048212jes

Determination of the chemical diffusion coefficient of lithium in LiFePO4
journal, May 2002


Experimental and Theoretical Characterization of Electrode Materials that Undergo Large Volume Changes and Application to the Lithium–Silicon System
journal, February 2015

  • Verbrugge, Mark W.; Baker, Daniel R.; Xiao, Xingcheng
  • The Journal of Physical Chemistry C, Vol. 119, Issue 10
  • DOI: 10.1021/jp512585z

History, Evolution, and Future Status of Energy Storage
journal, May 2012


A review of conduction phenomena in Li-ion batteries
journal, December 2010


NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

Variation in the iron oxidation states of magnetite nanocrystals as a function of crystallite size: The impact on electrochemical capacity
journal, April 2013


Electrochemical Properties and Thermal Stability of Li[sub a]Ni[sub 1−x]CO[sub x]O[sub 2] Cathode Materials
journal, January 2000

  • Cho, Jaephil; Jung, HyunSook; Park, YoungChul
  • Journal of The Electrochemical Society, Vol. 147, Issue 1
  • DOI: 10.1149/1.1393137

Discharge Model for the Lithium Iron-Phosphate Electrode
journal, January 2004

  • Srinivasan, Venkat; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785012

C-containing LiFePO4 materials — Part II: Electrochemical characterization
journal, December 2008


Discovery of Amorphous Iron Hydrides via Novel Quiescent Reaction in Aqueous Solution
journal, April 2020


Mesoscale Modeling of a Li-Ion Polymer Cell
journal, March 2007

  • Wang, Chia-Wei; Sastry, Ann Marie
  • ECS Meeting Abstracts, Vol. MA2007-01, Issue 7, p. 420-420
  • DOI: 10.1149/ma2007-01/7/420

Experimental and Theoretical Characterization of Electrode Materials That Undergo Large Volume Changes and Application to the Lithium-Silicon System
journal, April 2015

  • Verbrugge, Mark W.; Baker, Daniel R.; Xiao, Xingcheng
  • ECS Meeting Abstracts, Vol. MA2015-01, Issue 2, p. 262-262
  • DOI: 10.1149/ma2015-01/2/262

Nonequilibrium Thermodynamics of Porous Electrodes
preprint, January 2012


Works referencing / citing this record:

A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries
journal, March 2017


Insights into Ionic Transport and Structural Changes in Magnetite during Multiple-Electron Transfer Reactions
journal, March 2016

  • Zhang, Wei; Bock, David C.; Pelliccione, Christopher J.
  • Advanced Energy Materials, Vol. 6, Issue 10
  • DOI: 10.1002/aenm.201502471

Quantitative Parameter Estimation, Model Selection, and Variable Selection in Battery Science
journal, August 2019

  • Brady, Nicholas W.; Gould, Christian Alexander; West, Alan C.
  • Journal of The Electrochemical Society, Vol. 167, Issue 1
  • DOI: 10.1149/2.0012001jes

Operando Study of LiV 3 O 8 Cathode: Coupling EDXRD Measurements to Simulations
journal, January 2018

  • Brady, Nicholas W.; Zhang, Qing; Bruck, Andrea
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.1291802jes

Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective
journal, April 2016