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ABSTRACT 

 

A novel approach is presented to constrain reduced-order models (ROM) based on proper 

orthogonal decomposition (POD). The Karush-Kuhn-Tucker (KKT) conditions were 

applied to the traditional reduced-order model to constrain the solution to user-defined 
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bounds. The constrained reduced-order model (C-ROM) was applied and validated against 

the analytical solution to the first-order wave equation. C-ROM was also applied to the 

analysis of fluidized beds. It was shown that the ROM and C-ROM produced accurate 

results and that C-ROM was less sensitive to error propagation through time than the ROM. 

 

Keywords: Proper Orthogonal Decomposition, Reduced-Order Modeling, Karush-Kuhn-

Tucker, Multiphase Flows, Computational Fluid Dynamics, Fluidized Beds 

 

 

INTRODUCTION 

 

A great deal of effort has been dedicated to develop reduced-order models (ROMs) of 

numerical methods that can provide accurate predictions while dramatically reducing 

computational time for a wide range of applications covering fluid mechanics, heat 

transfer, structural dynamics [1] and electromagnetics [2]. The challenges posed by the 

different engineering fields have led to various types of reduced-order models. A common 

approach for model order reduction is through projection. Some of the methodologies for 

model reduction include balanced truncation [3], trajectory piecewise-linear approach [4] 

and proper orthogonal decomposition. 

Reduced-order models based on proper orthogonal decomposition have been 

successfully implemented to reduce computational cost while maintaining high fidelity 

solutions. Proper orthogonal decomposition (POD) is a method by which an optimal set of 

spatial basis function can be extracted from the solution of the full-order model (FOM). 
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The set of partial differential equations are then projected onto the basis functions using 

Galerkin projection, resulting in a smaller system of ordinary differential equations. Recent 

reviews of ROMs based on POD are presented by Beran and Silva [5], Dowell and Tang 

[6] and Lucia et al. [7]. 

POD has been successfully used in conjunction with finite element, finite volume and 

finite difference methods for model reduction. Wang et al. [8] used a mixed finite element 

method with POD basis functions to solve the transient Navier-Stokes equations. Fic et al. 

[9] projected the finite element discretized heat conduction equation onto the POD basis 

functions to develop a reduced-order model for non-linear heat conduction. Yuan et al. 

[10] used a finite volume discretized system of PDEs and POD to developed reduced-order 

model for bubbling fluidized beds. Luo et al. [11, 12] used POD to reduce a finite 

difference extrapolation algorithm to obtain solutions to a Lighthill, Whitham and Richards 

(LWR) traffic flow model and two-dimensional shallow water equations. 

Over the last decade, much attention has been dedicated to: i) modeling of off-reference 

conditions, ii) modeling moving/deforming meshes, and iii) acceleration techniques and 

robustness.  

Modeling of off-reference conditions can be performed by direct interpolation, 

enriching the snapshot database, interpolation of basis functions within the tangent space 

to the Grassman manifold [13, 14] and modification of basis functions using sensitivity 

analysis [15]. Some of these methods are reviewed by Vertrano et al. [16]. 

The advances in modeling of deforming meshes have primarily been driven by 

aeroelastic and fluid-structure interaction applications. Bogaers et al. [17] formulated an 

efficient mesh movement method based on POD. Freno and Cizmas [18] and Freno et al. 
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[19] presented a POD decomposition method for nonlinear flows with deforming meshes 

which applied dynamic basis functions for modeling of flows. 

Several acceleration techniques for reduced-order model based on POD were 

investigated by Cizmas et al. [20], which resulted in the reduction of computational time 

by a factor of 114. Brenner et al. [21] investigated two approaches for constructing the 

autocorrelation matrix, showing that a split approach results in much lower errors than the 

coupled approach. Brenner et al. [22] also formulated an augmented POD method capable 

of resolving discontinuity in the solution, although this work needs to be generalized for 

2D and 3D cases. Alonso et al. [23] developed a robust reduced-order model that is 

independent of the way the snapshots were computed to analyze a classical fluid mechanics 

test case of a flow over a backward facing step. 

This work modifies the traditional reduced-order model based on POD to constrain the 

solution within user-defined bounds. Robust reduced-order models are needed to cope with 

issues such as error arising from numerically solving the eigenvalue problem to obtain the 

POD basis functions and errors in snapshots taken from the full order model. This robust 

model is developed by applying the Karush - Kuhn - Tucker (KKT) conditions to the 

existing POD based ROM.  

 

 

PROPER ORTHOGONAL DECOMPOSITION (POD) 

 

Proper orthogonal decomposition, also known as Karhunen – Loeve decomposition, 

singular value decomposition and principal component analysis, is a procedure for 
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extracting an optimal set of orthogonal basis functions from a collection of snapshots. POD 

is able to detect the underlying structure of the snapshots.  

Let us consider a sequence of experimental or numerical observations of a scalar 

functionu(x,ti )  where i = 1,...,M and M is the number of observations. The observations 

u(x,ti )  are parameterized by time, ti , where the observation at each time is called a 

snapshot. Applying POD to the collection of snapshots extracts time independent 

orthogonal basis functions, referred to as POD modes, φi (x) , and time dependent 

orthogonal coefficients, α i (x) , such that the reconstruct of the snapshots, 

 

 
u(x,ti ) = α k (ti )φk (x)

k=1

M

∑ ,                (1) 

 

 

is optimal in the sense that the least square truncation error  

 

 
εm = u(x,ti )− α k (ti )φk (x)

k=1

m

∑
2

 (2) 

 

(where  i
2 is the L2-norm,  i  is the average over the number of observations) is minimum 

for any given number of basis functions, m, over all possible sets of basis functions such 

that m ≤ M . The optimum condition specified by Eq. (2) is identical to finding basis 

functions, φ , that maximize the normalized averaged projection of u  onto φ  given by Eq. 

(3). 

i = 1,...,M
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max

φ∈L2 (Ω)

(u,φ) 2

φ 2  (3) 

 

where  i  denotes the modulus. The optimum condition reduces to [24]: 

 

 u(x)u *(y) φ(y)dy = λ
Ω
∫ φ(x)  (4) 

 

The eigenvalues, λ , can be used to determine the energy captured by each eigenfunction. 

The basis functions φi{ }  are the eigenfunctions of the integral equation Eq. (4), whose 

kernel function is the autocorrelation function u(x)u *(y) ≡ R(x, y) . The autocorrelation 

function, R(x, y) , is replaced by the tensor product matrix 

 

 

 
R(x,y) = 1

M
u(x,ti )u

T (y,ti )
i=1

M

∑  (5) 

 

where u(x,ti ) = u(x1,ti ),u(x2,ti ),...,u(xN ,ti )[ ]T  are vector – valued functions and N is the 

resolution of the spatial domain. The eigenfunctions, φi (x) , can be found by solving the 

eigenvalue problem defined by Eq. (6). 

 



	 	

7 
	

 R(x,y)φ(x) = λφ(y)  (6) 

 

The eigenvalue problem defined by Eq. (6) is often too computationally expensive as the 

problem is of size N × N . For this reason the method of snapshots is used to reduce the 

N × N  to a much smaller M ×M  sized problem. 

 

 

METHOD OF SNAPSHOTS 

 

The method of snapshots was first proposed by Sirovich [25], in which the size of the 

eigenvalue problem defined by Eq. (6) is reduced to a much smaller dimension problem. 

Since the eigenfunctions, φi , and data vectors ui  span the same linear space [24, 25], it 

allows the eigenfunctions to be represented as a linear combination of the data vector   

 

 
φi = vk

iuk
k=1

M

∑ ,  i = 1,...,M  (7) 

 

Substituting Eq. (7) into Eq. (6) yields a much smaller eigenvalue problem as shown below 

 

 Cv = λv  (8) 

 

where v k = (v1
k ,...,vM

k )  is the kth eigenvector of Eq. (8) and C is a symmetric M ×M  

matrix defined by cij⎡⎣ ⎤⎦ = (1 /M )(ui ,u j ) . Here, (ui ,u j )  is the standard vector inner 
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product, (ui ,u j ) = u(x1,ti )u(x1,t j )+ ...+ u(xN ,ti )u(xN ,ti ) . The eigenvectors of Eq. (8) can 

then be used to reconstruct the eigenfunctions of Eq. (6) as Eq. (7). The computed 

eigenfunctions were then normalized and reordered according to decreasing eigenvalues as 

λ1 > λ2 > ...> λM = 0 . The energy captured by each eigenfunction is then computed as 

 

 Ei =
λi

λk
k=1

M

∑
 

(9) 

 

 

REDUCED FIRST-ORDER WAVE EQUATION 

 

The constrained reduced order methodology is first applied to a simple first–order wave 

equation. In this work the analytical form of the first-order wave equation was reduced 

although discretized forms of the equation can also be used. The first-order wave equation 

is given by Eq. (10) as 

 

 ∂u
∂t

+ c ∂u
∂x

= 0 ,  x ∈[0,1] , c > 0  

 

(10) 

with the initial condition 

 

 u(x,0) = f (x) ≥ 0  (11) 
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for which the analytical solution is 

 

 u(x,t) = f x − ct( )  (12) 

 

where f (x)  satisfies the initial condition. Let us represent u(x,t)  as a linear combination 

of POD modes 

 

 
u(x,t) ≈ α k (t)φk (x)

k=1

m

∑  (13) 

 

Here, m is the number of modes used in the POD approximation. Substituting Eq. (13) into 

Eq. (10) and using the Einstein summation convention yields a set of ordinary differential 

equations 

 

  α iφi + cα iφi
' = 0  (14) 

 

where •  denotes time derivations and '  denotes spatial derivatives. Applying Galerkin 

projection to Eq. (14) yields 

 

 
α iφiφ j dx

0

1

∫ + cα iφi
'φ j dx = 0

0

1

∫  (15) 

 

which, due to the orthonormality of the POD modes, reduces to 
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α i + c φi

'φ j dx
0

1

∫
⎛

⎝⎜
⎞

⎠⎟
α i = 0  (16) 

 

 

This can be written in vector form as 

 

  α +Bα = 0  (17) 

 

where  α ∈m  and  B∈m×m
. The elements of matrix B are 

 

 
Bij = c φi

'φ j dx
0

1

∫
⎛

⎝⎜
⎞

⎠⎟
 (18) 

 

Using an implicit time integration scheme, Eq. (17) becomes 

 

 (I + ΔtB)α n+1 −α n = 0  (19) 

 

where I is the identity matrix of rank m, Δt  is the time step and α n :=α (t n ) . With the 

notation C = I + ΔtB , Eq. (19) becomes 

 

 Cα n+1 −α n = 0  (20) 
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The time coefficients for each time step can be found by solving Eq. (20).  

 

 

KARUSH – KUHN – TUCKER (KKT) CONDITIONS 

 

The Karush-Kuhn-Tucker (KKT) conditions are heavily used in mathematical 

optimization problems. They represent a series of necessary conditions for a solution in 

nonlinear programming to be optimal while satisfying constraints. Effectively, they extend 

the method of Lagrange multipliers, which only allow equality constraints, to account for 

inequality constraints.  

Consider a nonlinear single-objective optimization problem  

 

 minimize f (x)  

                        subject to hi (x) = 0 i = 1,...,m  

                                        gj (x) ≤ 0 j = 1,...,l          

 

(21) 

where f  is the objective and hi (x) = 0 , i = 1,...,m  and gj (x) ≤ 0 , j = 1,...,l   are m 

equality constraints  and l inequality constraints, respectively. Let us assume that the 

objective function and the constraints are continuously differentiable at x* . Then, there 

exist constants µi  (where i = 1,...,m ) and λ j  (where j = 1,...,l ) called the KKT 

multipliers, that satisfy the following conditions [26] 
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∇f (x*)+ µi∇hi (x*)

i=1

m

∑ + λ j∇gj (x*)
j=1

l

∑ = 0  (22) 

 

 hi (x*) = 0 , i = 1,...,m  and gj (x*) ≤ 0 , j = 1,...,l  (23) 

 

 λ j ≥ 0 , j = 1,...,l  (24) 

 

 λ jg j (x*) = 0 , j = 1,...,l  (25) 

 

Equations (22), (23), (24) and (25) are referred to as stationary, primal feasibility, dual 

feasibility and complementary slackness, respectively. When no inequality constraints are 

present, the KKT conditions decompose to the Lagrange conditions and the KKT 

multipliers are called the Lagrange multipliers.  

 

 

CONSTRAINED REDUCED-ORDER MODEL (C-ROM) 

 

The constrained reduced-order model in this work is developed by applying the KKT 

conditions to the POD-based reduced-order model. It should be mentioned that only 

inequality constraints are considered in this work, however this procedure can be extended 

to handle equality constraints as well. Further model development will only consider 

inequality constraints. To apply the KKT conditions, the Lagrangian must first be 

constructed as follows: 
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L = f (x)+ µihi (x)

i=1

m

∑ + λ jg j (x)
j=1

l

∑  (26) 

 

Using the linear system defined by Eq. (20), the function to minimize becomes 

 

 Cα n+1 −α n 2  (27) 

 subject to u(x,t) = Φα n+1 ≥ 0  (28) 

 

where Φ = [φ1...φm ] ,  Φ∈N×m  is the matrix of POD modes, N is the number of spatial 

points. The Lagrangian is then constructed as 

 

  (29) 

 

The stationary condition Eq. (22) then results in  

 

 L
α n+1 = 2CTCα n+1 − 2CTα n +ΦTλ  (30) 

 

The complementary slackness, after forcing Eq. (28) as a binding constraint, yields 

 

 Φα n+1 = 0  (31) 

 

L = Cα n+1 −α n 2
+ λTΦα n+1
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The time coefficients and KKT multipliers can be obtained by solving the system of 

equations  

 

 
2CTC ΦΤ

Φ 0
⎛

⎝⎜
⎞

⎠⎟
α n+1

λ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 2CTα n

0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (32) 

 

This approach was used to solve Eq. (10) with initial condition Eq. (11) where f (x) = x2 .   

To mimic errors encountered in large simulations where errors affect both the full order 

model and the POD modes, two errors were introduced in the model: 1) the function

f (x) = x2  was replaced by f (x) = x2 − ε  and 2) the POD modes were perturbed by some 

error, ε . The first error mimics the truncation and/or round-off error in the full order model 

simulation. In this case the solution becomes negative near x = 0 . The second error mimics 

the error in the eigenvalue algorithm for evaluating the POD modes.  

 

 

RESULTS OF C-ROM APPLIED TO FIRST-ORDER LINEAR WAVE EQUATION 

 

The results of the unconstrained and constrained reduced-order model subjected to the 

defined constraints are presented in this section. The spatial discretization used a constant 

interval of 0.01 such that N =100 and the temporal discretization used a constant interval 

of 0.005 such that M = 200. Because N < M , the POD modes were directly obtained by 

solving the eigenvalue problem defined by Eq. (6) and not by using the method of 
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snapshots. The wave speed, c, was held constant at 5. The number of POD modes, m, used 

for the reconstruction and the level of error, ε , introduced is varied.  

Figure 1 shows the solution to the first-order linear wave equation for ε = 10−4 . It can 

be seen that the unconstrained POD reduced-order model gives negative results near x = 0  

and therefore violates the constraint given by Eq. (28).  

The constrained reduced-order model, however, satisfied the constraint and produced 

a non-negative solution throughout the spatial domain.  

 

 

Figure 1: Solution obtained using ROM and C-ROM for ε = 10−4  and m = 3  

 

Figure 2 shows the solution to Eq. (10) when ε = 10−2 . It can be seen that despite the 

increased error, the constrained ROM is still able to produce a non-negative solution unlike 

the unconstrained ROM. As expected, the increase in error drives the reduced-order model 

further away from the analytical solution. Increasing the error has a more profound effect 

on the unconstrained ROM than the constrained ROM, as can be seen in the increase in 
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negativity of the solution near x = 0 . The difference between the ROM solutions with two 

different errors levels was on the order of 10-2.  

 

 

Figure 2: Solution obtained using ROM and C-ROM for ε = 10−2  and m = 3  

 

It should be noted that three POD modes were enough to accurately reconstruct the 

solutions for the error levels used in Fig. 1 and Fig. 2.  

As with all transient simulations, error can propagate through and compound over the 

temporal domain. It can often lead to nonphysical results and even divergence of the 

solution. This error can be due to error in the solution initialization and accuracy of the 

temporal discretization. The effects of this error propagation through time on the 

constrained and unconstrained reduced-order model are investigated next.  

Figure 3 shows the results obtained using the unconstrained and constrained reduced-

order model at three time steps, where ε = 10−2 , using seven POD modes. It can be seen 

that both the unconstrained ROM and C-ROM tend away from the analytical solution as 

we advance in time. It also shows that the unconstrained ROM diverges much sooner than 
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the constrained ROM. Despite the propagation of error, the C-ROM is able to satisfy the 

constraint at each of the three time-steps. It can be seen from Eq. (12) and Fig. 3 that even 

the analytical solution containing errors becomes negative as we progress in time. The C-

ROM however is still able to produce a non-negative solution. 

 

 

a)      b) 

 

c) 

Figure 3: Solution obtained using ROM and C-ROM for ε = 10−2 , Δt = 0.0005  and 

m = 7  at a) t = 4Δt , b) t = 7Δt , and c) t = 10Δt . 
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C – ROM APPLIED TO FLUIDIZATION PROBLEMS 

 

The C-ROM has shown to satisfy user-defined constraints that the traditional ROM 

violates. It can, therefore be applied to constrain solutions for much more difficult, non-

linear problems. One such problem was presented by Brenner et al. [22] where the gas void 

fraction, upon reconstruction, exceeds the upper bound of one.  

The original reduced-order model based on POD for a bubbling, isothermal 

fluidized bed was developed by Yuan et al. [10] and Cizmas et al. [20]. The ROM was 

developed by projecting the finite volume discretized equations of a fluidized bed used by 

MFIX software [27] onto the POD modes. The complete set of governing equations, mass 

and momentum balance, are given in Appendix A. Unlike MFIX, which solves the solids 

mass balance equation, the ROM solves the gas void fraction correction equation  

 

 aP
εsε sP

' = anb
εsε snb

'

nb
∑ + bP

εs  (33) 

 

Using the POD representation of the void fraction defined by  

 

 
εg (x,t) = φ0 (x)+ α k

ε ' (t)φk (x)
k=1

mεs

∑  (34) 

 

Eq. (33) converts to Eq. (35) 
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Αεs⎡⎣ ⎤⎦ α εs

'{ } = Βεs{ }  (35) 

 

where 

 

 

 
Αlk
εs = φl{ }T A[ ] φk{ }− φl{ }T Anb[ ] φknb{ }

nb=1

NB

∑ , l,k = 1,...,m  (36) 

 

 
 
Βl
εs = φl{ }T b{ } , l = 1,...,m  (37) 

 

Replacing  Βεs  with  − Βεs  is analogous to  Β
εg  which then solves for the gas void fraction 

correction. The formulation in this work corrects the gas void fraction and not the solids 

volume fraction. A more detailed derivation is given in [10] and [20] and Appendix B.  

Figure 4 shows the first five POD modes of the gas void fraction extracted using the 

method of snapshots for the case given by Brenner et al. [22]. A full description of the test 

case is given in Appendix C. It is known that the time coefficients can be analytically 

computed for a particular snapshot by projecting the POD modes onto the snapshot, Eq. 

(47). It was shown in [22] that when insufficient number of POD modes are used, even the 

analytically computed time coefficients will violate the physical constraints. Figure 5 

shows the reconstruction of the gas void fraction using various numbers of POD modes 

and the analytically computed time coefficients. The white areas represent the void fraction 

exceeding a value of one. It can be seen that increasing the number of modes results in a 

more accurate reconstruction but still violates the upper limit on the gas void fraction. 
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Therefore, it is very appealing to develop a C-ROM that could constrain the void fraction 

by applying the KKT conditions to the volume fraction correction equation.  

 

             

     a)         b)   c)    d)       e) 

Figure 4: First five POD basis functions extracted for case defined by [22] where: a) φ0 , 

b) φ1 , c) φ2 , d) φ3 , and e) φ4 . 
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          a)              b)                c) 

Figure 5: Gas void fraction at t = 1s of two-dimensional bubbling fluidized bed defined 

by [18]: a) full-order model, b) POD reconstruction with 16 modes, c) POD 

reconstruction with 32 modes (white areas represent outside the bounds εg  [0.35, 1.0]) 

 

 

DERIVATION OF A C-ROM FOR FLUIDIZED BED FLOWS 

 

As before, the KKT conditions can then be applied to Eq. (35) to develop a C-ROM for 

fluidized beds where the function to minimize becomes  

 

 
 
J = Αεsαεs

'

− Βεg
2

 (38) 

 subject to εg ≤1.0  (39) 

 

The ROM developed [20] corrects the void fraction as  

 

 εg (x,t) = εg
*(x)+ εg

' (x,t)  (40) 

 

where φ0 (x)  and εg
*(x)  are assumed to be equal. Combining Eq. (40) and Eq. (34) yields 

 

 
εg
' (x,t) = α k

εg
'

(t)φk (x)
k=1

mεs

∑  (41) 
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Using Eq. (40) and Eq. (41), the constraint Eq. (39) becomes 

 

 εg
*(x)+Φ(x)α g

' (t)−1.0 ≤ 0  (42) 

 

where Φ = [φ1...φm ] ,  Φ∈N×m  is the matrix of POD modes, α g
' ∈m  is the vector of time 

coefficients for the void fraction correction, and N is the number of spatial points. Then 

using Eq. (38) and Eq. (42), the Lagrangian can be constructed as  

 

 
 
L = Αεsαεg

'

− Βεg
2
+ λT εg

* +Φα g
' −1.0( )  (43) 

 

The stationary condition yields 

 

 
 
Lα = 2 Αεs( )T Αεsαεg

'

− 2 Αεs( )T Βεg +ΦTλ = 0  (44) 

 

The complementary slackness yields 

 

 εg
* +Φαεg

'

−1.0 = 0  (45) 

 

The time coefficients and the KKT multipliers can be obtained by solving  
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2 Αεs( )T Αεs ΦT

Φ 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

α εg
'

λ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

2 Αεs( )T Βεg

1.0 − εg
*

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (46) 

 

A detailed derivation is given in Appendix D. 

 

VALIDATION OF C-ROM FOR FLUIDIZED BEDS 

 

The existing ROM model for fluidized beds was already validated against the full order 

model in previous works [10, 20]. Here, the developed C-ROM model is compared against 

the existing ROM. The test case chosen is the gas-solids flow test case used by Yuan et al. 

[10]. Because the difference in solution from the two different systems of equations, Eq. 

(35) and Eq. (46) was being studied, no artificial error was introduced to either the ROM 

or C-ROM. The simulation was run from t = 0.2 s  to t = 1 s . The total number of grid 

points was N = 13392  and a total of M = 320  snapshots were used to extract the POD 

basis functions. Table 1 shows the number of POD modes used for each variable 

 

Table 1: Number of POD modes used to validate C-ROM 

εg  pg  ug  vg  us  vs  

4 3 10 7 7 4 

 

Figures 6 and 7 show the distribution of the six field variables computed using 

ROM and C-ROM, respectively. It shows that the solutions obtained from the two solvers 

produced similar results.   
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      a)        b)          c)         d)         e)        f) 

Figure 6: Distribution obtained using FOM at t = 1s  for: a) εg , b) pg ×10
6 , c) ug , d) vg , 

e) us , and f) vs . 

 

 

 

      a)        b)          c)         d)         e)        f) 

Figure 7: Distribution obtained using C-ROM at t = 1s  for: a) εg , b) pg ×10
6 , c) ug , d) 

vg , e) us , and f) vs . 

 

Figure 8 shows the time coefficients computed using ROM and C-ROM for the first 

mode of the six field variables. Only the first POD mode is shown as it captures the most 
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energy, but it can be reported that the conclusion applies to the time coefficients for all the 

modes. It can be seen that the time coefficients obtained from the ROM and C-ROM are 

similar at each time step. This was observed for each mode used to represent the six field 

variables. It shows that when no error is present in the ROM, the two systems of equations, 

Eq. (35) and Eq. (46), produce similar results.  

 

 

a)      b)   

 

c)      d)   
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e)      f)   

Figure 8: Time coefficients obtained from ROM and C-ROM for the first POD mode of: 

a) εg , b) pg , c) ug , d) vg , e) us , and f) vs . 

 

The comparison of the computing time for the entire analysis is meaningless, as Eq. (46) 

only needs to be solved when the void fraction exceeds the user-specified limits. However, 

the times required to solve Eq. (35) and Eq. (46) can be compared (Table 2). It can be seen 

that the solution of the void fraction equation when KKT is implemented is of the same 

order of magnitude as the solution time needed to solve FOM. For this reason Eq. (46) 

should only be solved when the void fraction constraint is violated. 

 

Table 2: Computing times for the FOM, ROM and C-ROM system 

 FOM ROM C-ROM 

Time (s) 0.003 8E-6 0.003 
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A workstation computer with the Ubuntu 14.04 LTS Linux OS was used for this 

simulation. All simulations were run on a single core of an Intel Core i7, 3.4 GHz with 64 

GB of allocated memory. 

 

 

APPLICATION OF C-ROM TO CONSTRAIN GAS VOID FRACTION 

 

It has been proven that the solution obtained by C-ROM matches that obtained using 

ROM and FOM when no artificial errors are introduced. The C-ROM in its current state is 

not able to cope with errors that are too small to cause a constraint violation. That is, the 

KKT conditions only apply when errors are large enough that the computed time 

coefficients lead to a constraint violation. For this reason, a test case where the void fraction 

went out of bound was selected for study. The case chosen is that presented in [22] where 

the central jet speed in this study was v1 = 198.8cm s . The central jet speed was chosen as 

it lead to mild fluidization. The number of grid points and snapshots were the same as in 

the case for validation of C-ROM. Table 3 shows the number of POD basis functions used 

for the mild fluidization case.  

 

Table 3: Number of POD modes used for a mild fluidization test case 

εg  pg  ug  vg  us  vs  

33 4 24 25 24 20 
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When solving this problem using ROM, the void fraction solution exceeded 1.0 at 

t = 0.252s . It was noticed that the void fraction computed using C-ROM also exceeded 

1.0 at t = 0.252s . It was expected that the C-ROM would compute time coefficients that 

do not violate the constraint. Further investigation of the snapshot identified the issue. It is 

known that the time coefficients for the snapshots for each mode can be computed as 

 

 a = ΦTU  (47) 

 

where  a∈m×M is the matrix of time coefficients,  Φ∈N×m  is a matrix of POD modes 

and  U∈N×M  is the matrix of collection of snapshots. These are the analytically computed 

time coefficients that best reconstruct the data vectors. These time coefficients can then 

again be used to reconstruct the data vectors using Eq. (47). This reconstruction will not be 

exact unless all modes are included. This approach was used to first analytically compute 

the time coefficients for the t = 0.252s  snapshot, and then reconstruct the snapshot. It was 

observed that the analytically computed snapshot violated the constraint. This shows that 

if the analytically computed snapshot violated the constraint, then so will the ROM 

approximated snapshot.  

To allow for exact representation of the snapshot, more POD modes or modes that 

capture the flow structure of that snapshot should be added to the POD matrix. 

Alternatively, the concept of discontinuous modes proposed by Brenner et al. [22] can be 

generalized in two dimensions or three dimensions to cope with this issue. This is a topic 

of future research. The proposed constraining method, however, results in a system of size 

N +m , but only needs to be solved at the time step when the constraint is violated.  
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The reconstruction shown in Fig. 5 using point modes is shown in Fig. 9. It can be seen 

that the reconstruction is now accurate but results in an increase in the number of modes 

required. Increasing the number of modes increases the order of the problem along with 

the projection time. Efficiently incorporating these point modes needs to be investigated 

further. 

  

	 	 	

  a)    b)    c) 

Figure 9: Void fraction reconstruction at 1s: a) FOM, b) using 86 POD modes and c) 86 

POD + 719 Point Modes. 

 

 

CONCLUSION 

 

A novel constrained reduced-order methodology was developed by applying the 

Karush-Kuhn-Tucker conditions to the reduced-order model based on proper orthogonal 
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decomposition. The C-ROM was applied to the first-order wave equation where artificial 

errors were introduced into the model. The C-ROM was then compared to ROM under the 

influence of these artificial errors which caused for the error arising during the solution of 

the eigenvalue problem and the computation of snapshots using the full-order model. It 

was shown that the C-ROM is able to constrain the solution, while the ROM produces a 

solution that violates the user-defined constraint. The ROM was also shown to be more 

sensitive than the C-ROM to the propagation and compounding of error through the time 

domain. Finally, a C-ROM is developed for bubbling fluidized beds to constrain the gas 

void fraction to physically feasible bounds. Two different systems of equations, one from 

ROM and the other C-ROM, were shown to produce the same results when the constraint 

is not violated, thereby validating the methodology of C-ROM. The ability of C-ROM to 

constrain the gas void fraction was then investigated. It was shown that the analytically 

computed void fraction itself violated the constraint. Therefore, so did the C-ROM 

approximated void fraction. It showed that the POD basis functions must be able to capture 

the void fraction structure for the C-ROM to find the appropriate time coefficients. That is, 

for the constraint to be satisfied, such time coefficients should exist or POD modes that can 

lead to these time coefficients should be used. One such method of computing these POD 

modes is reported, but needs further investigation to be applied efficiently and in higher 

dimensional problems. 
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APPENDIX A. HYDRODYNAMIC MODEL FOR TWO-PHASE FLUIDIZED BED 

The physics of isothermal fluidized beds is governed by the laws of mass and 

momentum conservation. The fluidized bed was modeled using a two-fluid model (TFM) 

of Syamlal et al. [27]. In the case of no chemical reactions or physical processes such as 

evaporation, where no interface mass transfer occurs, the gas and solid phase mass balance 

equations are given as 

 

 

 
(A.1) 

 

where m represents the phase (gas or solid), r is the phase density, e is the void fraction 

and 𝑣 is the velocity vector.  

∂
∂t
(εmρm )+∇ i (εmρm

!vm ) = 0
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 The gas and solid momentum balance equations are given as 

 

 

 
(A.1) 

 

The first two terms on the right hand side represent the normal and the shear forces, 

respectively. The third term represents the contribution of an aerodynamic drag force due 

to solid particles moving with different local velocity vector than the local gas. The last 

term on the right hand side represents a body force due to gravity. 

 

 

APPENDIX B. DERIVATION OF REDUCED SOLIDS VOLUME FRACTION 

CORRECTION EQUATION 

The solids volume fraction correction equation can be written as 

 

 aP
εsε sP

' = anb
εsε snb

'

nb
∑ + bP

εs  (B.1) 

 

The reconstruction for the gas void fraction can be written as 

 

∂
∂t
(εmρm

!vm )+∇ i (εmρm
!vm
!vm ) = −εm∇pg +∇ iσ m + Fgs (

!vs −
!vg )+ εmρm

!g
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εg (x,t) = φ0 (x)+ α k

ε ' (t)φk (x)
k=1

mεs

∑  (B.2) 

 

Then, similar to the pressure correction, the gas void fraction can be corrected as 

 

 εg (x,t) = εg
*(x)+ εg

' (x,t)  (B.3) 

 

where εg
*

 is the tentative value of the gas void fraction and εg
'  is the correction.  

Assuming φ0 (x)  and εg
*(x)  to be equal and combining Eq. (B.2) and Eq. (B.3) yields 

 

 
εg
' (x,t) = α k

εg
'

(t)φk (x)
k=1

mεs

∑  (B.4) 

 

Dropping for convenience the ε s
'  superscript, replacing in Eq. (B.1) the subscript P by i 

and substituting Eq. (B.4) into (B.1) yields 

 

 
α k aiφk (xi )− ainbφk (xinb )

inb=1

NB

∑
⎛

⎝⎜
⎞

⎠⎟k=1

m

∑ = bi ,
         

i = 1,...,N  (B.5) 

 

Here, inb represents the neighbor of cell i, NB is the total number of neighbors of a cell, and 

m is the number of modes kept in the POD reconstruction. Eq. (B.5) can also be written as  
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α k A[ ] φk{ }− Anb[ ] φknb{ }

nb=1

NB

∑⎛
⎝⎜

⎞
⎠⎟k=1

m

∑ = b{ },  (B.6) 

 

where A[ ]  and Anb[ ]  are diagonal matrices with Aii = ai  and Anbii = ainb , i = 1,...,N ,

φk{ } = φk (x1),φk (x2 ),...,φk (xN ){ }T  and φknb{ } = φk (x1nb ),φk (x2nb ),...,φk (xNnb
){ }T . Eq. (B.6) is 

then projected onto the POD modes by left-multiplying it with the transposed eigenvectors 

φl{ }T . 

  

 
φl{ }T α k A[ ] φk{ }− Anb[ ] φknb{ }

nb=1

NB

∑⎛
⎝⎜

⎞
⎠⎟k=1

m

∑ = φl{ }T b{ }, i = 1,...,m

 

(B.7) 

 

The resulting system is of size m with m unknowns α i . After adding back the superscripts 

ε s  andε s
' , this system can be written as 

 

 
 
Αεs⎡⎣ ⎤⎦ α εs

'{ } = Βεs{ }  (B.8) 

 

where 

 

 

 
Αlk
εs = φl{ }T A[ ] φk{ }− φl{ }T Anb[ ] φknb{ }

nb=1

NB

∑ , l,k = 1,...,m  (B.9) 

and 
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Βl
εs = φl{ }T b{ } , l = 1,...,m  (B.10) 

 

 

APPENDIX C. TEST CASE FOR TWO-DIMENSIONAL FLUIDIZED BEDS 

PROBLEM 

Figure C.1 and Table C.1 define the geometry of the fluidized bed and the applied 

boundary conditions. In Table C.1, Case 1 refers to the test case used to show the 

nonphysical results obtained using traditional ROM, while Case 2 refers to the test case 

used to validate the C-ROM. The snapshots are collected at a constant interval of 0.0025s, 

that is, M = 320. It was demonstrated that 320 snapshots were adequate to capture the 

dynamics of the fluidized bed [10]. In this case, the spatial grid is such that N » 14000, 

leading to an eigenvalue problem of size N if the method of snapshots is not used.  
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a)    … b)  

Figure C.1: Geometry and boundary conditions for two-dimensional fluidized bed used to 

show: a) nonphysical ROM results, and b) validated C-ROM 

 

Table C.1.: Geometry, boundary conditions and physical properties for test case of 

fluidized bed 

Parameter Description Units Case 1 Case 2 
xlength Length of domain in x – direction cm 39.37 25.4 
ylength Length of domain in y – direction cm 58.44 76.5 
imax Number of cells in x – direction - 108 108 
jmax Number of cells in y – direction - 124 124 
v1, v2 Gas inflow velocities cm/s 355, 28.4  120,1  
pgs Static pressure at outlet g/cm/s2 1.01e6 1.01e6 
Tg0 Gas Temperature K 297 297 
µg0 Gas viscosity g/cm/s 1.8e-4 1.8e-4 
tstart Start time s 0.2 0.2 
tstop Stop time s 1.0 1.0 
rs0 Particle density g/cm3 2.61 1.0 
Dp Particle diameter cm 0.05 0.05 
hs0 Initial height of packed bed cm 29.22 14.7 
eg

* Initial void fraction of packed bed - 0.4 0.4 
 

 

APPENDIX D. DERIVATION OF THE KKT SYSTEM OF EQUATIONS 

This section provides a detailed implementation of the KKT conditions and 

derivation of the KKT system. Consider the system of equations for the solution of gas 

void fraction correction 

 

 
 
Αεs⎡⎣ ⎤⎦ α εs

'{ } = Βεg{ }  (D.1) 
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where the constraint, g, to be satisfied is 

 

 g1 = ε *(x)+Φ(x)α (t)−1.0 ≤ 0  (D.2) 

 

The solution of Eq. (D.1) is analogous to the minimization of the functional 

 

 
 
min J = Αεsαεs

'

− Βεg
2

 (D.3) 

 

The Lagrangian can then be constructed using Eq. (26) as  

 

 
 
L =J + λg1 = Αεsαεs

'

− Βεg
2
+ λT ε * +Φα −1.0( )  (D.4) 

 

where λ
 
are the KKT multipliers. Applying the stationary condition to the Lagrangian 

yields 

 

 

 

∂L
∂α

= Lα = 2 Αεs( )T Αεsαεg
'

− 2 Αεs( )T Βεg +ΦTλ = 0  (D.5) 

 

When applying the KKT conditions, the inequality constraint must be treated as a binding 

constraint (that is, g1 = 0 ). This then allows the complementary slackness condition to be 
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written as  

 

 ε * +Φα −1.0 = 0  (D.6) 

 

The KKT system can then be written as 

 

 

 

2 Αεs( )T Αεs ΦT

Φ 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

α εg
'

λ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

2 Αεs( )T Βεg

1.0 − εg
*

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (D.7) 
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