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ABSTRACT

A novel approach is presented to constrain reduced-order models (ROM) based on proper
orthogonal decomposition (POD). The Karush-Kuhn-Tucker (KKT) conditions were

applied to the traditional reduced-order model to constrain the solution to user-defined
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bounds. The constrained reduced-order model (C-ROM) was applied and validated against
the analytical solution to the first-order wave equation. C-ROM was also applied to the
analysis of fluidized beds. It was shown that the ROM and C-ROM produced accurate

results and that C-ROM was less sensitive to error propagation through time than the ROM.
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INTRODUCTION

A great deal of effort has been dedicated to develop reduced-order models (ROMs) of
numerical methods that can provide accurate predictions while dramatically reducing
computational time for a wide range of applications covering fluid mechanics, heat
transfer, structural dynamics [1] and electromagnetics [2]. The challenges posed by the
different engineering fields have led to various types of reduced-order models. A common
approach for model order reduction is through projection. Some of the methodologies for
model reduction include balanced truncation [3], trajectory piecewise-linear approach [4]
and proper orthogonal decomposition.

Reduced-order models based on proper orthogonal decomposition have been
successfully implemented to reduce computational cost while maintaining high fidelity
solutions. Proper orthogonal decomposition (POD) is a method by which an optimal set of

spatial basis function can be extracted from the solution of the full-order model (FOM).



The set of partial differential equations are then projected onto the basis functions using
Galerkin projection, resulting in a smaller system of ordinary differential equations. Recent
reviews of ROMs based on POD are presented by Beran and Silva [5], Dowell and Tang
[6] and Lucia et al. [7].

POD has been successfully used in conjunction with finite element, finite volume and
finite difference methods for model reduction. Wang ef al. [8] used a mixed finite element
method with POD basis functions to solve the transient Navier-Stokes equations. Fic et al.
[9] projected the finite element discretized heat conduction equation onto the POD basis
functions to develop a reduced-order model for non-linear heat conduction. Yuan et al.
[10] used a finite volume discretized system of PDEs and POD to developed reduced-order
model for bubbling fluidized beds. Luo et al. [11, 12] used POD to reduce a finite
difference extrapolation algorithm to obtain solutions to a Lighthill, Whitham and Richards
(LWR) traffic flow model and two-dimensional shallow water equations.

Over the last decade, much attention has been dedicated to: i) modeling of off-reference
conditions, ii) modeling moving/deforming meshes, and iii) acceleration techniques and
robustness.

Modeling of off-reference conditions can be performed by direct interpolation,
enriching the snapshot database, interpolation of basis functions within the tangent space
to the Grassman manifold [13, 14] and modification of basis functions using sensitivity
analysis [15]. Some of these methods are reviewed by Vertrano et al. [16].

The advances in modeling of deforming meshes have primarily been driven by
aeroelastic and fluid-structure interaction applications. Bogaers et al. [17] formulated an

efficient mesh movement method based on POD. Freno and Cizmas [18] and Freno et al.



[19] presented a POD decomposition method for nonlinear flows with deforming meshes
which applied dynamic basis functions for modeling of flows.

Several acceleration techniques for reduced-order model based on POD were
investigated by Cizmas et al. [20], which resulted in the reduction of computational time
by a factor of 114. Brenner et al. [21] investigated two approaches for constructing the
autocorrelation matrix, showing that a split approach results in much lower errors than the
coupled approach. Brenner et al. [22] also formulated an augmented POD method capable
of resolving discontinuity in the solution, although this work needs to be generalized for
2D and 3D cases. Alonso et al. [23] developed a robust reduced-order model that is
independent of the way the snapshots were computed to analyze a classical fluid mechanics
test case of a flow over a backward facing step.

This work modifies the traditional reduced-order model based on POD to constrain the
solution within user-defined bounds. Robust reduced-order models are needed to cope with
issues such as error arising from numerically solving the eigenvalue problem to obtain the
POD basis functions and errors in snapshots taken from the full order model. This robust
model is developed by applying the Karush - Kuhn - Tucker (KKT) conditions to the

existing POD based ROM.

PROPER ORTHOGONAL DECOMPOSITION (POD)

Proper orthogonal decomposition, also known as Karhunen — Loeve decomposition,

singular value decomposition and principal component analysis, is a procedure for



extracting an optimal set of orthogonal basis functions from a collection of snapshots. POD
is able to detect the underlying structure of the snapshots.

Let us consider a sequence of experimental or numerical observations of a scalar
functionu(x,t;) where i=1,...,M and M is the number of observations. The observations
u(x,t,) are parameterized by time, #,, where the observation at each time is called a
snapshot. Applying POD to the collection of snapshots extracts time independent

orthogonal basis functions, referred to as POD modes, ¢,(x), and time dependent

orthogonal coefficients, o (x), such that the reconstruct of the snapshots,

u(x,t)= Y06, (t)9,(x), i=1,...M (1)

is optimal in the sense that the least square truncation error

2
E, =

(2)

u(x,t,)— Y0, (1), (x)

2 . . . . ..
is the L’-norm, (+) is the average over the number of observations) is minimum

(wWhere
for any given number of basis functions, m, over all possible sets of basis functions such
that m <M . The optimum condition specified by Eq. (2) is identical to finding basis

functions, ¢, that maximize the normalized averaged projection of u onto ¢ given by Eq.

3).



(wor?)

max,_. 7| |¢| |2 3)
where || denotes the modulus. The optimum condition reduces to [24]:
J (o ()9 )dy = 29(x) @

Q

The eigenvalues, A4, can be used to determine the energy captured by each eigenfunction.

The basis functions {(’),} are the eigenfunctions of the integral equation Eq. (4), whose
kernel function is the autocorrelation function <u(x)u * (y)> = R(x,y). The autocorrelation

function, R(x,y), is replaced by the tensor product matrix

= 1 <& .
R(x,y) == 2ux1u’ (¥,1,) (5)

where u(x,t,)= [u(xl,ti),u(xz,tl.),...,u(xN,tl.)]T are vector — valued functions and N is the
resolution of the spatial domain. The eigenfunctions, ¢.(X), can be found by solving the

eigenvalue problem defined by Eq. (6).



R(x,y)P(x) = 29(y) (©)
The eigenvalue problem defined by Eq. (6) is often too computationally expensive as the

problem is of size N x N . For this reason the method of snapshots is used to reduce the

N X N to amuch smaller M x M sized problem.

METHOD OF SNAPSHOTS
The method of snapshots was first proposed by Sirovich [25], in which the size of the
eigenvalue problem defined by Eq. (6) is reduced to a much smaller dimension problem.

Since the eigenfunctions, ¢,, and data vectors u; span the same linear space [24, 25], it

allows the eigenfunctions to be represented as a linear combination of the data vector

¢i:2\}]iuk , l=1,,M (7)

Substituting Eq. (7) into Eq. (6) yields a much smaller eigenvalue problem as shown below

Cv=Av (8)

where v* = (v¥,....v5) is the k& eigenvector of Eq. (8) and C is a symmetric M x M

matrix defined by [clj]:(l/M )(ui,uj). Here, (u;,u;) is the standard vector inner



product, (w,,u;)=u(x,,t)u(x,t,)+..+ulxy.t)u(xy,t). The eigenvectors of Eq. (8) can

then be used to reconstruct the eigenfunctions of Eq. (6) as Eq. (7). The computed
eigenfunctions were then normalized and reordered according to decreasing eigenvalues as

A, > A, >..> A, =0. The energy captured by each eigenfunction is then computed as

REDUCED FIRST-ORDER WAVE EQUATION

The constrained reduced order methodology is first applied to a simple first—order wave
equation. In this work the analytical form of the first-order wave equation was reduced
although discretized forms of the equation can also be used. The first-order wave equation

is given by Eq. (10) as

Ju Jdu

Srres =0, xel01],  ¢>0

(10)

with the initial condition

u(x,0)=f(x)=0 (11)



for which the analytical solution is
u(x,t)=f(x—ct) (12)

where f(x) satisfies the initial condition. Let us represent ¥(xX,f) as a linear combination

of POD modes
u(x,0) = Y0, (P, (x) (13)

Here, m is the number of modes used in the POD approximation. Substituting Eq. (13) into
Eq. (10) and using the Einstein summation convention yields a set of ordinary differential

equations

di¢i + Cai¢; =0 (14)

where ° denotes time derivations and ' denotes spatial derivatives. Applying Galerkin

projection to Eq. (14) yields
1 1
[op0,dx+ [ cog,dx=0 (15)
0 0

which, due to the orthonormality of the POD modes, reduces to



afu{j@@¢qafd) (16)

This can be written in vector form as

a+Ba=0 (17)

where o €e R" and B € R™"  The elements of matrix B are

1
Byzc(j¢¢¢uJ (18)
0
Using an implicit time integration scheme, Eq. (17) becomes
(I+AB)o"" —a" =0 (19)

where [ is the identity matrix of rank m, Az is the time step and " =o/(t"). With the

notation C =1+ ArB, Eq. (19) becomes
Co™'—a"=0 (20)
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The time coefficients for each time step can be found by solving Eq. (20).

KARUSH - KUHN — TUCKER (KKT) CONDITIONS

The Karush-Kuhn-Tucker (KKT) conditions are heavily used in mathematical
optimization problems. They represent a series of necessary conditions for a solution in
nonlinear programming to be optimal while satisfying constraints. Effectively, they extend
the method of Lagrange multipliers, which only allow equality constraints, to account for
inequality constraints.

Consider a nonlinear single-objective optimization problem

minimize f(x)
subjectto h,(x)=0i=1,..m

21)
g;(x)<0 j=1..1

where f is the objective and 7,(x)=0, i=1,..,m and g,(x)<0, j=1,..,[ are m

equality constraints and / inequality constraints, respectively. Let us assume that the
objective function and the constraints are continuously differentiable at x*. Then, there

exist constants [, (where i=1,..,m ) and A, (where j=1,..,/ ) called the KKT

multipliers, that satisfy the following conditions [26]

11



Vf(x*)+i 1Vh(x$)+ Y AVg, (x¥)=0 (22)

i=1

h(x*)=0,i=1,..,m and g,(x*)<0, j=1,..,l (23)
A, 20, j=1,.,1 (24)
Ajgj(x*): 0 , j: 1,...,l (25)

Equations (22), (23), (24) and (25) are referred to as stationary, primal feasibility, dual
feasibility and complementary slackness, respectively. When no inequality constraints are
present, the KKT conditions decompose to the Lagrange conditions and the KKT

multipliers are called the Lagrange multipliers.

CONSTRAINED REDUCED-ORDER MODEL (C-ROM)

The constrained reduced-order model in this work is developed by applying the KKT
conditions to the POD-based reduced-order model. It should be mentioned that only
inequality constraints are considered in this work, however this procedure can be extended
to handle equality constraints as well. Further model development will only consider
inequality constraints. To apply the KKT conditions, the Lagrangian must first be

constructed as follows:

12



L= f@)+ 2 mh(0+ 3 Ag,(x) (26)

Using the linear system defined by Eq. (20), the function to minimize becomes

HCanH _ an| 2

(27)

subject to u(x,t)=®o""' >0 (28)

where ®=[¢,...9,1, ® e R"™ is the matrix of POD modes, N is the number of spatial

Zm

points. The Lagrangian is then constructed as

L ZHanH _O_Cn 2 +2¥Tq)gn+l (29)

The stationary condition Eq. (22) then results in

Lg,m — 2CTan+l _ chgn + q)T& (30)

The complementary slackness, after forcing Eq. (28) as a binding constraint, yields

@' =0 (31)
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The time coefficients and KKT multipliers can be obtained by solving the system of

equations

[ 2¢'C @' J{ o™ }:{ 2C"g" } (32)
® 0 A 0

This approach was used to solve Eq. (10) with initial condition Eq. (11) where f(x)=x".

To mimic errors encountered in large simulations where errors affect both the full order
model and the POD modes, two errors were introduced in the model: 1) the function
f(x)=x" was replaced by f(x)=x”—¢ and 2) the POD modes were perturbed by some
error, € . The first error mimics the truncation and/or round-off error in the full order model
simulation. In this case the solution becomes negative near x = 0. The second error mimics

the error in the eigenvalue algorithm for evaluating the POD modes.

RESULTS OF C-ROM APPLIED TO FIRST-ORDER LINEAR WAVE EQUATION

The results of the unconstrained and constrained reduced-order model subjected to the
defined constraints are presented in this section. The spatial discretization used a constant
interval of 0.01 such that N =100 and the temporal discretization used a constant interval
of 0.005 such that M = 200. Because N <M , the POD modes were directly obtained by

solving the eigenvalue problem defined by Eq. (6) and not by using the method of

14



snapshots. The wave speed, ¢, was held constant at 5. The number of POD modes, m, used

for the reconstruction and the level of error, €, introduced is varied.

Figure 1 shows the solution to the first-order linear wave equation for £ =107". It can
be seen that the unconstrained POD reduced-order model gives negative results near x =0
and therefore violates the constraint given by Eq. (28).

The constrained reduced-order model, however, satisfied the constraint and produced

a non-negative solution throughout the spatial domain.

0.25 ‘ ‘ ‘
Analytical Sol. w/o Error —a— o
Analytical Sol. w/ Error 7
02 L ROM ---o-- P o
Constrained ROM -sp ,,'—'AV“
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v
= »@’
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Position, x

Figure 1: Solution obtained using ROM and C-ROM for £=10"" and m =3

Figure 2 shows the solution to Eq. (10) when €=107. It can be seen that despite the
increased error, the constrained ROM is still able to produce a non-negative solution unlike
the unconstrained ROM. As expected, the increase in error drives the reduced-order model
further away from the analytical solution. Increasing the error has a more profound effect

on the unconstrained ROM than the constrained ROM, as can be seen in the increase in
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negativity of the solution near x = 0. The difference between the ROM solutions with two

different errors levels was on the order of 1072

0.25 ‘ ‘ ‘
Analytical Sol. w/o Error —a—
Analytical Sol. w/ Error
02 ROM ---o--- i

Constrained ROM -z ~

Velocity, u

1
0 0.1 0.2 0.3 0.4 0.5
Position, x

Figure 2: Solution obtained using ROM and C-ROM for £=10" and m =3

It should be noted that three POD modes were enough to accurately reconstruct the
solutions for the error levels used in Fig. 1 and Fig. 2.

As with all transient simulations, error can propagate through and compound over the
temporal domain. It can often lead to nonphysical results and even divergence of the
solution. This error can be due to error in the solution initialization and accuracy of the
temporal discretization. The effects of this error propagation through time on the
constrained and unconstrained reduced-order model are investigated next.

Figure 3 shows the results obtained using the unconstrained and constrained reduced-

order model at three time steps, where € = 1072, using seven POD modes. It can be seen
that both the unconstrained ROM and C-ROM tend away from the analytical solution as

we advance in time. It also shows that the unconstrained ROM diverges much sooner than

16



the constrained ROM. Despite the propagation of error, the C-ROM is able to satisfy the

constraint at each of the three time-steps. It can be seen from Eq. (12) and Fig. 3 that even

the analytical solution containing errors becomes negative as we progress in time. The C-

ROM however is still able to produce a non-negative solution.

Velocity, u
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Figure 3: Solution obtained using ROM and C-ROM for € =107, Ar=0.0005 and

m=7 ata) t=4At,b) t=TAt,and c) t=10A¢
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C —-ROM APPLIED TO FLUIDIZATION PROBLEMS

The C-ROM has shown to satisfy user-defined constraints that the traditional ROM
violates. It can, therefore be applied to constrain solutions for much more difficult, non-
linear problems. One such problem was presented by Brenner et al. [22] where the gas void
fraction, upon reconstruction, exceeds the upper bound of one.

The original reduced-order model based on POD for a bubbling, isothermal
fluidized bed was developed by Yuan et al. [10] and Cizmas et al. [20]. The ROM was
developed by projecting the finite volume discretized equations of a fluidized bed used by
MFIX software [27] onto the POD modes. The complete set of governing equations, mass
and momentum balance, are given in Appendix A. Unlike MFIX, which solves the solids

mass balance equation, the ROM solves the gas void fraction correction equation

85 ' — 85 ' 8:
ap gsP - Zanbgsnb + bP (33)

nb

Using the POD representation of the void fraction defined by
£,(x,1)=9,(x)+ 3,0 (1), (%) (34)
k=1
Eq. (33) converts to Eq. (35)
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(A o} ={B"} (35)

where

Ap={o} [Alod-2lo} (. )0} Lk=Toom (36)
B ={o ) {p}, I=1..m 37)

Replacing B® with —B* is analogous to B* which then solves for the gas void fraction
correction. The formulation in this work corrects the gas void fraction and not the solids
volume fraction. A more detailed derivation is given in [10] and [20] and Appendix B.
Figure 4 shows the first five POD modes of the gas void fraction extracted using the
method of snapshots for the case given by Brenner ef al. [22]. A full description of the test
case is given in Appendix C. It is known that the time coefficients can be analytically
computed for a particular snapshot by projecting the POD modes onto the snapshot, Eq.
(47). It was shown in [22] that when insufficient number of POD modes are used, even the
analytically computed time coefficients will violate the physical constraints. Figure 5
shows the reconstruction of the gas void fraction using various numbers of POD modes
and the analytically computed time coefficients. The white areas represent the void fraction
exceeding a value of one. It can be seen that increasing the number of modes results in a

more accurate reconstruction but still violates the upper limit on the gas void fraction.
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Therefore, it is very appealing to develop a C-ROM that could constrain the void fraction

by applying the KKT conditions to the volume fraction correction equation.

Figure 4: First five POD basis functions extracted for case defined by [22] where: a) @, |

b) 91,¢) 9.,d) ¢;,and e) ¢

20



a) b) 9
Figure 5: Gas void fraction at 7 = 1s of two-dimensional bubbling fluidized bed defined
by [18]: a) full-order model, b) POD reconstruction with 16 modes, ¢) POD

reconstruction with 32 modes (white areas represent outside the bounds ¢, [0.35, 1.0])

DERIVATION OF A C-ROM FOR FLUIDIZED BED FLOWS

As before, the KKT conditions can then be applied to Eq. (35) to develop a C-ROM for

fluidized beds where the function to minimize becomes

2

J =||A% e - B (38)
subject to €, <1.0 (39)

The ROM developed [20] corrects the void fraction as
g, (x,1)=€,(x)+¢€,(x,1) (40)

where @,(x) and £Z (x) are assumed to be equal. Combining Eq. (40) and Eq. (34) yields

£.(r)= Y 0l (1), (x) (41)
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Using Eq. (40) and Eq. (41), the constraint Eq. (39) becomes

£,(xX)+ D(x)or (1)—1.0<0 (42)

where ®=[¢,...9,1, ® e R™ is the matrix of POD modes, oc; eR" is the vector of time

coefficients for the void fraction correction, and N is the number of spatial points. Then

using Eq. (38) and Eq. (42), the Lagrangian can be constructed as

~ ! ~ 2 * '
L=|Ama’ — B +47 (e, + et ~10) 43)

The stationary condition yields

L,=2(A%) A®a® —2(A%) B*+®'A=0 (44)
The complementary slackness yields

£+ Do ~10=0 (45)

The time coefficients and the KKT multipliers can be obtained by solving

22



= . (46)

A detailed derivation is given in Appendix D.

VALIDATION OF C-ROM FOR FLUIDIZED BEDS

The existing ROM model for fluidized beds was already validated against the full order
model in previous works [10, 20]. Here, the developed C-ROM model is compared against
the existing ROM. The test case chosen is the gas-solids flow test case used by Yuan et al.
[10]. Because the difference in solution from the two different systems of equations, Eq.
(35) and Eq. (46) was being studied, no artificial error was introduced to either the ROM
or C-ROM. The simulation was run from r=0.2 s to 7=1s. The total number of grid
points was N =13392 and a total of M =320 snapshots were used to extract the POD

basis functions. Table 1 shows the number of POD modes used for each variable

Table 1: Number of POD modes used to validate C-ROM

Figures 6 and 7 show the distribution of the six field variables computed using
ROM and C-ROM, respectively. It shows that the solutions obtained from the two solvers

produced similar results.
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Figure 6: Distribution obtained using FOM at ¢ =1s for: a) €,,b) p, X 10°, ¢) u,,d) v,
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Figure 7: Distribution obtained using C-ROM at # =1s for: a) ¢,,b) p, X 10°, ¢) u,,d)

v,,e) U, and f) v,

Figure 8 shows the time coefficients computed using ROM and C-ROM for the first
mode of the six field variables. Only the first POD mode is shown as it captures the most
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energy, but it can be reported that the conclusion applies to the time coefficients for all the
modes. It can be seen that the time coefficients obtained from the ROM and C-ROM are
similar at each time step. This was observed for each mode used to represent the six field

variables. It shows that when no error is present in the ROM, the two systems of equations,

Eq. (35) and Eq. (46), produce similar results.
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Figure 8: Time coefficients obtained from ROM and C-ROM for the first POD mode of:

a) g,,b) p,,0)u,,d)v,,e)u ,andf) v.

The comparison of the computing time for the entire analysis is meaningless, as Eq. (46)
only needs to be solved when the void fraction exceeds the user-specified limits. However,
the times required to solve Eq. (35) and Eq. (46) can be compared (Table 2). It can be seen
that the solution of the void fraction equation when KKT is implemented is of the same
order of magnitude as the solution time needed to solve FOM. For this reason Eq. (46)

should only be solved when the void fraction constraint is violated.

Table 2: Computing times for the FOM, ROM and C-ROM system

FOM ROM C-ROM

Time (s)  0.003 8E-6 0.003

26



A workstation computer with the Ubuntu 14.04 LTS Linux OS was used for this
simulation. All simulations were run on a single core of an Intel Core 17, 3.4 GHz with 64

GB of allocated memory.

APPLICATION OF C-ROM TO CONSTRAIN GAS VOID FRACTION

It has been proven that the solution obtained by C-ROM matches that obtained using
ROM and FOM when no artificial errors are introduced. The C-ROM in its current state is
not able to cope with errors that are too small to cause a constraint violation. That is, the
KKT conditions only apply when errors are large enough that the computed time
coefficients lead to a constraint violation. For this reason, a test case where the void fraction

went out of bound was selected for study. The case chosen is that presented in [22] where

the central jet speed in this study was v, =198.8 Cn% . The central jet speed was chosen as

it lead to mild fluidization. The number of grid points and snapshots were the same as in
the case for validation of C-ROM. Table 3 shows the number of POD basis functions used

for the mild fluidization case.

Table 3: Number of POD modes used for a mild fluidization test case

33 4 24 25 24 20

27



When solving this problem using ROM, the void fraction solution exceeded 1.0 at
t =0.252s. It was noticed that the void fraction computed using C-ROM also exceeded
1.0 at r=0.252s. It was expected that the C-ROM would compute time coefficients that
do not violate the constraint. Further investigation of the snapshot identified the issue. It is

known that the time coefficients for the snapshots for each mode can be computed as

a=®d'U (47)

where a € R is the matrix of time coefficients, ® € R"" is a matrix of POD modes

and UeR™ is the matrix of collection of snapshots. These are the analytically computed
time coefficients that best reconstruct the data vectors. These time coefficients can then
again be used to reconstruct the data vectors using Eq. (47). This reconstruction will not be
exact unless all modes are included. This approach was used to first analytically compute
the time coefficients for the # =0.252s snapshot, and then reconstruct the snapshot. It was
observed that the analytically computed snapshot violated the constraint. This shows that
if the analytically computed snapshot violated the constraint, then so will the ROM
approximated snapshot.

To allow for exact representation of the snapshot, more POD modes or modes that
capture the flow structure of that snapshot should be added to the POD matrix.
Alternatively, the concept of discontinuous modes proposed by Brenner et al. [22] can be
generalized in two dimensions or three dimensions to cope with this issue. This is a topic
of future research. The proposed constraining method, however, results in a system of size

N +m, but only needs to be solved at the time step when the constraint is violated.
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The reconstruction shown in Fig. 5 using point modes is shown in Fig. 9. It can be seen
that the reconstruction is now accurate but results in an increase in the number of modes
required. Increasing the number of modes increases the order of the problem along with
the projection time. Efficiently incorporating these point modes needs to be investigated

further.

a) b) c)

Figure 9: Void fraction reconstruction at 1s: a) FOM, b) using 86 POD modes and c) 86

POD + 719 Point Modes.

CONCLUSION

A novel constrained reduced-order methodology was developed by applying the

Karush-Kuhn-Tucker conditions to the reduced-order model based on proper orthogonal
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decomposition. The C-ROM was applied to the first-order wave equation where artificial
errors were introduced into the model. The C-ROM was then compared to ROM under the
influence of these artificial errors which caused for the error arising during the solution of
the eigenvalue problem and the computation of snapshots using the full-order model. It
was shown that the C-ROM is able to constrain the solution, while the ROM produces a
solution that violates the user-defined constraint. The ROM was also shown to be more
sensitive than the C-ROM to the propagation and compounding of error through the time
domain. Finally, a C-ROM is developed for bubbling fluidized beds to constrain the gas
void fraction to physically feasible bounds. Two different systems of equations, one from
ROM and the other C-ROM, were shown to produce the same results when the constraint
is not violated, thereby validating the methodology of C-ROM. The ability of C-ROM to
constrain the gas void fraction was then investigated. It was shown that the analytically
computed void fraction itself violated the constraint. Therefore, so did the C-ROM
approximated void fraction. It showed that the POD basis functions must be able to capture
the void fraction structure for the C-ROM to find the appropriate time coefficients. That is,
for the constraint to be satisfied, such time coefficients should exist or POD modes that can
lead to these time coefficients should be used. One such method of computing these POD
modes is reported, but needs further investigation to be applied efficiently and in higher

dimensional problems.

ACKNOWLEDGEMENTS

30



The lead author gratefully acknowledges the financial support from Florida International
University in the form of an FIU Presidential Fellowship. Funding for this work was
provided by the Department of Energy’s National Energy Technology Laboratory under

grant number DE-FE0023114 to FIU/ARC.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any
of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or ortherwise does not necessarily
constitute or imply its endorsement, recommendation or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency

thereof.

REFERENCES

[1] Besselink, B., Tabak, U., Lutowska, A., van de Wouw, N., Nijmeijer, H., Rixen, D.J.,

31



Hochstenbach, M.E. and Schilders, W.H.A., 2013. A comparison of model reduction
techniques from structural dynamics, numerical mathematics and systems and control,

Journal of Sound and Vibration, 332, pp 4403-4422

[2] Cangellaris, A.C., and Zhao, L., 1999. Passive reduced-order modeling of
electromagnetic systems, Computer Methods in Applied Mechanics and Engineering, 169,

pp 345-358

[3] Gugercin, S., and Antoulas, C.A., 2004. A survey of model reduction by balanced

truncation and some new results, International Journal of Control, 77, (8) pp 748-766

[4] Rewienski, M. and White, J., 2003. A trajectory piecewise-linear approach to model
order reduction and fast simulation of nonlinear circuits and micromachined devices, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22, pp 155-

170

[5] Beran, P. S. and Silva, W. A., 2001. Reduced-order modeling: New approaches for
computational physics, Proceedings of the 39th AIAA Aerospace Sciences Meeting, Reno,

NV.

[6] Dowell, E.H. and Tang, D., 2003. Dynamics of Very High Dimensional Systems. World

Scientific Publishing Company, Hackensack, NJ.

[7] Lucia, D.J., Beran, P.S. and Silva, W.A., 2004. Reduced-order modeling: new

approaches for computational physics, Progress in Aerospace Sciences, 40, pp 51-117

[8] Wang, A., Li, J., Di, Z., Tian, X. and Xie, D., 2011. A new reduced stabilized mixed
finite-element method based on proper orthogonal decomposition for the transient Navier-

Stokes equations, Mathematical Problems in Engineering, Vol. 2011, Article ID 895386,

32



pp 1-19

[9] Fic, A., Bialecki, R.A. and Kassab, A.J., 2006. Solving transient nonlinear heat
conduction problems by proper orthogonal decomposition and the finite-element method,

Numerical Heat Transfer, Part B: Fundamentals, 48, pp 102-124

[10] Yuan, T., Cizmas, P.G. and O’Brien, T., 2005. Reduced-order model for a bubbling
fluidized bed based on proper orthogonal decomposition, Computers and Chemical

Engineering, 30, pp 243-259

[11] Luo, Z., Xie, D. and Teng, F., 2014. A POD-based reduced-order FD extrapolating

algorithm for traffic flow, Advances in Difference Equations, 269, pp 2-13

[12] Luo, Z., Gao, J. and Xie, Z., 2015. Reduced-order finite difference extrapolation
model based on proper orthogonal decomposition for two-dimensional shallow water

equations including sediment concentration, Journal of Mathematical Analysis and

Applications, 429, pp 901-923

[13] Amsallem, D. and Farhat, C., 2008. Interpolation method for adapting reduced-order

models and application to aeroelasticity, AIAA Journal, 46, pp 1803—1813

[14] Freno, B., Brenner, T.A. and Cizmas, P.G.A., 2013. Using proper orthogonal
decomposition to model off-reference flow conditions, International Journal of Non-

Linear Mechanics, 54, pp 76-84

[15] Hay, A., Akhtar, I. and Borggaard, J.T., 2012. On the use of sensitivity analysis in
model reduction to predict flows for varying inflow conditions, International Journal of

Numerical Methods in Fluids, 68, pp 122-134

[16] Vetrano, F., Garrec, C.L., Mortchelewicz, G.D. and Ohayon, R., 2011. Assessment of

33



strategies for interpolating POD based reduced order models and application to

aeroelasticity, Journal of Aeroelasticity and Structural Dynamics, 2, pp 85-104

[17] Bogaers, A.E.J., Kok, S. and Malan, A.G., 2011. Highly efficient optimization mesh
movement method based on proper orthogonal decomposition, International Journal for

Numerical Methods in Engineering, 86, pp 935-952

[18] Freno, B.A. and Cizmas, P.G.A., 2014. A proper orthogonal decomposition method
for nonlinear flows with deforming meshes, International Journal of Heat and Fluid Flow,

50, pp 145-159

[19] Freno, B.A., Matula, N.R., Fontenot, R.L. and Cizmas, P.G.A., 2015. The use of
dynamic basis functions in proper orthogonal decomposition, Journal of Fluids and

Structures, 54, pp 332-360

[20] Cizmas, P.G.A., Richardson, B.R., Brenner, T.A., O'Brien, T.J. and Breault, R.W.,
2008. Acceleration techniques for reduced-order models based on proper orthogonal

decomposition, Journal of Computational Physics, 227, pp 7791-7812

[21] Brenner, T.A., Fontenot, R.L., Cizmas, P.G.A., O'Brien, T.J. and Breault, R. W., 2012.
A reduced-order model for heat transfer in multiphase flow and practical aspects of the

proper orthogonal decomposition, Computers & Chemical Engineering, 43, pp 68—80

[22] Brenner, T.A., Fontenot, R.L., Cizmas, P.G.A., O'Brien, T.J. and Breault, R.W., 2010.
Augmented proper orthogonal decomposition for problems with moving discontinuities,

Powder Technology, 203, pp 7885

[23] Alonso, D., Velazquez, A. and Vega, J.M., 2009. A method to generate

computationally efficient reduced order models, Computer Methods in Applied Mechanics

34



and Engineering, 198, pp 2683-2691

[24] Holmes, P., Lumley, J. and Berkooz, G., 1996. Turbulence, Coherent Structures,

Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, UK

[25] Sirovich, L., 1987, Turbulence and the dynamics of coherent structures, Quarterly of

Applied Mathematics, 45, pp 561-590

[26] Boyd, S. and Vanderberghe, L., 2009. Convex Optimization, Cambridge University

Press

[27] Syamlal, M., 1998. MFIX documentation numerical technique. Technical Report DE-

AC21-95MC31346. EG&G Technical Services of West Virginia.

APPENDIX A. HYDRODYNAMIC MODEL FOR TWO-PHASE FLUIDIZED BED

The physics of isothermal fluidized beds is governed by the laws of mass and
momentum conservation. The fluidized bed was modeled using a two-fluid model (TFM)
of Syamlal et al. [27]. In the case of no chemical reactions or physical processes such as
evaporation, where no interface mass transfer occurs, the gas and solid phase mass balance

equations are given as

2 (0P, +V+(,9,7,)=0 (A

where m represents the phase (gas or solid), p is the phase density, ¢ is the void fraction

and v is the velocity vector.
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The gas and solid momentum balance equations are given as

d - . = R ~
g(gmpmvm)+v.(8mpm m In):_gmvpg+v.0-m+F;qs(vs_vg)+8mpmg (A'l)

The first two terms on the right hand side represent the normal and the shear forces,
respectively. The third term represents the contribution of an aerodynamic drag force due
to solid particles moving with different local velocity vector than the local gas. The last

term on the right hand side represents a body force due to gravity.

APPENDIX B. DERIVATION OF REDUCED SOLIDS VOLUME FRACTION

CORRECTION EQUATION

The solids volume fraction correction equation can be written as

85 ' — 85 ' 8:
aP gsP - Zanbgsnb + bP (Bl)

nb

The reconstruction for the gas void fraction can be written as
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£,(x.1)=9,(x)+ Y, af (P, (x) (B.2)
k=1
Then, similar to the pressure correction, the gas void fraction can be corrected as

g, (x,1)=€,(x)+&,(x,1) (B.3)

where 8; is the tentative value of the gas void fraction and 8;’, is the correction.

Assuming ¢,(x) and £Z (x) to be equal and combining Eq. (B.2) and Eq. (B.3) yields
£,(x.0)= Y 0 (1), (x) (B.4)
k=1

Dropping for convenience the &, superscript, replacing in Eq. (B.1) the subscript P by i

and substituting Eq. (B.4) into (B.1) yields

iak[ai(pk(xi)—Zal.an)k(xinb)J:bi, i=1,..,N (B.5)

Ip=1

Here, i, represents the neighbor of cell i, NB is the total number of neighbors of a cell, and

m is the number of modes kept in the POD reconstruction. Eq. (B.5) can also be written as
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Sa 1o - Ela o) @0

m
k=1 nb=1

then projected onto the POD modes by left-multiplying it with the transposed eigenvectors

{0}

NB

{¢Z}T§ak([fl]{¢k}—Z[Anb]{@nh}]:{¢1}T{b}, i=1,m

nb=1

(B.7)

The resulting system is of size m with m unknowns ¢, . After adding back the superscripts

¢, and €, this system can be written as

(A o} ={B"} (B.8)

where

s ={o) [ANo - S oV [Aulo, ). Lk=1,.m B9)

nb=1

and

38



B ={o} {p}, I=1..m (B.10)

APPENDIX C. TEST CASE FOR TWO-DIMENSIONAL FLUIDIZED BEDS

PROBLEM

Figure C.1 and Table C.1 define the geometry of the fluidized bed and the applied
boundary conditions. In Table C.1, Case 1 refers to the test case used to show the
nonphysical results obtained using traditional ROM, while Case 2 refers to the test case
used to validate the C-ROM. The snapshots are collected at a constant interval of 0.0025s,
that is, M = 320. It was demonstrated that 320 snapshots were adequate to capture the
dynamics of the fluidized bed [10]. In this case, the spatial grid is such that N = 14000,

leading to an eigenvalue problem of size N if the method of snapshots is not used.

Xlength

Xlength

Yiength

."I«ngm

hy
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a)

.. b)

Figure C.1: Geometry and boundary conditions for two-dimensional fluidized bed used to

show: a) nonphysical ROM results, and b) validated C-ROM

Table C.1.: Geometry, boundary conditions and physical properties for test case of

fluidized bed
Parameter Description Units Case 1 Case 2
Xlength Length of domain in x — direction cm 39.37 25.4
Viength Length of domain in y — direction cm 58.44 76.5
Imax Number of cells in x — direction - 108 108
Jmax Number of cells in y — direction - 124 124
vy, V2 Gas inflow velocities cm/s 355,284 120,1
Des Static pressure at outlet g/cm/s2 1.01¢° 1.01¢°
Ty Gas Temperature K 297 297
Lo Gas viscosity glem/s  1.8¢™ 1.8¢*
Ltart Start time S 0.2 0.2
Lstop Stop time S 1.0 1.0
Py Particle density glem®  2.61 1.0
D, Particle diameter cm 0.05 0.05
Do Initial height of packed bed cm 29.22 14.7
& Initial void fraction of packed bed - 0.4 0.4

APPENDIX D. DERIVATION OF THE KKT SYSTEM OF EQUATIONS

This section provides a detailed implementation of the KKT conditions and

derivation of the KKT system. Consider the system of equations for the solution of gas

void fraction correction

(D.1)
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where the constraint, g, to be satisfied is

g =€ (x)+P(x)o(t)-1.0<0 (D.2)

The solution of Eq. (D.1) is analogous to the minimization of the functional

~ ! ~ 2
min J =‘ Asof — B (D.3)
The Lagrangian can then be constructed using Eq. (26) as
s IR
L=J+Ag = |A8-‘a“ — B[+ (& +@a-1.0) (D.4)

where A are the KKT multipliers. Applying the stationary condition to the Lagrangian

yields

o, =2(A%) A%a" —2(A%) B +0"2=0 (D.5)

When applying the KKT conditions, the inequality constraint must be treated as a binding

constraint (that is, g, =0). This then allows the complementary slackness condition to be
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written as

£ +Po—1.0=0 (D.6)

The KKT system can then be written as

VITAE

an 2(A%) B o

g&‘
P 0 z 10-¢,
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