DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

Abstract

The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.

Authors:
 [1];  [2];  [2];  [2];  [3]; ORCiD logo [4]; ORCiD logo [5];  [6];  [7];  [5];  [8];  [9];  [10]; ORCiD logo [5];  [11];  [12];  [13];  [2]; ORCiD logo [13];  [7] more »; ORCiD logo [7];  [7]; ORCiD logo [14];  [7];  [5];  [2];  [15];  [16];  [2]; ORCiD logo [11];  [17];  [5] « less
  1. Univ. of Chicago, Chicago, IL (United States); Univ. of Oxford, Oxford (United Kingdom)
  2. Univ. of Oxford, Oxford (United Kingdom)
  3. Rutherford Appleton Lab., Didcot (United Kingdom); Univ. of Strathclyde, Glasgow (United Kingdom)
  4. CEA, DAM, DIF, Arpajon (France)
  5. Univ. of Chicago, Chicago, IL (United States)
  6. Max Planck Institute for Astrophysics, Garching (Germany); Space Research Institute (IKI), Moscow (Russia)
  7. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  9. Univ. of Wisconsin, Madison, WI (United States)
  10. AWE, West Berkshire (United Kingdom)
  11. Univ. of Rochester, Rochester, NY (United States)
  12. Univ. Paris VI Ecole Polytechnique (France)
  13. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  14. UNIST, Ulsan (South Korea)
  15. Queens Univ. Belfast, Belfast (United Kingdom)
  16. ETH Zurich, Zurich (Switzerland)
  17. Univ. of Oxford, Oxford (United Kingdom); Univ. of Chicago, Chicago, IL (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Univ. of Chicago, IL (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC)
OSTI Identifier:
1368578
Alternate Identifier(s):
OSTI ID: 1363695; OSTI ID: 1374511; OSTI ID: 1495712
Report Number(s):
LLNL-JRNL-733532
Journal ID: ISSN 1070-664X; PHPAEN
Grant/Contract Number:  
AC02-76SF00515; PHY-0903997; PHY-1619573; 2016R1A5A1013277; B523820; AC02-06CH11357; NA0001944; NA0002724; SC0016566; FWP 57789; EP/M022331/1; EP/N002644/1; EP/N014472/1; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 4; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Tzeferacos, Petros, Rigby, A., Bott, A., Bell, A. R., Bingham, R., Casner, A., Cattaneo, F., Churazov, E. M., Emig, J., Flocke, N., Fiuza, F., Forest, C. B., Foster, J., Graziani, C., Katz, J., Koenig, M., Li, C. -K., Meinecke, J., Petrasso, R., Park, H. -S., Remington, B. A., Ross, J. S., Ryu, D., Ryutov, D., Weide, K., White, T. G., Reville, B., Miniati, F., Schekochihin, A. A., Froula, D. H., Gregori, G., and Lamb, D. Q. Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo. United States: N. p., 2017. Web. doi:10.1063/1.4978628.
Tzeferacos, Petros, Rigby, A., Bott, A., Bell, A. R., Bingham, R., Casner, A., Cattaneo, F., Churazov, E. M., Emig, J., Flocke, N., Fiuza, F., Forest, C. B., Foster, J., Graziani, C., Katz, J., Koenig, M., Li, C. -K., Meinecke, J., Petrasso, R., Park, H. -S., Remington, B. A., Ross, J. S., Ryu, D., Ryutov, D., Weide, K., White, T. G., Reville, B., Miniati, F., Schekochihin, A. A., Froula, D. H., Gregori, G., & Lamb, D. Q. Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo. United States. https://doi.org/10.1063/1.4978628
Tzeferacos, Petros, Rigby, A., Bott, A., Bell, A. R., Bingham, R., Casner, A., Cattaneo, F., Churazov, E. M., Emig, J., Flocke, N., Fiuza, F., Forest, C. B., Foster, J., Graziani, C., Katz, J., Koenig, M., Li, C. -K., Meinecke, J., Petrasso, R., Park, H. -S., Remington, B. A., Ross, J. S., Ryu, D., Ryutov, D., Weide, K., White, T. G., Reville, B., Miniati, F., Schekochihin, A. A., Froula, D. H., Gregori, G., and Lamb, D. Q. Wed . "Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo". United States. https://doi.org/10.1063/1.4978628. https://www.osti.gov/servlets/purl/1368578.
@article{osti_1368578,
title = {Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo},
author = {Tzeferacos, Petros and Rigby, A. and Bott, A. and Bell, A. R. and Bingham, R. and Casner, A. and Cattaneo, F. and Churazov, E. M. and Emig, J. and Flocke, N. and Fiuza, F. and Forest, C. B. and Foster, J. and Graziani, C. and Katz, J. and Koenig, M. and Li, C. -K. and Meinecke, J. and Petrasso, R. and Park, H. -S. and Remington, B. A. and Ross, J. S. and Ryu, D. and Ryutov, D. and Weide, K. and White, T. G. and Reville, B. and Miniati, F. and Schekochihin, A. A. and Froula, D. H. and Gregori, G. and Lamb, D. Q.},
abstractNote = {The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.},
doi = {10.1063/1.4978628},
journal = {Physics of Plasmas},
number = 4,
volume = 24,
place = {United States},
year = {Wed Mar 22 00:00:00 EDT 2017},
month = {Wed Mar 22 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Schematics and numerical simulations of previous experiments conducted at Vulcan. a) Cartoon of the rod-grid experiment. b) 3D FLASH simulation of the rod-grid experiment. Displayed is the density logarithm when the shock traverses the plastic grid, stirring turbulence that amplifies the Biermann battery generated field by a factormore » of two. Numerical models of this experiment enabled the interpretation of the experimental results. c) Cartoon of the colliding flows experiment, where higher Rm values where obtained. d) 2D cylindrical FLASH simulation of the colliding flows experiment.« less

Save / Share:

Works referenced in this record:

Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code
journal, October 2009


FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes
journal, November 2000

  • Fryxell, B.; Olson, K.; Ricker, P.
  • The Astrophysical Journal Supplement Series, Vol. 131, Issue 1
  • DOI: 10.1086/317361

Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet
journal, October 2016

  • Li, C. K.; Tzeferacos, P.; Lamb, D.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13081

Induction Effects in Terrestrial Magnetism Part I. Theory
journal, February 1946


Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution
journal, February 1959


Source characterization and modeling development for monoenergetic-proton radiography experiments on OMEGA
journal, June 2012

  • Manuel, M. J. -E.; Zylstra, A. B.; Rinderknecht, H. G.
  • Review of Scientific Instruments, Vol. 83, Issue 6
  • DOI: 10.1063/1.4730336

Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence
journal, December 2000

  • Biskamp, Dieter; Müller, Wolf-Christian
  • Physics of Plasmas, Vol. 7, Issue 12
  • DOI: 10.1063/1.1322562

Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena
journal, April 2000

  • Ryutov, D. D.; Drake, R. P.; Remington, B. A.
  • The Astrophysical Journal Supplement Series, Vol. 127, Issue 2
  • DOI: 10.1086/313320

Magnetic Field Saturation in the Riga Dynamo Experiment
journal, April 2001


A model of nonlinear evolution and saturation of the turbulent MHD dynamo
journal, January 2002


Intermittency of Magnetohydrodynamic Turbulence: an Astrophysical Perspective
journal, July 2006


FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments
journal, December 2012


Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers
journal, August 2007


Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves
journal, January 2012

  • Gregori, G.; Ravasio, A.; Murphy, C. D.
  • Nature, Vol. 481, Issue 7382
  • DOI: 10.1038/nature10747

Saturation Mechanisms for the Generated Magnetic Field in Nonuniform Laser-Matter Irradiation
journal, January 1997


X-ray surface brightness and gas density fluctuations in the Coma cluster: X-ray surface brightness fluctuations in the Coma cluster
journal, January 2012


Turbulence, magnetic fields, and plasma physics in clusters of galaxies
journal, May 2006

  • Schekochihin, A. A.; Cowley, S. C.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2179053

Optical Studies of Cassiopeia a. I. Proper Motions in the Optical Remnant
journal, November 1970

  • van den Bergh, Sidney; Dodd, W. W.
  • The Astrophysical Journal, Vol. 162
  • DOI: 10.1086/150681

Mach Number Dependence of Turbulent Magnetic Field Amplification: Solenoidal versus Compressive Flows
journal, September 2011


Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers
journal, May 1999


The Magnetic Field of Sunspots
journal, November 1933

  • Cowling, T. G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 94, Issue 1
  • DOI: 10.1093/mnras/94.1.39

Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe
journal, May 2008


Turbulent amplification of magnetic fields in laboratory laser-produced shock waves
journal, June 2014

  • Meinecke, J.; Doyle, H. W.; Miniati, F.
  • Nature Physics, Vol. 10, Issue 7
  • DOI: 10.1038/nphys2978

Heat flux effects in Ohm's law
journal, November 1986


The RAGE radiation-hydrodynamic code
journal, October 2008


Magnetohydrodynamic Turbulence
book, August 2009


Evolving turbulence and magnetic fields in galaxy clusters
journal, March 2006


Laboratory Dynamo Experiments
journal, July 2009

  • Verhille, Gautier; Plihon, Nicolas; Bourgoin, Mickael
  • Space Science Reviews, Vol. 152, Issue 1-4
  • DOI: 10.1007/s11214-009-9546-1

On the origin of cosmic magnetic fields
journal, March 2008


Astrophysical turbulence modeling
journal, March 2011


Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas
journal, June 2015

  • Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 27
  • DOI: 10.1073/pnas.1502079112

Turbulence in clusters of galaxies and X-ray line profiles
journal, December 2003

  • Inogamov, N. A.; Sunyaev, R. A.
  • Astronomy Letters, Vol. 29, Issue 12
  • DOI: 10.1134/1.1631412

Detection of a Flow Induced Magnetic Field Eigenmode in the Riga Dynamo Facility
journal, May 2000


Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium
journal, January 2007


Simulations of the Small‐Scale Turbulent Dynamo
journal, September 2004

  • Schekochihin, Alexander A.; Cowley, Steven C.; Taylor, Samuel F.
  • The Astrophysical Journal, Vol. 612, Issue 1
  • DOI: 10.1086/422547

Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics
journal, June 1999

  • Ryutov, D.; Drake, R. P.; Kane, J.
  • The Astrophysical Journal, Vol. 518, Issue 2
  • DOI: 10.1086/307293

A class of self-sustaining dissipative spherical dynamos
journal, August 1958


Modeling HEDLA magnetic field generation experiments on laser facilities
journal, March 2013


FLASH MHD simulations of experiments that study shock-generated magnetic fields
journal, December 2015


The Protogalactic Origin for Cosmic Magnetic Fields
journal, May 1997

  • Kulsrud, Russell M.; Cen, Renyue; Ostriker, Jeremiah P.
  • The Astrophysical Journal, Vol. 480, Issue 2
  • DOI: 10.1086/303987

Spectrum of the galactic magnetic fields
journal, March 1982

  • Ruzmaikin, A. A.; Shukurov, A. M.
  • Astrophysics and Space Science, Vol. 82, Issue 2
  • DOI: 10.1007/BF00651446

Experimental Demonstration of an Inertial Collimation Mechanism in Nested Outflows
journal, April 2014


Laser light scattering in laboratory plasmas
journal, January 1969


Equation of State Measurements of Warm Dense Carbon Using Laser-Driven Shock and Release Technique
journal, April 2014


The Biermann Catastrophe in Numerical Magnetohydrodynamics
journal, March 2015


The Piecewise Parabolic Method (PPM) for gas-dynamical simulations
journal, April 1984


Measuring E and B Fields in Laser-Produced Plasmas with Monoenergetic Proton Radiography
journal, September 2006


Astrophysical magnetic fields and nonlinear dynamo theory
journal, October 2005


Laser ray tracing and power deposition on an unstructured three-dimensional grid
journal, January 2000


Multidimensional upwind methods for hyperbolic conservation laws
journal, March 1990


Cosmological Magnetic Field Generation by the Weibel Instability
journal, December 2003

  • Schlickeiser, R.; Shukla, P. K.
  • The Astrophysical Journal, Vol. 599, Issue 2
  • DOI: 10.1086/381246

An HLLC Riemann solver for magneto-hydrodynamics
journal, February 2005


An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics
journal, March 2009


Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum
journal, February 1950


Works referencing / citing this record:

Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma
journal, February 2018


Numerical simulation of magnetized jet creation using a hollow ring of laser beams
journal, February 2019

  • Lu, Y.; Tzeferacos, P.; Liang, E.
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5050924

Design of a new turbulent dynamo experiment on the OMEGA-EP
journal, March 2019

  • Liao, Andy Sha; Li, Shengtai; Li, Hui
  • Physics of Plasmas, Vol. 26, Issue 3
  • DOI: 10.1063/1.5081062

Long-duration direct drive hydrodynamics experiments on the National Ignition Facility: Platform development and numerical modeling with CHIC
journal, August 2019

  • Mailliet, C.; Le Bel, E.; Ceurvorst, L.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5110684

MPRAD: A Monte Carlo and ray-tracing code for the proton radiography in high-energy-density plasma experiments
journal, December 2019

  • Lu, Yingchao; Li, Hui; Flippo, Kirk A.
  • Review of Scientific Instruments, Vol. 90, Issue 12
  • DOI: 10.1063/1.5123392

Modeling hydrodynamics, magnetic fields, and synthetic radiographs for high-energy-density plasma flows in shock-shear targets
journal, January 2020

  • Lu, Yingchao; Li, Shengtai; Li, Hui
  • Physics of Plasmas, Vol. 27, Issue 1
  • DOI: 10.1063/1.5126149

From ICF to laboratory astrophysics: ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes
journal, December 2018


Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma
text, January 2018


Transport of High-energy Charged Particles through Spatially Intermittent Turbulent Magnetic Fields
journalarticle, January 2020

  • Chen, Le; Bott, Afa; Tzeferacos, P.
  • American Astronomical Society
  • DOI: 10.17863/cam.51773