DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Origin of reduced magnetization and domain formation in small magnetite nanoparticles

Abstract

We compare the structural, chemical, and magnetic properties of magnetite nanoparticles. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. We show that atomistic magnetic modelling of nanoparticles with and without these defects reveal the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm.

Authors:
 [1];  [2];  [1];  [3];  [4];  [4];  [5];  [2];  [1];  [4];  [1]
  1. Univ. of York (United Kingdom). Dept. of Physics
  2. SuperSTEM, Daresbury (United Kingdom)
  3. Carnegie Mellon Univ., Pittsburgh, PA (United States). Physics Dept.; Univ. of Electronic Science and Technology of China, Chengdu (China). State Key Laboratory of Electronic Thin Films and Integrated Devices
  4. Carnegie Mellon Univ., Pittsburgh, PA (United States). Physics Dept.
  5. Univ. of Cadiz, Puerto Real (Spain). Dept. of Computer Science and Engineering
Publication Date:
Research Org.:
Carnegie Mellon Univ., Pittsburgh, PA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1366451
Grant/Contract Number:  
FG02-08ER46481
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; magnetic properties and materials; nanoscale materials

Citation Formats

Nedelkoski, Zlatko, Kepaptsoglou, Demie, Lari, Leonardo, Wen, Tianlong, Booth, Ryan A., Oberdick, Samuel D., Galindo, Pedro L., Ramasse, Quentin M., Evans, Richard F. L., Majetich, Sara, and Lazarov, Vlado K. Origin of reduced magnetization and domain formation in small magnetite nanoparticles. United States: N. p., 2017. Web. doi:10.1038/srep45997.
Nedelkoski, Zlatko, Kepaptsoglou, Demie, Lari, Leonardo, Wen, Tianlong, Booth, Ryan A., Oberdick, Samuel D., Galindo, Pedro L., Ramasse, Quentin M., Evans, Richard F. L., Majetich, Sara, & Lazarov, Vlado K. Origin of reduced magnetization and domain formation in small magnetite nanoparticles. United States. https://doi.org/10.1038/srep45997
Nedelkoski, Zlatko, Kepaptsoglou, Demie, Lari, Leonardo, Wen, Tianlong, Booth, Ryan A., Oberdick, Samuel D., Galindo, Pedro L., Ramasse, Quentin M., Evans, Richard F. L., Majetich, Sara, and Lazarov, Vlado K. Mon . "Origin of reduced magnetization and domain formation in small magnetite nanoparticles". United States. https://doi.org/10.1038/srep45997. https://www.osti.gov/servlets/purl/1366451.
@article{osti_1366451,
title = {Origin of reduced magnetization and domain formation in small magnetite nanoparticles},
author = {Nedelkoski, Zlatko and Kepaptsoglou, Demie and Lari, Leonardo and Wen, Tianlong and Booth, Ryan A. and Oberdick, Samuel D. and Galindo, Pedro L. and Ramasse, Quentin M. and Evans, Richard F. L. and Majetich, Sara and Lazarov, Vlado K.},
abstractNote = {We compare the structural, chemical, and magnetic properties of magnetite nanoparticles. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. We show that atomistic magnetic modelling of nanoparticles with and without these defects reveal the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm.},
doi = {10.1038/srep45997},
journal = {Scientific Reports},
number = ,
volume = 7,
place = {United States},
year = {Mon Apr 10 00:00:00 EDT 2017},
month = {Mon Apr 10 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 77 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Magneto-resistance and superparamagnetism in magnetite films on MgO and MgAl2O4
journal, March 2003


Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications
journal, June 2008

  • Laurent, Sophie; Forge, Delphine; Port, Marc
  • Chemical Reviews, Vol. 108, Issue 6, p. 2064-2110
  • DOI: 10.1021/cr068445e

Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4
journal, December 2014

  • McKenna, Keith P.; Hofer, Florian; Gilks, Daniel
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6740

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Anomalous moment and anisotropy behavior in Fe 3 O 4 films
journal, April 1996


Preparation and Properties of an Aqueous Ferrofluid
journal, July 1999

  • Berger, Patricia; Adelman, Nicholas B.; Beckman, Katie J.
  • Journal of Chemical Education, Vol. 76, Issue 7
  • DOI: 10.1021/ed076p943

Clinical applications of magnetic nanoparticles for hyperthermia
journal, January 2008


Surface anisotropy of a Fe3O4 nanoparticle: A simulation approach
journal, September 2007


Effective anisotropies and energy barriers of magnetic nanoparticles with Néel surface anisotropy
journal, August 2007


Preparation of aqueous magnetic liquids in alkaline and acidic media
journal, March 1981


Origin of the increased resistivity in epitaxial Fe 3 O 4 films
journal, November 2002


Anti-phase domains and magnetism in epitaxial magnetite layers
journal, April 1999

  • Hibma, T.; Voogt, F. C.; Niesen, L.
  • Journal of Applied Physics, Vol. 85, Issue 8
  • DOI: 10.1063/1.369857

Spin-valve behaviour of anti-ferromagnetic boundaries in ultrathin magnetite films
journal, December 2001


Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts
journal, January 2004

  • Yu, William W.; Falkner, Joshua C.; Yavuz, Cafer T.
  • Chemical Communications, Issue 20
  • DOI: 10.1039/b409601k

Magnetic interactions and covalency effects in mainly ionic compounds
journal, March 1976


Origin of the Anomalous Magnetic Behavior in Single Crystal Fe 3 O 4 Films
journal, December 1997


Mössbauer study of the high-temperature phase of Co-substituted magnetites, Co x Fe 3 x O 4 . I. x ≤0.04
journal, March 1993


Spin-Polarized Transport across Sharp Antiferromagnetic Boundaries
journal, June 2002


Magnetic nanoparticles with bulklike properties (invited)
journal, April 2011

  • Batlle, Xavier; Pérez, N.; Guardia, P.
  • Journal of Applied Physics, Vol. 109, Issue 7
  • DOI: 10.1063/1.3559504

Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles
journal, January 2004

  • Sun, Shouheng; Zeng, Hao; Robinson, David B.
  • Journal of the American Chemical Society, Vol. 126, Issue 1
  • DOI: 10.1021/ja0380852

Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces
journal, April 2012

  • Salafranca, Juan; Gazquez, Jaume; Pérez, Nicolás
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300665z

Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles
journal, September 2006

  • Daou, T. J.; Pourroy, G.; Bégin-Colin, S.
  • Chemistry of Materials, Vol. 18, Issue 18
  • DOI: 10.1021/cm060805r

Surface Spin Disorder in NiFe 2 O 4 Nanoparticles
journal, July 1996


Enhanced oxidation of nanoparticles through strain-mediated ionic transport
journal, November 2013

  • Pratt, Andrew; Lari, Leonardo; Hovorka, Ondrej
  • Nature Materials, Vol. 13, Issue 1
  • DOI: 10.1038/nmat3785

Theory of Ionic Ordering, Crystal Distortion, and Magnetic Exchange Due to Covalent Forces in Spinels
journal, April 1955


Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications
journal, June 2005


Architectured design of superparamagnetic Fe 3 O 4 nanoparticles for application as MRI contrast agents: mastering size and magnetism for enhanced relaxivity
journal, January 2015

  • Pereira, Clara; Pereira, André M.; Rocha, Mariana
  • Journal of Materials Chemistry B, Vol. 3, Issue 30
  • DOI: 10.1039/c5tb00789e

Progress in applications of magnetic nanoparticles in biomedicine
journal, November 2009


Direct Observation of a Surface Induced Disordering Process in Magnetic Nanoparticles
journal, September 2009


Advances in ferrofluid technology
journal, August 1995


Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications
journal, April 2010

  • Laurent, Sophie; Forge, Delphine; Port, Marc
  • Chemical Reviews, Vol. 110, Issue 4
  • DOI: 10.1021/cr900197g

Multivariate statistical analysis as a tool for the segmentation of 3D spectral data
journal, September 2013


Origin of Surface Canting within Fe 3 O 4 Nanoparticles
journal, October 2014


Ultra-large-scale syntheses of monodisperse nanocrystals
journal, November 2004

  • Park, Jongnam; An, Kwangjin; Hwang, Yosun
  • Nature Materials, Vol. 3, Issue 12
  • DOI: 10.1038/nmat1251

Lead palladium titanate: A room temperature nanoscale multiferroic thin film
journal, February 2020


Effective anisotropies and energy barriers of magnetic nanoparticles with Neel surface anisotropy
text, January 2007


Works referencing / citing this record:

Magnetic-Assisted Treatment of Liver Fibrosis
journal, October 2019

  • Levada, Kateryna; Omelyanchik, Alexander; Rodionova, Valeria
  • Cells, Vol. 8, Issue 10
  • DOI: 10.3390/cells8101279

Magnetic small-angle neutron scattering
journal, March 2019


Magnetic Nanoparticle Chains in Gelatin Ferrogels: Bioinspiration from Magnetotactic Bacteria
journal, September 2019

  • Sturm, Sebastian; Siglreitmeier, Maria; Wolf, Daniel
  • Advanced Functional Materials, Vol. 29, Issue 45
  • DOI: 10.1002/adfm.201905996

Structural and magnetic properties of cobalt iron disulfide (CoxFe1−xS2) nanocrystals
journal, March 2018


Hybrid Nanostructured Magnetite Nanoparticles: From Bio-Detection and Theragnostics to Regenerative Medicine
journal, January 2020


Shaping Magnetite Nanoparticles from First Principles
journal, October 2019


Fabrication of CNT/ION hybrids and their impact on the biomedical applicability of PCL‐based composite films
journal, August 2018

  • Świętek, Małgorzata; Tokarz, Waldemar; Benko, Aleksandra
  • Polymer Composites, Vol. 40, Issue S2
  • DOI: 10.1002/pc.25170

Surface structure controlling nanoparticle behavior: magnetism of ferrihydrite, magnetite, and maghemite
journal, January 2018


Internal Structure and Magnetic Properties in Cobalt Ferrite Nanoparticles: Influence of the Synthesis Method
journal, February 2019

  • Lavorato, Gabriel; Alzamora, Mariella; Contreras, Cynthia
  • Particle & Particle Systems Characterization, Vol. 36, Issue 4
  • DOI: 10.1002/ppsc.201900061

Antiphase boundaries in truncated octahedron-shaped Zn-doped magnetite nanocrystals
journal, January 2018

  • Fontaiña-Troitiño, Nerio; Ramos-Docampo, Miguel A.; Testa-Anta, Martín
  • Journal of Materials Chemistry C, Vol. 6, Issue 47
  • DOI: 10.1039/c8tc05731a

The effects of intraparticle structure and interparticle interactions on the magnetic hysteresis loop of magnetic nanoparticles
journal, July 2019

  • Boekelheide, Zoe; Miller, Jackson T.; Grüttner, Cordula
  • Journal of Applied Physics, Vol. 126, Issue 4
  • DOI: 10.1063/1.5094180

Mineralogical Evolution of Magnetic Rhodic Oxisols under Different Lithological Influences in Brazil
journal, January 2019

  • Silva Filho, Luiz Aníbal; Ker, João Carlos; Fontes, Maurício Paulo Ferreira
  • Revista Brasileira de Ciência do Solo, Vol. 43
  • DOI: 10.1590/18069657rbcs20190065

Vacancy-Driven Noncubic Local Structure and Magnetic Anisotropy Tailoring in Fe x O Fe 3 δ O 4 Nanocrystals
journal, November 2019

  • Lappas, Alexandros; Antonaropoulos, George; Brintakis, Konstantinos
  • Physical Review X, Vol. 9, Issue 4
  • DOI: 10.1103/physrevx.9.041044