DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell

Abstract

The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present here a heterostructure composed of a Ni-rich LiNi0.7Co0.15Mn0.15O2 core and a Li-rich Li1.2-xNi0.2Mn0.6O2 shell, incorporating the advantageous features of the structural stability of the core and chemical stability of the shell. With a unique chemical treatment for the activation of the Li2MnO3 phase of the shell, a high capacity is realized with the Li-rich shell material. Aberration-corrected scanning transmission electron microscopy (STEM) provides direct evidence for the formation of surface Li-rich shell layer. Finally, the heterostructure exhibits a high capacity retention of 98% and a discharge- voltage retention of 97% during 100 cycles with a discharge capacity of 190 mA h g-1 (at 2.0–4.5 V under C/3 rate, 1C = 200 mA g-1).

Authors:
 [1];  [1];  [1];  [2];  [2];  [1]
  1. The Univ. of Texas, Austin, TX (United States)
  2. Ulsan National Institute of Science and Technology (UNIST), Ulsan (South Korea)
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1363894
Grant/Contract Number:  
EE0006447
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Science
Additional Journal Information:
Journal Volume: 3; Journal Issue: 11; Journal ID: ISSN 2198-3844
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; chemical activation; heterostructure; lithium-rich layered oxide; nickel-rich layered oxide; surface stabilization

Citation Formats

Oh, Pilgun, Oh, Seung -Min, Li, Wangda, Myeong, Seunjun, Cho, Jaephil, and Manthiram, Arumugam. High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell. United States: N. p., 2016. Web. doi:10.1002/advs.201600184.
Oh, Pilgun, Oh, Seung -Min, Li, Wangda, Myeong, Seunjun, Cho, Jaephil, & Manthiram, Arumugam. High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell. United States. https://doi.org/10.1002/advs.201600184
Oh, Pilgun, Oh, Seung -Min, Li, Wangda, Myeong, Seunjun, Cho, Jaephil, and Manthiram, Arumugam. Mon . "High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell". United States. https://doi.org/10.1002/advs.201600184. https://www.osti.gov/servlets/purl/1363894.
@article{osti_1363894,
title = {High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell},
author = {Oh, Pilgun and Oh, Seung -Min and Li, Wangda and Myeong, Seunjun and Cho, Jaephil and Manthiram, Arumugam},
abstractNote = {The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present here a heterostructure composed of a Ni-rich LiNi0.7Co0.15Mn0.15O2 core and a Li-rich Li1.2-xNi0.2Mn0.6O2 shell, incorporating the advantageous features of the structural stability of the core and chemical stability of the shell. With a unique chemical treatment for the activation of the Li2MnO3 phase of the shell, a high capacity is realized with the Li-rich shell material. Aberration-corrected scanning transmission electron microscopy (STEM) provides direct evidence for the formation of surface Li-rich shell layer. Finally, the heterostructure exhibits a high capacity retention of 98% and a discharge- voltage retention of 97% during 100 cycles with a discharge capacity of 190 mA h g-1 (at 2.0–4.5 V under C/3 rate, 1C = 200 mA g-1).},
doi = {10.1002/advs.201600184},
journal = {Advanced Science},
number = 11,
volume = 3,
place = {United States},
year = {Mon May 30 00:00:00 EDT 2016},
month = {Mon May 30 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 69 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials
journal, September 2014

  • Oh, Pilgun; Myeong, Seungjun; Cho, Woongrae
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502980k

Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni 0.7 Mn 0.3 ]O 2
journal, January 2014

  • Cho, Dae-Hyun; Jo, Chang-Heum; Cho, Woosuk
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.042406jes

The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries
journal, February 2012

  • Sun, Yang-Kook; Lee, Min-Joon; Yoon, Chong S.
  • Advanced Materials, Vol. 24, Issue 9
  • DOI: 10.1002/adma.201104106

Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution
journal, April 2014

  • Zheng, Jianming; Gu, Meng; Genc, Arda
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl500486y

Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material
journal, January 2012

  • Song, Bohang; Liu, Zongwen; Lai, Man On
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 37
  • DOI: 10.1039/c2cp42068f

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

The effect of Al2O3-coating coverage on the electrochemical properties in LiCoO2 thin films
journal, October 2009

  • Oh, Yuhong; Ahn, Donggi; Nam, Seunghoon
  • Journal of Solid State Electrochemistry, Vol. 14, Issue 7
  • DOI: 10.1007/s10008-009-0946-7

Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density
journal, January 2013

  • Bettge, Martin; Li, Yan; Gallagher, Kevin
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.034311jes

Direct In situ Observation of Li 2 O Evolution on Li-Rich High-Capacity Cathode Material, Li[Ni x Li (1–2 x )/3 Mn (2– x )/3 ]O 2 (0 ≤ x ≤0.5)
journal, January 2014

  • Hy, Sunny; Felix, Felix; Rick, John
  • Journal of the American Chemical Society, Vol. 136, Issue 3
  • DOI: 10.1021/ja410137s

Direct Atomic-Resolution Observation of Two Phases in the Li 1.2 Mn 0.567 Ni 0.166 Co 0.067 O 2 Cathode Material for Lithium-Ion Batteries
journal, April 2013

  • Yu, Haijun; Ishikawa, Ryo; So, Yeong-Gi
  • Angewandte Chemie International Edition, Vol. 52, Issue 23
  • DOI: 10.1002/anie.201301236

Synthesis and Characterization of the Lithium-Rich Core–Shell Cathodes with Low Irreversible Capacity and Mitigated Voltage Fade
journal, April 2015


First Evidence of Manganese–Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries
journal, July 2013

  • Boulineau, Adrien; Simonin, Loïc; Colin, Jean-François
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl4019275

Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
journal, March 2015

  • Liu, Wen; Oh, Pilgun; Liu, Xien
  • Angewandte Chemie International Edition, Vol. 54, Issue 15
  • DOI: 10.1002/anie.201409262

Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries
journal, September 2012

  • Gu, Meng; Belharouak, Ilias; Genc, Arda
  • Nano Letters, Vol. 12, Issue 10
  • DOI: 10.1021/nl302249v

A New High Power LiNi 0.81 Co 0.1 Al 0.09 O 2 Cathode Material for Lithium-Ion Batteries
journal, April 2014


High-Energy Cathode Materials (Li 2 MnO 3 –LiMO 2 ) for Lithium-Ion Batteries
journal, March 2013

  • Yu, Haijun; Zhou, Haoshen
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1021/jz400032v

High Performance LiMn 2 O 4 Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries
journal, January 2014

  • Lee, Min-Joon; Lee, Sanghan; Oh, Pilgun
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404430e

Roles of Surface Chemistry on Safety and Electrochemistry in Lithium Ion Batteries
journal, April 2012

  • Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar200224h

Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process
journal, July 2013

  • Zheng, Jianming; Gu, Meng; Xiao, Jie
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl401849t

A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer
journal, February 2013

  • Cho, Yonghyun; Oh, Pilgun; Cho, Jaephil
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl304558t

Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

High-energy cathode material for long-life and safe lithium batteries
journal, March 2009

  • Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2418

Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution
journal, August 2011

  • Jarvis, Karalee A.; Deng, Zengqiang; Allard, Lawrence F.
  • Chemistry of Materials, Vol. 23, Issue 16
  • DOI: 10.1021/cm200831c

Atomic Structure of Li 2 MnO 3 after Partial Delithiation and Re-Lithiation
journal, June 2013


High-energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries
journal, January 2012

  • Yu, Haijun; Kim, Hyunjeong; Wang, Yarong
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 18
  • DOI: 10.1039/c2cp40745k

Stabilization of xLi2MnO3 ⋅  ( 1 − x ) LiMO2 Electrode Surfaces  ( M = Mn ,  Ni ,  Co )  with Mildly Acidic, Fluorinated Solutions
journal, January 2008

  • Kang, S.-H.; Thackeray, M. M.
  • Journal of The Electrochemical Society, Vol. 155, Issue 4, p. A269-A275
  • DOI: 10.1149/1.2834904

Factors that affect Li mobility in layered lithium transition metal oxides
journal, September 2006


The role of nanoscale-range vanadium treatment in LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode materials for Li-ion batteries at elevated temperatures
journal, January 2015

  • Lee, Min-Joon; Noh, Mijung; Park, Mi-Hee
  • Journal of Materials Chemistry A, Vol. 3, Issue 25
  • DOI: 10.1039/C5TA01571E

Direct Atomic-Resolution Observation of Two Phases in the Li 1.2 Mn 0.567 Ni 0.166 Co 0.067 O 2 Cathode Material for Lithium-Ion Batteries
journal, April 2013


Roles of Surface Chemistry on Safety and Electrochemistry in Lithium Ion Batteries
journal, April 2012

  • Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar200224h

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

High-Energy Cathode Materials (Li 2 MnO 3 –LiMO 2 ) for Lithium-Ion Batteries
journal, March 2013

  • Yu, Haijun; Zhou, Haoshen
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1021/jz400032v

High Performance LiMn 2 O 4 Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries
journal, January 2014

  • Lee, Min-Joon; Lee, Sanghan; Oh, Pilgun
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404430e

Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution
journal, April 2014

  • Zheng, Jianming; Gu, Meng; Genc, Arda
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl500486y

Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials
journal, September 2014

  • Oh, Pilgun; Myeong, Seungjun; Cho, Woongrae
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502980k

High-energy cathode material for long-life and safe lithium batteries
journal, March 2009

  • Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2418

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

High-energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries
journal, January 2012

  • Yu, Haijun; Kim, Hyunjeong; Wang, Yarong
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 18
  • DOI: 10.1039/c2cp40745k

Works referencing / citing this record:

Surface Engineering Strategies of Layered LiCoO 2 Cathode Material to Realize High-Energy and High-Voltage Li-Ion Cells
journal, October 2016

  • Kalluri, Sujith; Yoon, Moonsu; Jo, Minki
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601507

Improving rate performance of cathode material Li1.2Mn0.54Co0.13Ni0.13O2 via niobium doping
journal, February 2018


Advanced cathode materials and efficient electrolytes for rechargeable batteries: practical challenges and future perspectives
journal, January 2019

  • Khan, Safyan Akram; Ali, Shahid; Saeed, Khalid
  • Journal of Materials Chemistry A, Vol. 7, Issue 17
  • DOI: 10.1039/c9ta00581a

Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries
journal, April 2017

  • Li, Wangda; Dolocan, Andrei; Oh, Pilgun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14589

Enhanced high-voltage cycling stability of Ni-rich cathode materials via the self-assembly of Mn-rich shells
journal, January 2019

  • Dong, Xinyu; Yao, Junyi; Zhu, Wenchang
  • Journal of Materials Chemistry A, Vol. 7, Issue 35
  • DOI: 10.1039/c9ta07147d

Synchronous Tailoring Surface Structure and Chemical Composition of Li-Rich-Layered Oxide for High-Energy Lithium-Ion Batteries
journal, August 2018

  • Wu, Bing; Yang, Xiukang; Jiang, Xia
  • Advanced Functional Materials, Vol. 28, Issue 37
  • DOI: 10.1002/adfm.201803392

Tuning Anionic Redox Activity and Reversibility for a High‐Capacity Li‐Rich Mn‐Based Oxide Cathode via an Integrated Strategy
journal, March 2019

  • Li, Qingyuan; Zhou, Dong; Zhang, Lijuan
  • Advanced Functional Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adfm.201806706

Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium-Ion Batteries
journal, November 2017


High-voltage positive electrode materials for lithium-ion batteries
journal, January 2017

  • Li, Wangda; Song, Bohang; Manthiram, Arumugam
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/c6cs00875e

Surface/Interface Structure Degradation of Ni‐Rich Layered Oxide Cathodes toward Lithium‐Ion Batteries: Fundamental Mechanisms and Remedying Strategies
journal, December 2019

  • Liang, Longwei; Zhang, Wenheng; Zhao, Fei
  • Advanced Materials Interfaces, Vol. 7, Issue 3
  • DOI: 10.1002/admi.201901749

Li-Rich Layered Oxides and Their Practical Challenges: Recent Progress and Perspectives
journal, March 2019


Ultrathin Al2O3 Coating on LiNi0.8Co0.1Mn0.1O2 Cathode Material for Enhanced Cycleability at Extended Voltage Ranges
journal, February 2019


Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase
journal, September 2018


Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries
journal, October 2019


Advanced Lithium-Ion Batteries for Practical Applications: Technology, Development, and Future Perspectives
journal, July 2018