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Abstract Topological data analysis is the study of data using techniques from alge-
braic topology. Often, one begins with a finite set of points representing data and a
“filter” function which assigns a real number to each datum. Using both the data and
the filter function, one can construct a filtered complex for further analysis. For ex-
ample, applying the homology functor to the filtered complex produces an algebraic
object known as a “one-dimensional persistence module”, which can often be inter-
preted as finite set of intervals representing various geometric features in the data.

If one runs the above process incorporating multiple filter functions simultane-
ously, one instead obtains a multidimensional persistence module. Unfortunately,
these are much more difficult to interpret. In this article, we analyze the space of
multidimensional persistence modules from the perspective of algebraic geometry.
We first build a moduli space of a certain subclass of easily analyzed multidimen-
sional persistence modules, which we construct specifically to capture much of the
information which can be gained by using multidimensional persistence instead of
one-dimensional persistence. We argue that the global sections of this space provide
interesting numeric invariants when evaluated against our subclass of multidimen-
sional persistence modules. Finally, we extend these global sections to the space of
all multidimensional persistence modules and discuss how the resulting numeric in-
variants might be used to study data. This paper extends the results of Adcock, Carls-
son, and Carlsson ([2]) by constructing numeric invariants from the computation of a
multidimensional persistence module as given by Carlsson, Singh, and Zomorodian
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1 Introduction

The use of topology to study point cloud data has been well established ([4], [5]).
Given a finite metric space (e.g., a finite subset of R"™), one first constructs a filtered
complex which attempts to approximate the shape of the underlying data. The per-
sistent homology of a filtered complex is an abstract algebraic entity which combines
information about the homology of the levelwise complexes of a filtered simplicial
complex and the maps on homology induced by the filtration maps of the complex.
The process of constructing a filtered complex and taking persistent homology pro-
vides abstract algebraic information about the original point cloud data.

It is difficult to interpret raw calculations of persistent homology from a geometric
and intuitive standpoint. This is partially remedied by Adcock, Carlsson, and Carls-
son, who have successfully studied ways of interpreting persistent homology geomet-
rically through the construction of numeric invariants [2]. They produce an infinite
family of algebraic functions, each of which takes as input any one-dimensional per-
sistence module (the most notable of such objects being the persistent homology of
a one-dimensional filtered complex) and outputs a nonnegative number which has a
concrete interpretation in terms of the geometry of the filtered complex. If the fil-
tered complex is constructed from point cloud data, these values provide information
about the size and density of prominent geometric features of the point cloud. More
importantly, these values can then be used as features in machine learning algorithms.

We note that multiple other researchers have successfully addressed the problem
of preprocessing the output of persistent homology for machine learning algorithms.
For example, Adams et al. view one-dimensional persistence modules as images and
use convolutional filters to ensure that their technique is robust to noise [1]. Bubenik
applies tools from the probability theory of Banach spaces to study one-dimensional
persistence modules [3]. Reininghaus et al. bypass feature extraction altogether by
designing a multi-scale kernel for one-dimensional persistence modules for kernel-
based machine learning techniques [9]. Although we focus on generalizing the results
of [2], it would be very interesting to generalize any of the approaches mentioned in
this paragraph to the setting of multidimensional persistence.

The method of [2] does not generalize nicely to multidimensional persistence
modules. The construction of the algebraic functions in [2] relies heavily on the clas-
sification theorem of finitely generated modules over a PID and the categorical equiv-
alence between one-dimensional persistence modules and finitely generated modules
over a PID. Multidimensional persistence modules are categorically equivalent to
finitely presented multigraded R[x1, ..., x,, ]-modules, for which there is no analogous
classification theorem. Furthermore, the results of [7] show that there is no complete
discrete invariant for multidimensional persistence; any numeric invariants that we
provide must necessarily be incomplete.

It is our goal to provide functions which generalize those of [2]. Although our
functions are identical to those of [2] in the case of one-dimensional persistence, we
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also provide an alternate measure-theoretic construction of our functions. As such,
our functions can be defined just as easily to the class of multidimensional persistence
modules as on the space of one-dimensional persistence modules.

In Section 2, we review multidimensional persistence. In Section 3, we calculate
the ring of graded-finite functions on a convenient set of multidimensional persis-
tence modules, which we then extend to all multidimensional persistence modules in
Section 4. In Section 5, we present results pertaining to the power of the invariants
discussed in Sections 3 and 4, and we also propose an alternative way to calculate
these invariants. Finally, in Section 6, we show how to recover information about a
multidimensional persistence module from the functions defined in Section 4.

Notation. In this paper, k denotes a field of arbitrary characteristic. We represent
elements of k" using bold letters (i.e., a € k™), but we will represent the components
of such elements using italic letters (i.e., a; € k). For a € k" and m € N", we will
denote the sum Z;‘Zl a;j by X(a) and the product [?_ a;*" by a™. Additionally, if
¢ € k, we denote by a + ¢ the vector obtained from a by adding or subtracting ¢
from each coordinate. For a variable or constant x € R", denote by x| (respectively,
[x]) the elements of R obtained by taking the floor (respectively, ceiling) of each
of the components x; of x. For x,y € R", we say that x < y if x; < y; for all j.
Additionally, we will use <, to denote the lexicographic order on R".

For a scheme X, we denote the ring of global sections of X by A[X]. We empha-
size that virtually all schemes that appear in this paper will be affine. Let AA" denote
the affine 2mn R-space

AAJ" = Spec (R[x,»j, Yijli<i<m, ls]'gn) .

We consider AA" as having coordinates (X1,Yy,...,Xm,Y,, ), Where each x; (resp. y;)
is a vector with components x;1,...,X;, (t€sp. Yi,..., Vin). The symmetric group S,
acts on A[AA”] by simultaneously permuting the x; and y;. Denote by A[AA”"]Sm
the elements of A[AA] invariant under this S,,-action.

Finally, unless otherwise stated, sets in this paper will be multisets (i.e., sets with
repetition).

2 Multidimensional persistence

We begin by reviewing the concept of persistence.

Definition 1 A persistence module M indexed by the partially ordered set V is a
family of k-modules {My}ycy together with homomorphisms ¢y v : My — My for all
u <V, such that ¢y v © ¢y v = ¢uw Wheneveru < v < w.

In this paper, the indexing set V will either be N or R" for some n € N . When
the indexing set V is N' or R!, we say that M is one-dimensional. When V is N"* or
R"™ for n > 1, we say that M is multidimensional. Furthermore, when V is N", we
refer to M as an integral persistence module; when V is R", we refer to M as a real
persistence module.
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Definition 2 Given a persistence module M indexed over N", we can define an n-

graded module (M) over k[xy,...,x,] via the following:
a(M) = P M,
veN"

where the k[x, ..., x,,]-module structure is given by

x' " Vmy = Gu,v(my)

for my, € My whenever u < v.
Furthermore, we have the following theorem:

Theorem 1 ([7]) The correspondence « defines an equivalence of categories be-
tween the category of finite persistence modules over k and the category of finitely
presented n-graded modules over k[x1,...,Xx,].

Theorem 1 allows us to interpret persistence modules indexed by N” as finitely
presented graded k[x1, ..., x,]-modules. This correspondence allows us to study per-
sistence modules using the well-developed theory of graded modules.

Definition 3 Define M (k,n) to be the category of all finite persistence k-modules in-
dexed by N"*. For an element M € M(k,n), we will often consider M simultaneously
as a persistence module and as a finitely presented n-graded k[xy, ..., x,]-module.

Remark 1 In most applications of applied topology to data, the field k is almost al-
ways taken to be either R or a finite field of small characteristic. We are most con-
cerned in this paper with k = R.

3 The ring of graded-finite algebraic functions on persistent cubes

In this section, we calculate the ring of graded-finite algebraic functions on a simple
and easily studied subset R(k,n) of M(k,n). Because R(k,n) is very easily param-
eterized, we may analyze it from the standpoint of algebra and algebraic geometry.
This section extends a result of [2].

3.1 Defining the reduced symmetric product 3’}3

Let R (k,n) € M(k,n) consist of all multidimensional persistence modules iso-
morphic to those of the form

T k[m, s Xn]
@( ))vi ,

i=1 n
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where m’ < m, v; represents a grading and 0 < d;; < co. Define R(k,n) € M(k,n)
by

R(k,n) = U R™ (k,n).
m=1
Each summand of an element of R(k,n) can be represented by an element in N?":
(Vitse-sVin,Vil + di1s...,Vin + d;in). The first n coordinates can be viewed as “birth”
times of summands, while the last n coordinates contain information about when they

“die.” Note additionally that the ordering of each summand within the direct sum de-
composition given above is irrelevant. We now formulate this intuition algebraically.

Definition 4 Let J denote any object in a category. Define Sp™ () to be the col-
imit, if it exists, of the diagram

id
Xm Xm
V/— g
where o varies over all elements in the symmetric group S,,.

Remark 2 When J is a set, then Sp"" (J) is simply the collection of all multisets of
cardinality m of objects in .

We have natural maps
+:Sp"™ () X S (T) = Sp"(T).
Fixing some basepoint jo : * — J, we have natural inclusions
tn 2 SP"(T) = SP"HI),
where ¢, is defined as the composite

S (T) — SP™(T) X 5 —L S () x Sp! (T ) = SpH).

Define Sp® () as the limit

Sp™(J) = lim $p™ ().

Note that we have canonical inclusions Sp"" () — Sp™(J) and that Sp™(J) is a
commutative monoid generated by Sp'(J") with monoid operation given by +.
If J is a scheme, then the inclusions ¢, induce maps

b T ALSP™ N (I)] - ALSp™ (T)].
In this case, we also have

ALSp™ ()] = lim A[Sp"™ ()]

We fix as the basepoint of Sp' (AA!) the map
Jo x> AA) = Sp'(AA))
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defined as the dual of the “evaluation at 0" map
jo:R[x,y] > R defined by xi—0, y;—0.

Letting J(n) = {(x,y) € Z"XZ" | x < y} U {(0,0)}, we see that our former
intuition about R™ (k,n) translates into the following statement.

Lemma 1 There is a set-isomorphism between R™ (k,n) and Sp™ (J(n)):

U

m klxi,....,xn]
d
! {(0’0)}m’<i£m .

(xfilil,_ . ’xnin,)

This set-isomorphism extends to a set-isomorphism between R(k,n) and Sp™ (J(n)).

{Vits oo Vin, Vil + dits oo Vin + din) M <i<m
—
i v

We now discuss how we might approach our study of Sp™(J(n)) from an alge-
braic geometric viewpoint.

Lemma 2 There is a set-isomorphism between Sp™ (J(n)) and a well-chosen subset
of the R-points of Sp™ (AA,ll). This set-isomorphism extends to a set-isomorphism
between Sp™ (J(n)) and a well-chosen subset of the R-points of Sp™° (AA;).

Proof By symmetrizing the identification of R x R" with the set of R-points of AA!,
we may identify Sp™ (R" x R"") with a subset of the R-points of Sp” (AAL). In par-
ticular, we identify Sp™ (R" x R") with the subset of R-points of Sp” (AA!) which
factor through Spec(R[x;,y;]) (where the map Spec(R[x;,y;]) — Sp™ (AA,li) is in-
duced by the canonical inclusion of the ring of multi-symmetric polynomials into its
ambient polynomial ring). Hence,

Sp™(J(n)) € Sp™(R" XR") C (R -points of Sp™ (AA)})) .

Remark 3 We emphasize that Sp™ (R" xR") is identified with a subset of the R-
points of Sp™ (AAL). The fact that we work over the non-algebraically closed field R
is crucial here. For example, in the case m = 2 and n = 1, the R-point of sz(AA%)
induced by the homomorphism A[Sp?(AA])] — R defined by

yi1—0 20 X1+x2-0 a1
is not identified with any element of Sp™ (R" xR™).
The previous two lemmas combine to yield the following:

Corollary 1 There is a set-isomorphism between R(k,n) and the subset of the R-
points of Sp™ (AAL) induced by homomorphisms

¢ RIx;,yli<icm = R

such that (¢(X;),¢(y;)) € J(n) for alli.
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Remark 4 In a real (rather than integral) formulation of multidimensional persis-
tence, one would instead define J(n) = {(x,y) € R*"XR" | x < y} U {(0,0)}. In
either case, we view J(n) as a subset of R” x R"; all results discussed above are thus
valid in either setting.

In the definition of R(k,n) given above, we required that the d;; be strictly pos-
itive, and we require a strict inequality in our definition of J(n). This inequality
is lost if we work with R X R" rather than with J(n). Nevertheless, we still wish
to encode algebraically that we want to disregard any summand of any element of
Sp® (R xR™) of the form (x,y) where one coordinate x; of x is equal to the cor-
responding coordinate y; of y. Put differently, we intuitively think of (x,y) as the
opposite vertices of an n-dimensional cube, and we wish to disregard any cubes of
volume 0.

To this end, define a reduced symmetric product

— Sp™ (R" X R"
Sp(R" xR = Lm 5P7C ),

where = is the equivalence relation generated by all relations of the form

{(X17y1)’(X2’y2)""’ (vaym)’(z7z/)} = {(Xl’yl),(XZ’Y2)’~--’(Xm,Ym)},

where one of the coordinates of z equals one of the coordinates of z’.
We now generalize our definition of the reduced symmetric product Sp to the
algebraic geometric setting. Define Sp(AA! ) as the colimit of the diagram

id
Spe(AAY) ¢ SpU(AA)),
J
where fruns over all maps induced on Sp™ (AA,ll) by maps of the form

e
Sp(AALY —s Spm(AALY x + —Z1, spm(aAl) x Spl(aAl) 5 spmti(aAly,

where j* is the dual of a map j : R[x,y] — R such that j(x;) = j(y;) for some i.
Since S p(AA}l) is a quotient of Sp™° (AA}l), we have that

A[Sp(aay)] c A[Sp™(aa))].

It is our goal to investigate A [S;(AAL)] and gain insight into its structure. Let us

say, perhaps somewhat preemptively, that the reader may identify S};(R” x R™) with
the “finite" R-points of Sp(AA.) — those which can be induced by homomorphisms

R[X;,¥;:l1<i<m — R.

The next section will justify this identification. For X € Sp™(R" xR"), we denote
the associated R-point of Sp™(AA}) (or Sp(AA})) by ¢’
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3.2 Multisymmetric and invariant polynomials.

We review some facts about A[Sp™ (AAL)] from [8].

Lemma 3 ([8]) Spm(AAil) and Sp”"(AA,ll) are affine schemes. Furthermore, the
ring A[Sp™ (AAL)] = A[AA,’{’]S"’ is generated (with relations) as an R-algebra by
the multi-symmetric power sums

m

Pabn = ) XE iy

i=1
where aj,b; € N. Additionally, A [Sp“’(AA,li)] is the subset of the ring of power
series R papll, where

()
_ ap ax . an b1 by bn
pa’b_zxilxiz Xin Vi1 Yio =" Vin»
i=1

consisting of power series p with the property that, given any finite subset S of {pap},
there are finitely many terms in p involving only elements of S. In particular, there
are no relations among the pap in A [S pe (AAL)].

Unfortunately, the ring A [S P (AAL)] is too infinite for our purposes. We wish to
isolate a tractable yet still suitably large subring Az, [Sp00 (AA},)] of A [Sp"" (AAL)]
so that if we are given X € Sp*(R" xR") and f € Ay;, [Sp‘x’ (AAL)], the quantity
wx (f) is guaranteed to be finite.

To achieve this goal, it will be necessary to work in the category of graded rings.
We give all variables x;; and y;; the grading 1. Define

Agin [SP™(A4))] = lim A [Sp™ (A4,)] .
m

where this inverse limit is taken in the category of graded rings. If we forget the
gradings, we see that Ay, [Sp""(AAL)] c A [Sp”(AAL)] is simply the polyno-
mial ring R [pap] (because A [Sp‘x’(AA,ll)] has only finitely many generators in
each degree). Due to the interpretation of Ays;, [S p° (AAL)] as an inverse limit in
the category of graded rings, we call Ar;, [SpDo (AAL)] the graded-finite elements of
A[Sp=aa))].

Our goal is to isolate the elements f of Ar;, [Sp"" (AAL)] which “disregard" any
cubes with volume 0 in the fgyowing sense: for all X1,X; € Sp™(R" xR") such that
X and X, are identified in Sp(R" X R"), we require that ¢x, (f) = ¢x,(f) (Where
<p§(l and go}‘(z are the R-points of %(AAL) associated with X and X5). That is, the

collection of such f is given by A¢;, [E[Z(AAL)].
Let W; € (R" xR™)™ be the closed subset of all points which satisfy the equation

n
n(yik - xix) = 0.
k=1
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Note that if m = 1, then W; is the union of n hyperplanes in R X R". To any point
X € W;, we can associate an R-point ¢} of AAT. Consider the subring R;;' of
A[AAJ'] consisting of all f € A[AA] such that for all i and for all X;,X, € W;,
ox,(f) = ¢x,(f). Put differently, R} is the subring of A[AA'] consisting of all
polynomials
feR[x;, yijli<i<m, 1<j<n

such that for all i and j, the restriction of f to W; is independent of x;; and y;;. Let
Ry = Eian R (where the inverse limit is taken in the category of graded rings).

To summarize the exposition of the previous paragraphs, we have the following
proposition:

Proposition 1 Taking inverse limits in the category of graded rings,

Afin [SPCAL)] = RY 0 Agin [SP™(AA)]

- (@ R,’{‘) n (@A [sp™ (AAL)])
= lim (R N A[sp™(AAD)]).

«—
m

3.3 The explicit calculation of Az, [Sp(AAL)].

We now examine the structure and properties of R’ and Ay;, [%(AAL)]. It will be
convenient to change coordinates during this analysis. Define

n;=y;i—X; and §; =y, +X;.

Note that
A[AA ]_R[nlj9 gzj]l<l<m 1<j<n-

Proposition 2 The ring R is characterzzed differentially as the subrmg of all ele-
ments f € A[AA}'] such that 53— ag € (ni) foralli,j, k, and such that 5— ﬁn € (Mik)
foralli,j, k with j # k.

Proof With our new coordinates, W; can be defined by the equation [} _, 7:x = 0.
Let Wi € R" X R" denote the hyperplane defined by the equation ;% = 0, and note
that W; = (J;_, Wik. Then R} is the subring of A[AA}'] consisting of all functions
whose restriction to W; is independent of &;;—n;; and &;;+n;; for all i, j. Equivalently,
R is the subring of A[AA]'] consisting of all functions whose restriction to Wiy is
independent of &;; and n;; for all 7, j, k.

Suppose f € R[&;;, n;;]. For any i, k, we can write

f&.m) =q&.mnix +ric(€,1m),

where 7, does not appear in ;¢ (§,7). Since flw,, = rlw

if and only if for all i, j. k, Gzt = Gk =

that € (k) for all i, j, k and 3 f € (nix) for all i, j, k with j # k.

. » it follows that f € R}
= 0. This in turn is equivalent to the condition
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Proposition 3 The following set of monomials forms an R-basis for R);':

{ﬂ j‘]‘fg”‘f (¥i) ((3j such that a;; > 0 or byj > 0) = (Vk, @i > 0))}
i,j

Proof The differential conditions given in proposition 2 which are necessary and suf-
ficient for a polynomial f € A[AA]'] to belong to R} are true for a polynomial f if
and only if they are true for each of the monomial summands of f. Hence, we know
that there exists a basis of monomials for R);'. The monomials which satisfy the con-
ditions of proposition 2 are exactly those listed in the statement of this proposition.

Having completed these initial calculations, it remains to calculate Ay;,, [%(AAL)] .
Recall that the Hilbert series HSq(¢) of a non-negatively-graded vector space Q =
Die, Qi is defined to be the sum

HSo(t) = Z dim(Q;) ¢'.
i=0

Theorem 2 Ay, [ST[;(AA;)] is freely generated as an R-algebra by the infinite sym-
metric polynomials

pa,b=2n?1‘n§‘§ plngbighe g
i=1

where aj > 1 for all j.

Proof Let A denote the R-algebra generated by the p,p such that a; > 1 for all
j. By Lemma 3, A is freely generated by these p, 1. Since each of these p,p is in
Afin [Q(AAL)] , we have that A is a freely generated sub-algebra of Ay, [Q(AAL)] .
It remains to show that these two algebras are in fact equal.

To prove equality, we need only show that HS#(¢) = HS Agin[SP(2AL)]
equality follows from the results of Lemma 4 and Lemma 5 below.

(t). This

Lemma 4
HSj{(t) - 1_[ (1 _ tn+d)_(‘l;,%ﬂ;1
d=0

Proof Since we require that a; > 1 for all generators p, p of A, it follows that A has
0 generators in degrees 1 through n — 1. In degrees d > n, A has (d;;fr‘ll) = (dztl"_‘ll)
generators (this multinomial coefficient represents the number of ways to put d — n

balls into 2n buckets).

Lemma 5

© d+2n-1

n+d 2n-1
HSAan SP(AA ) 1_[
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Proof For ease of notation, let f(t) = HS A [ )] (¢). Additionally, we define

Sp(hh,,
_(d+22—1
g =TI (1 - t"*d) =17 We must show that f(¢) = g(z).
Let <, denote the lexicographic order on N} X N". Let < denote the following
linear order on N x N": for (a,b),(a’,b") € N xN", (a’,b") < (a,b) if either

D@ +b)< > @+b),

Z(a’ +b) = Z(a +b) and (2’,b’) <¢ (a,b).
Let (a,b) € N x N"*. Define f, () to be the Hilbert series of the free subalgebra
of Arin [Sp(AAiL)] generated by the symmetrizations of the monomials

or

1 n
1_[ l_[nz."-’ffj” such that (a,b) > (a;,b1) > (a,by) > --- > (a;,b;),

i=1 j=1
where (a;,b;) € N xN", For (a,b) € N7 xN"_let (a’,b’) € N x N" be the imme-
diate predecessor to (a,b) under the < ordering (if it exists). Then we have
fro@) = (1 ="~
and
fap(®) = (1= 2@ @),
We now analyze the function g(¢). For

d+2n-1

D= [] (- td+n)_( )

0<d< (a+b)-n

n+2(a+b)—(2j <iaj )—a—Z)

Aap,i(t) = 1_[ (1 _ tZ(aer))*( A ,

O<a<a;-1
and ( |
_ n+y,(b)—i— Zj<i bj —-B-1
Bap,i(t) = l—[ (1 - [Z(a+b)) ( n-i-1 )’
0<B<b;
set
-1 n n-1
gap(t) = (1 — t2(3+b)) Day(t) (n Aa,b,i(t)) (l—l Ba,b,i(l)) )
i=1 i=1
Note that

gro() = (1 -\
Lemma 6 below shows that
-1
gan(t) = (1= Z@) ey (1),

Since f1,0 = g1,0 and the fap and gap satisfy the same recurrence relation, it
follows that fap = gap for each a,b, and thus

= i = 1 = )
f@ (a’gy_lmfa,b(t) (a’bl)n_l)ooga,b(f) g
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Lemma 6 In the notation given in Lemma 5, the functions g, p, satisfy

gan(®) = (1-1209) o L),

Proof Due to the complicated definition of the total order < used above, this lemma

must be proven separately for the following five cases:

l.a’=a,b;=b;forl<i<n-2,b',_ 1+1=b,_1,and b’,,_1 — 1 =b,_;.

2. a’ = a, and there exists an index iy < n— 1 such that b’; = b; fori < ig, b’;;+1=
biy, b'igs1 =1 =bp, 0"y = biy41 =0,and b’; = b; =0forip+2<i<n-1.
3.a4;=a;fori<n,a,+1=a,,b1-1=b,,b',, =b; =0,and b’; = b; =0 for

2<i<n-1.

4. there exists an index iy < n — 1 such that a’; = a; fori < i, a’;, + 1 = a;,,
a'igs1 =2 =bp, ajp+1 = 1,a’; =a; = 1fori = ip+2,b" =0, and b; = 0 for all
i<n.

5.a’y=b,,a1=1,a’; =a; =1foralli >1,b’; =b; =0fori < n,and »’,, = 0.

For case (1), we have:

ai b] ai bl
(@’,b’) = B : and (a,b) = s

ap-1 bn—l -1 ap-1 bn—l

an bn +1 an bn

Note that By p ,—1(2) = (1 - tZ(‘”b))_l By 1 .n—1(t). As all other factors of g, , and
ga.1y are identical, the lemma holds.

The proofs of cases (2) through (5) are very similar. Of these, for ease, we only
prove case (2). For this case, we have:

aq b] aq b]
ai—1 | | bi-1 -1 ai—1 | | bi-
@,pH=|\| a |,| bp+1 and (a,b) = a |, O
ais 0 Ajv1 0
a, 0 an, b,

It suffices to show that
Babi-1(t) = By i—1 (1) By py,: (1) (1 = 12®P))

as all other factors of g, 1, and g, 1y are identical. Both sides of the equation above are
merely products of powers of 1 — 2@ 5o we need only show that the exponents
of 1 — t2@*D) are the same on both sides of the equality. That is, we must show that

n+5b) =G~ 1) = (Zjcim1 by) = (b = 1) = 1)
n—@G-1)-1
bn 7 . — —
=1+Z(n+z(b)—z—<z,-<ib,)+1 p-1\

-1
s

5= n—i—1
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This simplifies to
(n+z<b>—i—zj<ib,-+ 1) . +§(n+z<b)—i—<z,-<ib,->—ﬁ)
n—i A n—i-1 ‘

Because b; = 0 fori +1 < j < n, we can further simplify to

((n—i>+<bn+1)):Hi((n—i)ubn—ﬂ))

(n—1i) Zl m-i-1
_ b"Z” ((n i)+ (by - ﬂ))
| m-i-1
b ((n—i)+ﬁ’— 1)
=0 (n-i)-1

This equality holds due to the combinatorial identity

(x+k)_zk:(x+k’—l)
X prr) x-1

which is easily proven by induction on k using Pascal’s rule.

4 Extending and calculating the invariants

Having determined the ring of graded-finite global sections of the “cubical” persis-
tence modules R(k,n), we are now faced with two problems. First, it is not clear
how (or if) these functions might extend to the class of arbitrary persistence modules
M(k,n). Second, although we have determined the ring of graded-finite global sec-
tions of R(k,n), it is not clear how one might calculate them for any given persistence
module. This section addresses both of these issues.

4.1 Defining the invariants

For an integral multidimensional persistence module M over a field k and u,v € R",
the rank invariant p, y(M) is defined by

dimy (Im (M) = M[y1)) u<v

M) = .
Puv(M) {O otherwise

Remark 5 For a real (rather than integral) treatment of multidimensional persistence,
one would remove the floor and ceiling symbols in the definition of py y. An algo-
rithm to calculate the rank invariant is given in [6].
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Fora e N let] = {i | a; = 1}, and let J = {i | a; > 1}. Let (z,z’) € R"*VI
denote a variable constructed so that z,z" € R denote variables such that for alli € I,
the ith coordinate of z is the same as the ith coordinate of z’.

As an example of the above construction, if we have n = 3 and a = (1,2, 1), then
I={1,3},J = {2}, and (z,2) € R* where z = (z1,22,23) and 2’ = (21,2}, 23).

For any persistence module M and (a,b) € N} xN", define

Fap(M) = fR @DV @ @) (pu (M) d(2.2).

4.2 Proving equivalence of invariants

In this section, we will prove that on R (k,n), the invariants {F, 1y} defined in Section
4.1 are equivalent to the invariants {p,p} defined in Theorem 2 (equivalent in the
sense that they encode the same information about an element M € R(k,n)). This
shows that the invariants {F, )} extend to all of M(k,n) the invariants {p,p} defined
on R(k,n).

More concretely, we will prove that on R(k,n),

Span ({Fa,b}(a,b)eNc an) = Span ({Pa,b}(a,b)eNz xN") :

We prove this fact in three iterations - first for R! (k, 1), then for R! (k,n), and finally
for R(k,n).

In proving equivalence, it will be necessary to define a partial order < on N} x N"
(which is different than the linear order < defined in the proof of Lemma 5). For
(a,b),(a’,b’) € N xN", we say that (a,b) < (a’,b’) if and only if

Z(a +b) = Z(a' +b’) and a < a’ (coordinate-wise).
We extend this partial order to monomials. We say that x* yP < x¥ y? if and only if
(a,b) < (a’,b’), and we consider monomials x* y* with x¥ y» > x2y? as “higher
order terms" (it will be clear from context what the monomial represented here by
x2 yP is).
Lemma 7 OnR'(k,1),

Span ({Fa,b }(a,b)eN+ XN) = Span ({Pa,b}m,b)el\l}+ xN) .
Proof 1Tt suffices to prove that for all &, the following holds (on R! (k,1)):

Span ({Fa,b }a+b:k) = Span ({pa,b}a+b:k) :

We proceed by showing that F, ; can be written as a (finite) linear combination of
Pa,» and higher order terms. It follows from this computation that

Span ({Fu.b}4rpoi) € SPan ({Pa.basper) -
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Since there are only finitely many pairs (a’,b’) € Ny xNwitha’ +b’ =a+b =k, it
follows from back substitution that

Span ({ a, b}a+b:k> 2 Span ({pa,b}a+b:k) s

effectively proving the lemma.

We return now to the matter of calculating F, , (M) for M € R (k,1). Assume
=[x,y] € Rl(k, 1). Let (a,b) € N, X N. We first consider the case a = 1. In this
case, we have that p, (M) is simply the characteristic function 1y, and so:

Fip(M) = j};l 2 (pz,z(M)) dz

Y b
=fzdz
X

— 1 (yb+1 _ xb+1)

.
) ( (G +x)+ (- x))b“ _(<y+x)—(y—x>)b“
2 2

(5
( +1>2"+1)(§(1‘( 1))( 1)<y—x>i<y+x)b+1—i)
d

1
—b) D1,5 (M) + higher order terms .

Next, we calculate F, (M) for M = [x,y] € R! (k,1) and (a,b) € N, XN with
a > 2. Note that in this case, p, ,-(M) is the characteristic function of the solid
triangular region

Tx,y = {(Z’Z,) € Rz ‘ (Z,Z,) € [x,y] X [X,y] and 7’ > Z} .

In the calculation of F, ;, we will change variables by defining @ = 7z’ — z and
B = 7’ + z. With these coordinates,

Tx,y:{(oz,ﬁ)€R2‘2x+aS,BSZy—aandOSa'Sy—x}.
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We calculate:

Fup(M) fRz(z’ — "2 + 2P (prr (M) d(z,2)

1 y-x 2y—-a b
= a- dpd
A

! fy_x a7 (2y - )" - 2x + )P da
+1) Jo

1 y=x
D f a* 22y — )’ — @ 22x + @)’ da
0

1 b+l (a=2)!(b+1)! ulsi -
2(b+1) [;((a— L+l (b+1 —i)!)“ 2y-ao

__1i( (a=2)!'(b+ D!
=D (a-1+D!BD+1-0)!

= (=) (a—2)!b!
( 2 )((a—1+i)!(b+1—i)!

2(b

2(b

y—x

)aa—1+i(2x + a)b+1—i:|

a=0

) (y _ x)a71+i(y + x)b+1*i
i=0

1
———— | pa.p (M) + higher order terms .
a(a—1) ’

Lemma 8 On R'(k,n),

Span ({Fa’b}(a,b)ENﬁ XN") = Span ({Pa,b}(a,b)eN:z XNn) .

Proof The proof of this lemma will be similar to that of Lemma 7. That is, we prove
that for all &, the following holds (on R! (k,n)):

Span ({Fab}aenor) = Span ({Pablanr)

by showing that F, j, can be written as a (finite) linear combination of p, p and higher
order terms.

Let M € Rl(k,n). Write M as a product M = []?  [x;,y;]. Note that M is
determined by vertices x,y € R" with x < y. Let (a,b) € N} xN". As discussed
previously, we let I = {i | a; = 1} and J = {i | a; > 1}. We can write the rank
function p, (M) as a convenient product:

Pzz (M) = <l_[ ]I[Xi»)’i]) (1—[ ]lTx,',yi ) ’

iel ieJ
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where the region T, y, is as defined in the proof of Lemma 7. This allows us to reduce
the calculation of F; , (M) to the calculations performed in Lemma 7:

Fan(M) = fR L @DV @ @42 (prr (M) d(z2)

(ﬂf (Tpxevi(z0) dzi>

iel
l_[f (2} = 2)“ 722 + 20" (1, (20:2)) d(zi.7] ))

ieJ

< ( )(yl xi)(yi + x; i 4+ higher order terms)

n 1 ) (yi — x)% (y; + x;)” + higher order terms)
oy (az )

1
= — ——— | Pap(M) + higher order terms .

iel
The previous two lemmas allow us to prove the main theorem of this section:

Theorem 3 On R(k,n),

Span ({ abl(, b)eN" xN") = Span ({Pa,b}(a,b)eNz ><N"> .

Proof The proof of this lemma will be similar to that of Lemma 8. That is, we prove
that on R(k,n),

Span ({ Fablain- k) = Span ({Pa,b}a+b=k)

for all £ by showing that Fjj, can be written as a (finite) linear combination of p, p
and higher order terms.

Each element M of R(k,n) can be viewed as the finite direct sum
=@
k

where M}, € Rl(k,n). Hence, for (a,b) € N xN", we have that

P (M) = " prw (Mp).
k
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This allows us to calculate Fy 1, (M) from the calculation of Fj p (M) from Lemma 8:

Fan) = [ @22 @ @+2) (pur (O1) dla2)

= fR v @DV @ (24 2)Y (Z pz’z/(Mk)) d(z,2')
k

= ZerH-IJ\ (Z/_Z)ajf2 (Z)bl (Z+Z')bj (pz,z’(Mk)) d(Z,Z,)
k

1 1
= — ———— | Pa,p(Mj) + higher order terms)
X1 )zm)

iel

1 1
= — ——————— | pap(M) + higher order terms .
(55 [ o

5 Group completions and geometric insights

Recall that we have defined spaces Sp™(J) = 11_11)1 Sp™(J) and S‘E(R" X R™) by

Sp(R" xR") =

_ Lm SP™ (R™ XR™)

Both Sp= (R xR™") and :S‘;(]R” x R™) are commutative monoids generated by Sp! (R" x R™)
with monoid operation given by the natural maps

+:SpP"R"XRY) @ Sp™ (R" XR™) — Sp™ ™ (R" xR™).

This section is dedicated to the definition and properties of the group completions
K (Sp”(R" xR™)) and K (ST]J)(R” X R”)) of these monoids. We show that there is a
bijection between elements of K (Sp™(R" xR™)) and (suitably defined) generalized
rank invariants. This bijection provides an alternative method of finding p, ,(M). We

also show that A¢;,, [S;(AA,L)] separates the elements of K (;ST[)(R" X R”)).

5.1 K (Sp®(R" xR")) and K (Sp(R" xR")).

For a (cancellative) monoid M, we define the group completion K (M) of M by

MxM
K(M) = ——,

where for (s1,¢1),(s2,t2) € M X M, we define an equivalence (s1,1) = (s2,,) if and
only if s1 +1, = 51 +1;. Itis implied that the element (s,7) € K(M) should be thought
of as “s —t".
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We have discussed in Lemma 2 and Remark 3 that Sp™(R"” X R™) can be identi-
fied with a certain subset of the R-points of Sp™ (AA}I). We now discuss the extension
of this identification to K (Sp® (R xR™)).

For any X € Sp®(R" xR"), we may associate an R-point ¢ of Sp""(AAil).
The underlying homomorphism ¢x : Af;n[Sp™ (AAL)] — R has the potential of
producing geometrically meaningful summaries of X, especially in the case where X
has arisen (in the sense of Corollary 1) from an element of R(k,n). Indeed, if we fix
some f; € A[Sp*™ (AAL )], the numbers x (f;) might provide insightful information
about X (we explore this idea further in Section 6). We now extend this methodology
to the case X € K(Sp®(R" xR")) and X € K(S};(R” X R™)).

For (X1,X3) € Sp”(R"* xR™") x Sp™(R" xR"™), we define a ring homomorphism

Ox, %) ¢ ApinSPT(AA)] = R
on the generators pap of Ag;n[Sp™ (AAL )] (defined in Lemma 3) by

©(x1,X2) (Pap) = ©x, (Pab) = €x,(Pab)-
Proposition 4 The map
SpT(R" xR") x SpT(R" xR") — (Afin[Sp‘x’(AAil)] - R)
defined by
(X1,X2) = @x,,x,)
factors through K(Sp™ (R" XR™)), and can thus be viewed as a map
K(Sp®(R" xR")) — (A7in[Sp™(AA})] - R) .

Proof Tt suffices to observe that for X1, X5,Y € Sp®(R" X R"), the following equality
holds (by definition):
‘)O(X1+Y, X2+Y) = ‘)O(XI,XQ)'

By combining Theorem 2 and Proposition 4, we obtain:
Proposition 5 The map
SPU(R" XR") — (Agin[Sp™(AA})] - R)
defined by
X B px
descends to a map
Sp(R" X R") — (A7in[Sp(AA,))] > R).
Moreover, the map
Sp(R" X R") X Sp(R" XR") —> (A7in[Sp(AA})] - R)
defined by
(X1,X2) = o(x,x2)
factors through K (.FS};(R” X R™)), and can thus be viewed as a map

K(Sp(R" xR")) — (Afin[Sp(AA,)] - R).
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5.2 Injectivity results

Having defined maps ¢x for X in various spaces (e.g., Sp™ (R xR"), K(S’;(R” xR™))),
we now show that px # ¢y given X # Y. These lemmata generalize a result of [2].

Lemma9 Let X, Y € Sp™(R" XR"™) such that X # Y. Then ¢x # ¢y (as maps
A[Sp™ (AAD] — R).
Proof Let Z = {(z;,w))™ . Let f € A[Sp™ (AAL)] be defined by

n n
fxy) = 1_[ Z Z (xoirs = Zi,j)z + (Yo - Wi,j)z :

oSy, \i=1 j=1
Then for any W € Sp" (R" XxR"), ow (f) = 0if and only if W = Z.
Remark 6 We have presented a concrete proof to Lemma 9. However, this lemma

also follows from the Nullstellensatz and the fact that for any real variety V, the
affine coordinate ring A[V] separates the (real) points of V.

Lemma 10 Let X, Y € Sp®(R" XR"™) such that X # Y. Then ¢x # ¢y (as maps
ArinlSp®(Ah,)] = R).

Proof We may represent X and Y by elements X¢;,, Yrin € Sp™(R" XR"). By
Lemma 9, there exists fr;, € A[Spm(AA}l)] such that ox ;. (ffrin) # @vs, (frin)-
By Lemma 3, we may write f7;, as afinite sum fr;, = }3; Pa, b;,m- Define an element
f € ArinlSp®(AAIbY f = 3 pa,p,- Then

ox(f) = oxpi, ([rin) # Ovpi, (frin) = oy (f).
Lemma 11 Let X, Y € K(Sp®(R" XR™)) suchthat X # Y. Then ox # @y (as maps
Apin[Sp® (AA))] - R).

Proof Choose coset representatives for X and Y in Sp™(R" xR") x Sp@(R" xR"),
and write X = (X4,X-)and Y = (¥;,Y.). Since Xy + Y- # Y, + X_, there exists by
Lemma 10 some f’ € Ay, [Sp™(AAL)] such that ox 1y (f') # @v.+x_ ().

Since Afin[Sp™ (AAL)] is generated as an algebra by the power sums p, p, there

exists a power sum f = pagb, € Apin[Sp™(AA})] such that ox, 1y (f) # @y, +x_(f).
Because f is a power sum,

ex v () =ex, (H+ey (f)  and  oyx (f) = ey, (f) + ox_(f).

Combining these equalities and inequalities shows that

ox, () —ox_(f) # oy, (f) — ey (),

and hence

ox () = ¢x,,x)(f)
= ox, (f) —ex_(f)
# oy, (f) — ey (f)
= o,y ()
= oy (f).
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Lemrr}g 12 Let X, Y € ’S}')(R" XR™) such that X # Y. Then ¢x # ¢y (as maps
ApinlSp(AA,)] — R).

Proof By the definition of §;)(R" X R™), we can represent any Z € :S:ZJ(R" X R™)
by some Zz;, € Spm/(R" xR™) for some m’. Choose m minimal and elements
Xfin, Yrin € Sp™(R" XR") so that we can represent X by Xy;, and Y by Yr;,.
By Proposition 1, it now suffices to produce some f7;, € R’ N A[Sp™ (AAL)] such
that Oxpin ([rin) # @y, (frin). Indeed, if f e Afin[S'};(AA,ll)] restricts to frin, then

ox(f) = oxpi, (frin) # vpi, (frin) = ey (f).

m n
&fin = 1_[ n(yij - Xij).

i=1 j=1

Let

Note that g¢;, € A[Sp™ (AA},)]. By the minimality of m, it is not the case that
OXrin (8fin) = @vyi, (8fin) = 0.
If ©x;., (8fin) # v, (8fin), then we may let frin = grin. On the other hand, if
X tin (8Fin) = ¥pi, (8rin) # 0, then by Lemma 9, there exists hyin € A[Sp™ (AAL)]
such that ox,,, (hfin) # @y, (hpin)- In this case, let frin = gfinhyin, and observe
that
Oxsin (frin) = X0, 8finhin)
= X1 (8rin)0Xsin (Mfin)
= @Yy, (8fin)Pxsin (Mfin)
# O (8Fin)PYsi, (Mfin)
= @y, (8finhyin)
= @vsin (frin)-
Regardless of which definition we choose for fr;,, we have that fr;, € R}

by Proposition 2 and that fr;, € A[Sp™ (AA}L)] because its constituent factors are
elements of A[Sp™ (AAL)].

Lemma 13 Ler X, Y € K(S’Y)(R" XR™)) such that X # Y. Then ¢x # @y (as maps
Afin[Sp(AA,)] = R).

Proof The proof of Lemma 13 from Lemma 12 is identical to the proof of Lemma 11
from Lemma 10.

5.3 Generalized rank invariants.

The definition of the invariants F, ) of Section 4.1 relies quite heavily on the rank
invariants pyy : M(k,n) — N. Having fixed M € M(k,n), we may view the rank
invariant p, y(M) as a function of its subscripts

p-—(M) : R*"XR" - N.
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Note that py v(M) = 0 unless u < v. Moreover, because we require elements of
M(k,n) to be finite, there exist uy,vg € Z" such that for all u,v € R", we have
that pyy(M) = O unless u > uy and v < vy. Finally, even though we may evaluate
Pu.v(M) for arbitrary u,v € R", the values py, v(M) are fully determined foru,v € Z"
(since, by definition, M is an integral persistence module).

These observations inspire the following definition:

Definition 5 A generalized rank invariant is a function p_ _ : Z" XxZ" — Z such
that:

1. puy=Ounlessu <v.
2. There exist ug,vg € Z" such that pyy = 0 for all u,v € Z" except if u > ug and
vV < Vp.

For the remainder of Section 5.3, we define
J(n) = {(x,y) € Z" xZ" |x < y}.
For (x,y) € J(n), we can define a generalized rank invariant p_ _((x,y)) by

1 x<u<v<y

Puv((X,y)) = {

0 otherwise

We may symmetrize the above definition: for X = Z:’; 1 (Xi,y;) € Sp™(J(n)), define
a generalized rank invariant p_ _(X) by

Pur(X) =Y puy((Xi¥7).
i=1

Finally, for X € K(Sp™(J(n))) represented by (X;,X_) € Sp=(J(n)) X Sp=(J(n)),
define a generalized rank invariant p_ _(X) by

pu,v(X) = pu,v(X+) - pu,v(X—)'

Lemma 14 The map from K(Sp™(J(n))) to the set of generalized rank invariants
defined by X — p_ _(X) is injective.

Proof Fix a total order < on J(n) such that (x,y) < (z,w) if x < zorif x = z and
y=zw.

Let X € K(Sp™(J(n))) such that py v(X) = O for all (u,v) € J(n). If X # 0,
then we may write X = Z;’;l ci(X;,y;), where (x;,y;) < (xj,yj) fori < j, c; € Z%,
and m > 1. Then by the minimality of (x;,y;) under the order <, we have that

Pxi,y, (X) = c1 # 0, which is a contradiction.

Lemma 15 The map from K(Sp™(J(n))) to the set of generalized rank invariants
defined by X — p_ _(X) is surjective.
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Proof As in the proof of Lemma 14, we choose a total order < on J(n) such that
x,y) < (z,w)if x < zorifx = zandy > w. Let p__ be a generalized rank
invariant. We now describe an algorithm that produces an X € K(Sp*(J(n))) such
that p__ = p_ _(X).

If pyy = 0 for all (u,v) € Z" xXZ", let X = 0.

Otherwise, by conditions (1) and (2) of Definition 5, there exist ug, vy € Z" such
that pyy = O for all u,v € Z" exceptif up < u < v < vo. Note that the set all
such (u,v) € Z" xZ" such that uyg < u < v < vy is finite. Choose (x,y), minimal
under the total order <, such that pyy # 0. We complete the proof of Lemma 15 by
induction on

{(u,v) € Z"xZ" | (x,y) < (u,v) and up < u < v < vol|.
Define a generalized rank invariant p” _ by

Pl = pom = Pxy - P--((X.¥)).

Then p{,’v = 0 for all (u,v) < (x,y). Moreover, pyy = O for all u,v € Z" except
if up < u < v < vy. By induction, there exists X’ € K(Sp™(J(n))) such that
Pl =p_(X').LetX = X"+ pyy- (Xy). Then p__ = p_ _(X).

Theorem 4 The map from K(Sp™(J(n))) to the set of generalized rank invariants
defined by X — p_ _(X) is a bijection.

Proof Injectivity follows Lemma 14. Surjectivity follows from Lemma 15.

We may now use Theorem 4 to assist in the computation of p, p (M) for arbitrary
M e M(k,n). Recall that by Theorem 3, p, (M) is a linear combination of the
invariants Fy yy (M) (introduced in Section 4.1), which are defined solely in terms of
the rank invariants py y(M). That is, for M € M(k,n) and X € K(Sp™(J(n))), we
will have pa p (M) = pap(X) for all a,b provided that py y(M) = py v(X) for all u,v.

Thus, to compute p, (M), we first use the rank invariants p_ _(M) and the
algorithm presented in the proof of Lemma 15 to find some X € K(Sp™(J(n)))
such that p_ _(M) = p_ _(X). We may now calculate p, p(M) using the equality
Pab(M) = pap(X).

Remark 7 The results of this section also hold when working in the real (rather than
integral) formulation of multidimensional persistence. However, in the real case, we
would need to replace Z" with R" throughout this subsection and add a finiteness
condition to the definition of a generalized rank invariant that ensures the finite ter-
mination of the algorithm in Lemma 15.

6 Recovering the point cloud

Section 3 examines the K-finite sections of R (k,n), and Section 4 provides a concrete
method for calculating them. In this section, we provide a way to recover informa-
tion about M € R(k,n) (including M itself) from the invariants p, (M) (Where, as
before, (a,b) € N} xN"). In fact, these techniques provide a theoretical method of
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recovering any X € :9}3(] (n)) from the values p, p(X). In practice, the numbers en-
countered in the limit formulae given in this section can be too large and unwieldy
to allow for the recovery of X € SF‘;(J (n)) from the values p,p(X). Nonetheless,
these results justify our previous assertion that the values p, (M) can provide useful
geometric information about the multidimensional persistence module M.

First, we prove two technical lemmas:

Lemma 16 Let ay,...,a, € R. Assume that |a;| < 1. Then

Proof We prove this lemma by induction on n. The case n = 1 is trivial. If the lemma
is true when n = m — 1, it is also true for the case n = m, since

m-—1
. (m-1)+1-j
lim 1—[ a* =0
k—oo | 1 J
Jj=1

implies
k

m m—1
. m+1-j . (m-1)+1-j
lim 1_[ ak = lim | a,, 1_[ ak =0.
k—oo |\ L J k—o0 L J
J=1 J=1
Lemma 17 Let w; € R.g and z; € RZ ) for | < i < m. Further assume that the z;
are in decreasing lexicographic order. Then
n no, POEANA
. ij
im | 3w [ (2] -1
k .
TeNE N e VR

Proof It suffices to show that there exist uniform (positive) lower and upper bounds

on the quantity
n n Zij
0c=>"(wi] ] (—f)

i=1 j=1 \LJ

kn+l—j

Note that, as a sum of positive terms, Q. is greater than its first term w;. It remains
to show that the Oy are uniformly bounded from above.
Since Qy is the finite sum of terms of the form

kn+1—_[

n
Zi
Ty,i =w; 1_[ (i) ,

it suffices to bound the T ; uniformly from above. Because the z; are decreasingly
lexicographically ordered, if Ty ; is not identically equal to w;, then there must be
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some least j, denoted j;, such that z; ; < z1 ;. Note that 0 < 24 < 1. Moreover, for

2Ji

all j < j;, we must have z; ; = 71,5, and so

Jn+l=j n+l—i; kn+2—ij—j
[ zij T Zi izl
Tk,i=Wi|| — =w; || S—
j=is 21,5 =1 21, j+i;-1

This last term now falls under the auspices of Lemma 16; thus, limg_,o Tk,; = O for
all i.

The next theorem provides a means of recovering information about the cubical
summands of some M € R(k,n) from the values p,p(M).

Theorem 5 Let A be an algebra of nonnegative real functions on a set X. Suppose
floeeonfn € A and xy1,...,x,, € X. Further assume that the x; are ordered so
that the vectors {[ fj(x;)]j>1}i € R" are arranged in decreasing lexicographic order.
Furthermore, assume that we only have access to the values

{gf(Xi)}

Then we can recover the set { f(x;)} inductively via the formula

feA

1/k

i1 (Hj’sj (fj’(xi))kjﬂj’) = 2ir<i (Hi'si (fj/(xi))kjﬂj')

)kj+l—j’

fi(x) = lim
[ly<; (fj’ (x;)

Letting A equal the algebra generated by the p,p for (a,b) € NZ xN" and
letting X equal R'(k,n) will allow us to recover the values of various functions on
the individual cubes that constitute an element M of R(k,n). For example, letting

f1 = p1,0 will allow us to determine in decreasing order the volumes of the cubes
which constitute M.

Proof Theorem 5 follows from Lemma 17 by setting w; = 1 and z; ; = f(x;). The
Ki+i=i’

quantity >}, (H Jr<j ( f j,(xi)) ) is available to us by hypothesis, and all other

values f;/(x;) of the limit above can be determined by induction.

Theorem 5 allows us to recover the values of any function in the ring of graded-
finite global sections of Sp(R™ X R™). However, the individual coordinate functions
n; and &; are not, unfortunately, elements of this ring. The following variant of The-
orem 5 provides a solution to this quandary.

Theorem 6 Let M € R(k,n), and assume that

m
M= @Mi,
i=1
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for M; € R! (k,n). Assume that the M; are ordered so that the vectors

PLo(M;)
n;(M;)
& (M;)

c R2n+l

are arranged in decreasing lexicographic order. Let

£ (M) = (pro(M)” (l—[ (n,v(Ml-))kjw)

J'<j

gi(M;) = (pl,O(Ml.))k"H'*l (1—[ (Uj’(Mi))kijj,)(l_[ (fj/(Mi))ijj')'
J’=1

J'sJ

Then we can recover the values n;(M;) and &;(M;) inductively from the values
that A [Sp(R" X R")] takes on M via the following:

1/k
;’I}:l fj(Mi’) - Zi’<i fj (Mi’)

)kj+l—j’

nj(M;) = kll_I)I:o -
(Pro(M))* [1j<j (le'(Mi)

1/k
£(M;) = lim iy 8 (M) = X g (Mir)

o Gron) ™ (e ()™ ) Ty (0

)k.i+l—./"

Proof We can determine the necessary values of py,9(M;) using Theorem 5. The val-
ues ».7' | fj(M;) and 37" | g; (M) are in the ring of algebraic functions on R (k,n).
All other values of n;(M;) and &;(M;) in the limits shown above can be determined
by induction.

The evaluation of the limits follows from Lemma 17 with w; = 1, z; 1 = p1,0(x;),
Zij+1 =1nj(x;)forl < j <n,and z; j4+1 = &;(x;) forn+1 < j <2n.

Corollary 2 A one dimensional persistence module M is completely recoverable
Sfrom the values {pg p(M)}(a,b)eN., xN (equivalently, from the values {Fy , (M) }a,byeN. xN)-

Proof This follows from the fact that M(k,1) = R(k,1).

The previous two theorems merely give an idea of how one may use Lemma 17 to
recover information about an element M € R(k,n). One may, of course, use Lemma
17 with other functions defined on R(k,n).
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6.1 The biggest box

The previous results discussed in this section assume that we are working with the
class of persistent cubes R(k,n) rather than the more general class of multidimen-
sional persistence modules M(k,n). We now discuss how our previous results might
be extended to M(k,n). As mentioned previously, Theorem 4 allows us to construct
some X € K(Sp™(J(n))) such that p_ _(M) = p__(X). We may use methods
similar to those in Theorem 5 and Theorem 6 to extract information about the most
prominent summand(s) of X from the values p, p(X). Like Theorem 6, Theorem 7
is not very attractive from the perspective of computational feasibility. However, the
theorem supports our opinion that the values p, (M) provide insightful geometric
information about M € M(k,n).

We begin by presenting a variant of Lemma 17 which does not make any assump-
tions concerning non-negativity.

Lemma 18 Letw; = x1 and z; € R’;O for 1 < i < m. Assume that the values z; are
in decreasing lexicographic order and that wy = 1. Let iy denote the least i such that
w; = —1. Assume that for all i > iop we have that z; 1 < z1,1. Then

1/k

n noo knel=i
. d,
lim Z Wi l_[ / =1.
k—o0 Zl,j

i=1 j=1

Proof This proof will mirror that of Lemma 17. It suffices to show that there ex-
ists some k¢ such that there exist uniform (positive) lower and upper bounds on the

quantity
Ok = wi (L)
e

i=1 j=1

kn+l—j

for k > ko. By Lemma 16,

n n . k=i
tim > (wi| | (Z—f) - 0.
k—o0 = =1 21,j
Since the first summand of Qy is 1 and the first iy — 1 summands of Qj are positive,
it follows that there exists k¢ such that the Qy are uniformly bounded below by some
positive quantity for k > kq.
To show that the Oy are uniformly bounded from above, we first note that

n n =i n n Jntl-j
Zi,j 2i,j
oS EN )56
This latter quantity is uniformly bounded above by the proof of Lemma 17.

The following theorem provides a recipe for recovering the biggest box in a box
decomposition of some M € M(k,n). In fact, it shows that, if we provide a box
decomposition X € K (:S‘;(J (n))) of M, then we can use the values p, (M) to
recover all positive summands of X bigger than the largest negative summand of X.
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Theorem 7 Let M € M(k,n). Let X € K (S?)(J(n))) have the same rank invariants
as M (ie, p— (M) = p_ _(X)), and assume that

m
X = @ CiXi,
i=1

where ¢; = 1, m is minimal, and X; € Rl(k,n). Assume that the X; are ordered so
that the vectors

Ip1,0(Xi)]
nj(X)| | e R?"H
& (Xy)

are arranged in decreasing lexicographic order. Let
j+1 kj+17j,
£ = (prox)* ™ [ [ (ny(x0)
J'<J
el | T gn+i+=j’ Ki+1-7
2 (X)) = (prox)) [ ] (nyx0) [](&x0)
J'=1 J'sj

Let iy denote the least index such that there exists some ineq With py (X, <0

and |p1o(Xi)| = |pro(Xi,.,)
Then we can recover the values n;(X;) and £;(X;) for i < iy inductively from the
values that A [:S:ZJ(R" X R")] takes on X via the following:

ineg)

1/k
n;(X;) = lim ?’1:1 fj(Xi’) - Dir<i fj(Xi/)
J t) =

k—o0 j+1 ki+1-i’
(PLo(X)) " Tljres (njr(X0)

1/k
e & (Xi) = Yi<i i (Xir)

kn+j+]fj') Hj,<j (é‘:j/ (Xl)

f(Xl) = lim o J+l—j’
: N proxinE” ( hat (i (X)) )¢

Proof The proof of Theorem 7 from Lemma 18 is identical to the proof of Theorem
6 from Lemma 17.
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