

Co-Aromatization of Olefin and Methane over Ag-Ga/ZSM-5 Catalyst at Low Temperature

Peng He¹, Richard Gatip¹, Matthew Yung², Hongbo Zeng³, Hua Song^{1*}

¹Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada

²National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States of America

15 ³Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW,
16 Edmonton, Alberta T6G 1H9, Canada

17

18 *Corresponding author

19 Fax: +1 (403) 284-4852; Tel: +1 (403) 220-3792;

20 E-mail: sonh@ucalgary.ca

21

22 **Abstract**

23 The massive exploitation of shale gas in the past decade has boosted the production of natural
24 gas and reduced its price dramatically. The methane activation and following conversion into more
25 valuable fuels and chemicals have thus become more and more attractive, while the introduction
26 of hydrocarbons to enhance the methane activation at mild conditions represents a promising
27 approach. In the present work, the co-aromatization of methane with propylene has been studied
28 at 400 °C. The presence of methane would increase the toluene to benzene ratio as well as the
29 average carbon number of the formed liquid aromatic products compared to its propylene alone
30 counterpart. Among the gas products, the formations of C₃H₈, C₄H₈ and C₄H₁₀ also get promoted
31 when methane is present. The incorporation of methane into the product molecules is also directly
32 evidenced by the ¹H, ²D and ¹³C NMR spectroscopy of the liquid products obtained from the
33 reaction between propylene (or styrene) and isotope labelled methane. Hydrogen from methane
34 would contribute a large portion of the hydrogen in the product molecules, while the benzylic and
35 aromatic hydrogen sites are favored compared with those on the alkyl side chains. The activation
36 of methane is also observed in the DRIFT spectra when deuterium enriched methane is engaged
37 as the methane source and evidenced by the escalated exothermic feature when olefin
38 aromatization takes place under methane environment. The excellent catalytic performance of Ag-
39 Ga/ZSM-5 might be because of the better dispersion of Ag and Ga on the ZSM-5 surface and
40 moderate amount of strong Brøsted and Lewis surface acid sites. All the observations suggest that
41 methane might be activated nonoxidatively and converted into aromatics if suitable catalyst is
42 charged under the assistance of co-existing olefin. The reported synergistic effect could potentially
43 lead to the more economic utilization of abundant natural gas and petrochemical intermediates.

44 **Keywords:** Methane activation; Aromatization; ZSM-5; Olefin; Catalyst

45 **1. Introduction**

46 The past decade has witnessed greatly changed landscape of energy industry due to the recent
47 discoveries of large reserves of natural gas, i.e., shale gas, and the breakthroughs made in the
48 exploitation technology. According to the data released by US Energy Information Administration,
49 the production of natural gas is averaged 49.6 billion cubic feet per day (BCF/d) in 2006, which is
50 increased to 79.0 BCF/d in January 2016. The price of Henry Hub natural gas in US has dropped
51 from \$12.28 in the last quarter of 2005 to \$1.73 per million Btu (MBTU) in March 2016. However,
52 the utilization of natural gas is limited by the difficulty in its liquefaction. The transportation of
53 natural gas relies heavily on pipelines. And its application is often restricted to combustion in
54 heating systems rather than vehicle fuels. The inert molecular structure of methane, the principal
55 component of natural gas, also dents its application as chemical feedstocks. Methane has to follow
56 multistep conversion strategies via syngas and/or methanol before its transformation into higher
57 hydrocarbons, resulting in increased cost and thus impeding its commercial potential. In 2015, the
58 price of Henry Hub natural gas in US is averaged US \$2.77 per MBTU, while that of West Texas
59 Intermediate (WTI) light sweet crude oil is averaged US \$48.79 per barrel, which is equivalent to
60 US \$8.79 per MBTU. The greatly underestimated value of methane has driven researchers to
61 search for ways to boost the profitability of the natural gas industry, especially during the current
62 era of low energy prices. The conversion of low cost methane into high value added commodities
63 including more commercially useful chemicals and liquid fuels has attracted great attention in
64 recent years. However, methane is the most inert hydrocarbon molecules due to its highly
65 symmetric molecular structure and high C-H bond energy of 435 kJ/mol, which is the highest
66 among all naturally available hydrocarbons, making the effective activation and direct conversion
67 of methane become one of the great challenges faced by the entire catalysis field. Oxidative

coupling of methane to produce ethylene has been extensively studied to convert methane into more valuable chemicals since 1980s. Hundreds of catalyst systems focusing on converting methane into ethylene, an important feedstock in petro-chemistry, have been synthesized and comprehensively reviewed.[1–3] But the low yield of C₂ hydrocarbons, which is often below 25%, dents its industrial application. The highly exothermic hydrocarbon oxidation reactions in this process may also induce undesirable products such as CO and CO₂. Converting methane into methanol under oxidative environment is also a challenging task in terms of selectivity since the C-H bonds of the product are more reactive than that of methane.[4] As a result, an increased methane conversion comes with the loss of the selectivity. Therefore, methane is first converted into syngas by reforming process before its transformation into methanol and gasoline rather than direct conversion into liquid hydrocarbons in industrial practices.[5] On the other side, the direct transformation of methane into liquid chemicals such as aromatics has been numerously explored under non-oxidative environment. Many catalysts have been reported[6–14] in the past decades, but the application of this approach is also impeded by the low yield and high reaction temperature, which is often above 700 °C and may exceed 1000 °C in certain occasions. Nonetheless, Choudhary *et al*[15] achieved effective activation and conversion of methane over H-galloaluminosilicate ZSM-5 type zeolite at lower temperature regions of 500-600 °C by the addition of higher hydrocarbons in the feed. This approach is also evidenced by a series of succeeding publications[5,16–22] demonstrating that the conversion of methane would be significantly enhanced when methane was co-fed with hydrocarbons, such as ethylene, propylene, pentane, hexane, light gasoline, liquefied petroleum gas, and even oxygenated hydrocarbons like methanol and ethanol. These observations have shed light on the methane conversion promoted by the presence of higher hydrocarbons.

91 The study on the liquid products obtained from aforementioned methane conversion, however,
92 is rare, which might be because the research on methane conversion is often focused on the gas
93 phase products. Over the past decade, lots of efforts have been devoted to the mechanistic study
94 on the methane activation. One powerful method is to probe the surface species evolution on the
95 catalyst by solid-state NMR spectroscopy at variable temperatures when methane or the mixture
96 of methane and higher hydrocarbon is introduced to the catalyst[21,23–26], which provides some
97 insight into the methane activation and initial reaction intermediates. But these experiments are
98 often carried out under vacuum conditions in order to remove unreacted gas feedstocks before
99 acquiring the ^{13}C NMR spectra of the organic species adsorbed on the catalyst. Therefore the extent
100 of the reaction and methane conversion cannot be accurately evaluated for potential industrial
101 application, which is often executed at higher pressures. More detailed information in terms of the
102 distribution of the carbon and hydrogen from methane in the liquid product molecules is thus
103 necessary for a better understanding of the reaction mechanism.

104 Under such background, this paper studies the technical feasibility of co-aromatization of
105 methane with propylene over Ag-Ga/ZSM-5 catalyst at a low temperature of 400 °C. The
106 compositional distribution of the formed gaseous and liquid products and the heat effect of the
107 reaction are studied to investigate the participation of methane. The incorporation of methane into
108 the liquid products is directly evidenced by the ^{13}C and ^2D isotope labelling method, which also
109 helps revealing the reaction mechanism. The engaged catalyst is then systematically characterized
110 to identify the relationship between the properties and its corresponding performance towards co-
111 aromatization of methane and propylene.

112

113 **2. Experimental**

114 *2.1 Catalyst Synthesis*

115 NH₄-ZSM-5 with a SiO₂/Al₂O₃ ratio of 80:1 was obtained from Zeolyst USA. The zeolite was
116 converted into H-ZSM-5 through calcination at 600 °C in ambient air for 5 h. The metal-modified
117 HZSM-5 was prepared by wetness impregnation method. 0.13 g AgNO₃ (Alfa Aesar, 99.9%) and
118 0.30 g Ga(NO₃)₃·xH₂O (99.9%, Alfa Aesar) were dissolved into 10 g deionized (DI) water to form
119 the aqueous solution of the metal precursor, which was then impregnated to 8.0 g H-ZSM-5 for
120 preparing 1%Ag-1%Ga/ZSM-5. The obtained wet powder was dried in the oven at 92 °C overnight,
121 followed by calcination at 600 °C for 3 h in ambient air.

122 *2.2 Catalytic performance evaluation*

123 The olefin upgrading reaction was carried out in a 100 mL batch reactor manufactured by Parr
124 Instrument that could tolerate high temperature up to 500 °C and high pressure up to 350 bar. In a
125 typical run, 0.5 g Ag-Ga/ZSM-5 were put into the reactor, which was then purged and filled with
126 0.2 MPa propylene, followed by the introduction of methane to the total pressure of 1.0, 3.0, 5.0
127 and 7.0 MPa. The reactor temperature was then ramped up with a rate of 20 °C/min to the
128 destination temperature (400 °C) and held for 60 mins. Upon the reaction completion, the reactor
129 was allowed to cool down to room temperature before product collection. The gas product was
130 first discharged to a 2.2 L cylinder, which was previously purged by N₂. The gas temperature and
131 pressure (60-450 kPa) within the cylinder were then recorded before the gas product was analyzed
132 by a connected micro-GC. The formed liquid product embedded into the charged solid catalyst
133 was extracted out using 10.0 g CS₂ (GC grade, EMD Chemicals) as solvent and internal standard
134 for following NMR analysis.

135 Reaction between propylene and ¹³CH₄ and CD₄ (99.9% ¹³C and 99% ²D, respectively,

136 Cambridge Isotope Laboratories, Inc.) were also conducted in a similar manner when 0.5 g catalyst
137 was charged. The reactor was pressured to 0.3 MPa by $^{13}\text{CH}_4$ or CD_4 after being filled with 0.2
138 MPa propylene. When styrene ($\geq 99\%$, Sigma Aldrich) was employed as the feedstock, a glass vial
139 carrying 0.1 g styrene was put into the reactor which was purged by N_2 and pressurized to 0.2 MPa
140 using $^{13}\text{CH}_4$ or CD_4 before the reaction was carried out.

141 The composition of the product oil was determined by the pre-calibrated Gas Chromatography-
142 Mass Spectrometer (GC-MS: PerkinElmer GC Claus 680 and MS Clarus SQ 8T) equipped with a
143 Paraffins-Olefins-Naphthenes-Aromatics (PONA) column (Agilent HP-PONA). The oven
144 temperature of the GC was programmed to hold at 35 °C for 15 min, ramp to 70 °C at 1.5 °C/min,
145 rise to 150 °C at 3 °C/min and hold for 30 min, then ramp to 250 °C at 3 °C/min and hold for 2 min.
146 The MS spectra of each peak is obtained by averaging the Total Ion Current with respect to m/z
147 value of all the points in this peak.

148 The gas products were analyzed by the aforementioned four-channel micro-GC (490, Agilent)
149 equipped with thermal conductivity detectors, which can precisely analyze H_2 , O_2 , N_2 , CH_4 , and
150 CO in the first channel equipped with a 10 m molecular sieve 5A column; CO_2 , C_2H_2 , C_2H_4 , and
151 C_2H_6 in the second channel installed with a 10 m PPU column; and C_3-C_6 and $\text{C}_3=\text{C}_5=$ in the third
152 and fourth channels charged with a 10 m alumina column and a 8 m CP-Sil 5 CB column,
153 respectively. Ar and He were the carrier gases for the first and other three channels, respectively.
154 The composition of the gas products were used to calculate the moles of each species.

155 The mass of the liquid product is calculated from the mass gain of the reactor after the reaction
156 measured using a Mettler Toledo MS120027S scale with accuracy of ± 0.01 g. The carbon and
157 hydrogen balances counting the products in the gas phase and adsorbed on the catalyst surface
158 were conducted after each run with measured closures of 0.94~1.02 and 0.97~1.06, respectively.

159 The ^1H NMR experiments were conducted at 9.4 T ($\nu_0(^1\text{H}) = 400.1$ MHz) on a BRUKER
160 AVANCEIII 400 spectrometer with a BBFO probe. ^1H NMR chemical shifts were referenced to
161 CHCl_3 at 7.28 ppm. A spectral width of 12 kHz and a pulse delay of 3.5 s were used to acquire 64
162 scans per spectrum. The NMR samples in the tubes were prepared by mixing 0.30 mL sample with
163 0.30 mL CDCl_3 (99.8% atom D, Sigma). The track amount of CHCl_3 in CDCl_3 functioned as an
164 internal standard.

165 The ^2D NMR experiments were conducted at 9.4 T ($\nu_0(^2\text{D}) = 61.4$ MHz) on a BRUKER
166 AVANCEIII 400 spectrometer with a BBFO probe. A spectral width of 2.5 kHz and a recycle delay
167 of 7 s were used to acquire 512 scans per spectrum.

168 The ^{13}C NMR experiments were conducted at 14.1 T ($\nu_0(^{13}\text{C}) = 150.9$ MHz) on a BRUKER
169 AVANCEIII 600 spectrometer using a zgpg30 pulse program. ^{13}C NMR chemical shifts were
170 referenced to CDCl_3 at 77.23 ppm. A spectral width of 36 kHz and a recycle delay of 2 s were used
171 to acquire 10000 scans per spectrum. The NMR samples in the tubes were prepared by mixing
172 0.50 mL sample with 0.10 mL CDCl_3 .

173 Thermographic Analysis (TGA) profiles were used to determine the thermal coke formation as
174 well as the stability of the catalysts. TGA measurement was fulfilled with a simultaneous thermal
175 analyzer (PerkinElmer STA 6000). The samples were held at 50 °C for 1 min, then ramped to 700
176 °C at a rate of 10 °C/min under 30 mL/min air flow. TGA signal along with the simultaneously
177 collected Differential Scanning Calorimetry (DSC) signal were engaged to study the involved
178 reaction features after background correction, which was accomplished through ramping the
179 sample temperature to the destination temperature with a rate of 40 °C/min under 30 mL/min N_2
180 flow and a hold for 30 min under various gas environments, i.e., 15 mL/min N_2 +15 mL/min
181 propylene, 15 mL/min CH_4 +15 mL/min propylene, or 30 mL/min CH_4 . The thermodynamic

182 calculation is carried out using HSC Chemistry 6.1, a chemical reaction and equilibrium software
183 with thermochemical database and simulation module developed by Outotec Research Oy.

184 *2.3 Catalyst characterization*

185 The adsorption and desorption of nitrogen on each catalyst sample, i.e., HZSM-5, fresh Ag-
186 Ga/ZSM-5, spent Ag-Ga/ZSM-5 under CH₄ and N₂ environment at 3 atm, was measured using a
187 Quadrasorb SI from Quantachrome Instruments. Samples were outgassed under a vacuum at
188 350 °C overnight and then brought to -196 °C via immersion in a liquid nitrogen bath. Total surface
189 area was calculated using multi-point Brunauer–Emmett–Teller (BET) analysis. Pore surface area
190 and pore volume were calculated using Barrett–Joyner–Halenda (BJH) analysis. The t-plot method
191 was used with the DeBoer model for the calculation of the statistical thickness to distinguish the
192 contribution of micropores (<2 nm) to the total surface area. The employed modeling methods
193 tend to overestimate the pore size of the microporous materials such as zeolites. This phenomenon
194 has been displayed by BET results from previous publication, where the pore diameter of zeolite
195 beta (6.7 Å) was determined to be 21~67 Å[27].

196 The crystalline phase compositions of prepared catalysts were examined by X-ray diffraction
197 on a Rigaku Multiflex diffractometer with Cu K α irradiation at a voltage of 20 kV and current of
198 40 mA in the 2 θ of 5-45°.

199 The Transmission Electron Microscopy (TEM) spectra were acquired on a JEOL2200FS TEM
200 instrument operated at 200 kV. An X-ray analyzer for Energy-Dispersive X-ray (EDX)
201 spectroscopy was incorporated into the instrument for elemental analysis using Oxford INCA
202 Energy under STEM mode with 1 nm probe. TEM images were acquired in Bright Field as well
203 as High Angle Annual Dark Field. The sample was first dispersed in ethanol and sonicated for
204 about 2 min. A 10 μ L droplet was placed on honey carbon grids before the TEM images were

205 recorded.

206 Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra were acquired by Thermo
207 Scientific Nicolet iS50 equipped with environmental chamber and liquid-nitrogen cooled
208 mercury–cadmium–telluride (MCT) detector. The gas inlet of a multifunctional reactor system
209 fabricated in our research laboratory was employed for the gas introduction to DRIFTS via
210 Fluorinated Ethylene Propylene (FEP) tubing (Thermo Scientific, tubing 890 FEP, 8050-0125).
211 The connection between the FEP tubing and the environmental chamber was accomplished
212 through a short tubing with an inside diameter of 1/4 inch. First, the control group DRIFT spectra
213 were acquired at 512 scans per spectrum with a resolution of 4 cm⁻¹. The catalyst was heated to
214 500 °C and held for 30 min under 30 standard cubic centimeters per minute (sccm) N₂ to remove
215 the impurities which might be adsorbed on the catalyst surface during storage. When the catalyst
216 was cooled down to 25 °C the background spectrum was collected. Then the catalyst was heated
217 up to 100, 200, 300, 400 and 500 °C, respectively, and the background spectrum at each
218 corresponding temperature was collected. When the catalyst was again cooled to 25 °C under N₂
219 environment after background collections, a 30 sccm propylene flow was introduced to the
220 environmental chamber. After that, the gas flow was switched back to 30 sccm pure N₂. The
221 catalyst was held at 25 °C for 25 min before collecting sample DRIFTS spectrum under Kubelka-
222 Munk mode, and this step was repeated at 100, 200, 300, 400 and 500 °C, respectively. The DRIFT
223 spectra when CH₄ was present were acquired in a similar manner. The collection of background
224 spectra followed the same procedure. After reactive gas introduction, the gas flow was changed to
225 30 sccm CH₄ for 10 min followed by 30 sccm N₂ for 15 min before collecting DRIFT spectrum.
226 This step was again repeated at 100, 200, 300, 400 and 500 °C, respectively, to evaluate the
227 influence of methane presence. Besides CH₄, deuterium enriched methane (CD₄) was also

228 employed to acquire the spectra in a similar manner.

229 The DRIFT spectroscopy was also engaged to study the surface acidity of the catalyst upon
230 pyridine adsorption at room temperature. The catalyst sample was put in the environmental
231 chamber under 30 sccm N₂ flow. It was first calcined at 500 °C for 30 min before collecting
232 background spectra at 25 °C. Pyridine was then introduced to the sample by N₂ flow. The spectra
233 were recorded in absorbance mode upon stabilization for 30 min under 30 sccm N₂.

234 Surface acidity measurements were also performed by NH₃ TPD using ~200 mg samples in an
235 Altamira AMI-390 system. Ammonia was selected due to its simplicity, small molecular size, and
236 ability to titrate both strong and weak acid sites on the catalyst. Prior to measurements, fresh
237 samples were activated in 10% O₂/He at 600 °C for 30 min with a ramp rate of 10 °C/min. All
238 samples were then cooled to 160 °C for adsorption of ammonia, performed using a flow of 25
239 sccm of 10% NH₃/He for 30 min. After flowing He for 10 min at 160 °C to remove any physically
240 adsorbed NH₃ and cooling to 120 °C, TPD was carried out by ramping to 600 °C with at 30 K/min
241 and a hold of 30 min. A thermal conductivity detector (TCD) determined the amount of desorbed
242 NH₃. Upon completion of each experiment, seven pulses of 5 mL of 10 %NH₃/He were used to
243 calibrate the TCD response.

244 X-ray Photoelectron Spectroscopy (XPS) analysis was performed using an AXIS His, 165
245 Spectrometer manufactured by Kratos Analytical with a monochromatized Al K α X-ray source.
246 2.3V voltage was chosen to make the charge balance. A stainless steel sample holder was used.
247 Survey scans were performed to identify all the elements within the sample, followed by more
248 detailed regional scans for Ag 3d, C 1s, O 1s, and Ga 2p orbitals in order to achieve the high
249 resolution for these elements of interest. A controlled-atmosphere transfer chamber was used for
250 transferring the sample to the XPS instrument without exposure to atmosphere. The binding

251 energies were reported relative to C 1s at ~284.8 eV.

252

253 **3. Results and Discussions**

254 *3.1 Catalytic performance*

255 After the reactions between C₃H₆ and methane when Ag-Ga/ZSM-5 catalyst is charged at
256 various pressures, the liquid products are analyzed and determined to be composed of aromatics
257 such as benzene, toluene and C₈ to C₁₂ aromatics. Ethyl benzene and xylene are the products
258 observed in C₈ group, among which p-xylene and o-xylene are the major components with the
259 highest population. C₉-C₁₂ products include the species with methyl, ethyl, propyl groups, or their
260 combinations attached to benzene and naphthalene as substituent groups, as well as small amount
261 of indene derivatives. The distribution charts of these groups under variable reaction pressures are
262 displayed in Figure 1. At 10 bar toluene and C₈ groups are the primary products. Compared with
263 the control group run, i.e., N₂ environment, the fraction of benzene is lower when CH₄ is present,
264 while the fractions of C₈ and C₉ groups are increased. Such a shift of product distribution toward
265 larger carbon number products might suggest the incorporation of methane into the product
266 molecules. As the reaction pressure is increased to 3.0, 5.0 and 7.0 MPa (Figure 1b, 1c and 1d),
267 the shift of products toward the larger carbon number becomes more prominent, indicating that a
268 higher methane pressure favors the formation of larger product molecules as expected from a
269 thermodynamic calculation. At 7.0 MPa, the primary species in the products are C₈ - C₉ groups
270 (Figure 1d) rather than the C₇-C₈ groups at 1.0 MPa (Figure 1a). Under higher methane pressures,
271 the formation of higher aromatics (C₉-C₁₂), whose kinetic diameters are large compared with the
272 pore size of ZSM-5 framework [28,29] and thus may involve the reaction pathways on the external
273 surface of the catalyst[30,31], becomes more significant. Bijani *et al*[32] demonstrated that when

methane itself is converted to aromatics and H₂ and a higher pressure would suppress the selectivity of large aromatic molecules such as naphthalene compared with small aromatic molecules such as benzene. In the present work, when olefin is co-fed to react with methane, the product selectivity is shifted to larger aromatic molecules at higher pressures, which might be because the reaction pathway network is more complicated than the conversion of sole methane. This phenomenon might also be because the participation of methane during the co-aromatization process under high pressure is more feasible on the external surface of the catalyst. It is also noticed that at higher pressures, the effect on the product distribution in terms of the ratio between toluene and benzene (Figure 2a) and the shift of carbon number (Figure 2b) is enhanced. It is worth noting that the ratio between toluene and benzene gets larger when methane is present, which might be due to the methane participation during the phenyl ring formation. The incorporation of methane into the product molecules is also supported by larger average carbon number under the CH₄ environment.

The gas product composition and the conversion of propylene and methane are displayed in Table 1. It is noticed that as the reaction pressure is increased, the amount of converted methane is promoted, while that of propylene remains almost unchanged. At 1.0, 3.0, 5.0 and 7.0 MPa, the conversions of methane are calculated to be 1.8, 2.3, 4.7% and 3.8 %, and the carbon atoms from methane would contribute 5, 18, 42 and 44 % of the carbon atoms in the product matrix, respectively. Rimer *et al*[33] studied the aromatization reaction of ethylene with and without co-fed methane over Ag-ZSM-5 catalyst at 400 °C and atmospheric pressure. Despite a lower activation barrier of methane (1.62 eV) on Ag-ZSM-5 than that of ethylene (1.92 eV) according to the DFT calculation, the aromatization process is dominated by ethylene under the given reaction condition. One of the factors that impair the methane conversion is the occupation competition of

297 Ag⁺ Lewis acid sites between methane and ethylene molecules, when the high stability of π -bonded
298 ethylene complex at the Ag⁺ site is taken into consideration. These observations give some insights
299 into the reaction pathway of the present work due to the similarity of the reaction matrix. In the
300 presence of co-fed propylene, the reactivity of methane might also be impeded by the propylene
301 π -complex occupying the catalytic sites. This is supported by the observation in the present work
302 that the participation of methane during the reaction is enhanced at higher methane pressures which
303 results in an increased methane concentration. However, the high methane pressure requires a
304 considerable amount of methane in the feed. Since the methane conversion is relatively low (<5%),
305 it is necessary to recycle the unconverted methane feedstock to avoid the waste of methane
306 resources in the future industrial application. Despite the relatively low conversion of methane for
307 commercial application, which might be compensated by the recycling, the feasibility of methane
308 co-aromatization with propylene at 400 °C, close to the temperature of petroleum refining
309 processes, opens the door for the application of methane co-aromatization with petroleum
310 feedstocks. It is also observed that the amount of H₂, ethylene and ethane is higher under methane
311 environment, suggesting that their formation may be closely related to the presence of methane.
312 As the reaction pressure is lifted, these species become absent in the product, which may be
313 because H₂ and C₂ products are more readily consumed at high pressures. The GC-MS analysis
314 results show that the formation of alicyclic compounds cannot be identified at detectable amount.
315 Two unsaturated aromatic compounds including indene and 4-ethenyl-1,2-dimethylbenzene are
316 detected at the pressures of 1.0 and 3.0 MPa, with a molar percentage of 0.1%. At lifted pressures
317 such as 5.0 and 7.0 MPa, these products as well as H₂ (Table 1) are absent, suggesting that higher
318 pressures would improve the saturation of carbon double bonds. Similarly, the presence of methane
319 also raises the amount of C₄H₈ and C₄H₁₀, probably indicating the participation of methane in the

320 formation of C₄ products. It is also worth noting that C₄H₈ is only present under CH₄ environment.
321 A plausible explanation is that C₄H₈ is produced by the reaction between C₃H₆ and CH₄ on the
322 ZSM-5 based catalyst, which may follow a similar pathway of the reaction between ethylene and
323 methane, i.e., a methane molecule is incorporated into the light olefin and rejects H₂.[16,34] The
324 effect of pressure on the formation of C₄H₈ and C₄H₁₀, however, differs from H₂ and C₂ products.
325 The increment of C₄ products under CH₄ environment comparing with N₂ environment is enlarged
326 at higher pressure. This phenomenon is consistent with the effect of pressure on the carbon number
327 of liquid products. Another observation is that when methane is present, the amount of C₃H₈ is
328 increased, which might be related to its H-rich environment that promotes the saturation of
329 propylene.

330 *3.2 Methane engagement verification*

331 The direct evidence of methane participation into the upgrading reaction is observed in the
332 NMR spectra when ¹³C-labelled methane is employed in the reaction. Figure 3 displays the ¹³C
333 NMR spectra of the liquid products obtained when CH₄ and ¹³CH₄ are employed as the methane
334 source to react with propylene under the facilitation of Ag-Ga/ZSM-5 catalyst. As is observed in
335 the present work, a higher methane pressure enhances the participation of methane in the co-
336 aromatization reaction. The partial pressure of ¹³CH₄ pressure is only 100 kPa in the reaction due
337 to the availability of the isotopic labelled feedstock. Therefore, the extent of ¹³C participation might
338 be less significant compared with the aforementioned reactions. In the present work, the ¹³C
339 labeling study at a low pressure confirms the methane participation, which should be more
340 significant at elevated methane pressures. The ¹³C resonance present in the spectra can be divided
341 into two groups. The peaks between 124-148 ppm are assigned to aromatic carbons, while those
342 between 14-35 ppm are attributed to carbon sites of the alkyl side chains. The total peak area of

343 the peaks at these two regions are increased to 2.2 and 2.5 times, respectively, where the areas of
344 the solvent CDCl_3 peak are used as the internal reference, in the $^{13}\text{CH}_4$ +propylene run compared
345 to that from its non-isotopic labelled counterpart. During ^{13}C NMR measurement, in order to
346 collect a large number of scans to improve the quality of the spectra, the recycle delay is not set
347 long enough for all the excited ^{13}C nuclei to relax to ground state. As a result, the peak area may
348 not be linearly proportional to the concentration of ^{13}C in the products. Nevertheless, the
349 significantly escalated peak areas strongly indicate the ^{13}C enrichment under $^{13}\text{CH}_4$ environment,
350 originating from the methane participation in the aromatization reaction. Based on the GC-MS
351 analysis of the obtained liquid products, they are mainly composed of saturated aromatics with a
352 molar percentage of unsaturated species including indene and 4-ethenyl-1,2-dimethylbenzene at
353 0.4%. The ^{13}C NMR signal of the carbon sites from the unsaturated bonds are not detected, which
354 might be attributed to the low concentration of these sites. Combining with the product distribution
355 obtained from GC-MS analysis and the ^{13}C chemical shift of variable carbons sites[35], the
356 aromatic carbon NMR signals can be further categorized into four groups. The peaks at 137.3,
357 145.3 and 148.3 ppm are due to the phenyl carbon sites that are directly bonded to alkyl substituent
358 groups. The signals between 132-136 ppm are attributed to the carbons sites shared by the two
359 rings in indane and naphthalene. They could also be contributed by the naphthalene carbon sites
360 bonded to alkyl substituent groups. The peaks that appear between 128-130 ppm are assigned to
361 the phenyl ring carbon atoms that are on the ortho and meta positions of the alkyl substituent, while
362 the others in the region of 124-127 ppm are due to the para carbon sites. Among these four groups,
363 when $^{13}\text{CH}_4$ is employed, the peak intensities are increased to 2.0, 1.3, 2.0 and 2.6 times,
364 respectively, compared with their non-isotopic counterparts, suggesting that the carbon atoms from
365 methane tend to be incorporated into the phenyl para position while the carbon sites shared by the

366 two indane and naphthalene rings are not favored. The enrichment phenomenon of ^{13}C at the alkyl
367 carbon site region is also clearly observed on the spectra, suggesting that the carbon atoms from
368 methane also get incorporated into the alkyl sites besides the phenyl ring carbon sites.

369 Besides $^{13}\text{CH}_4$, deuterium-enriched methane, i.e., CD_4 , is also used as the methane source in
370 the reaction in order to track the behavior of the methane hydrogen during the reaction. The ^1H
371 and ^2D NMR spectra of the liquid product are acquired and compared with those of the non-
372 isotopic enriched liquid products (Figure 4). On the ^1H NMR spectra, the peaks at 7.24 ppm are
373 due to the CHCl_3 in the solvent, the intensities of which are similar in Figure 4a and 4b. The
374 intensities of most other peaks, however, are suppressed significantly when CD_4 is present in the
375 reaction. The peaks between 6.9~7.8 ppm are due to the H atoms on the phenyl rings, among which
376 those around 7.48 and 7.84 ppm are assigned to the hydrogen sites on naphthalene rings. The
377 signals between 2.0~2.8 ppm can be assigned to benzylic H sites. Those appearing at the region
378 below 2 ppm are attributed to H sites of the alkyl groups that are not bonded to phenyl rings directly.
379 The ratios between the peak areas with respect to that of CHCl_3 are shown in Table 2. The signals,
380 especially those due to aromatics and benzylic H sites, are greatly reduced in the ^1H NMR spectrum
381 collected from the isotopic labelled run, suggesting that a large portion of hydrogen in the liquid
382 products come from methane. The peak at 5.3 ppm is assigned to the H from the unsaturated bonds.
383 The peak intensity remains unchanged when the methane source is change from CH_4 to CD_4 ,
384 indicating that these sites probably originate from the olefin feedstocks instead of methane.
385 Compared with the peak area change observed in the ^{13}C NMR spectra, it is worth noting that the
386 involvement of hydrogen is more profound than carbon from the methane molecules. It might be
387 because compared with C atoms, there are more H atoms available in methane molecules, which
388 may participate into the product molecules upon the cleavage of a single C-H bond. The

389 incorporation of carbon atoms into the phenyl ring, however, involves the cleavage step of at least
390 three C-H bonds, which may not be significant under the low reaction pressure. The change of
391 peak areas also hints that methane hydrogens favor the aromatic and benzylic hydrogen sites over
392 the alkyl group hydrogen sites. It is further confirmed by the ²D NMR spectra (Figure 4c and 4d),
393 where two strong NMR peaks are observed at the aromatic (7~8 ppm) and benzylic (2.5 ppm) site
394 regions, along with a small peak attributed to alkyl D atoms in the spectrum where CD₄ is engaged
395 as the methane source. The MS spectra of some aromatic products with relatively simple side chain
396 structure including benzene, toluene, isopropylbenzene and 1,7-dimethylnaphthalene obtained
397 under CH₄ and CD₄ conditions are displayed in Figure S1-S4. On the spectra of benzene, the peaks
398 at m/z region of 76~79 are increased to 76~81. The increased m/z of 2 suggests that there are
399 average two D atoms incorporated to each benzene molecule. This phenomenon is also observed
400 on the spectra of toluene, which might suggest that the D incorporation into benzene and toluene
401 is primarily during the phenyl ring formation step, compared with the methyl group incorporation
402 step. On the MS spectrum of isopropylbenzene under CH₄ condition, there are two groups of peaks.
403 The peaks at 120~121 are due to molecular ion peaks, while those around 105~106 are assigned
404 to the piece after one methyl group is lost. When CD₄ is employed, the m/z value of molecular ion
405 peaks are increased by 2 to 123, while the peaks around 105 are also increased by 2 to 108. This
406 observation indicates that the loss of the first methyl group from isopropylbenzene, which not
407 bonded to phenyl ring, does not significantly reduce the number of D atoms, i.e., the number of D
408 atoms at this methyl site is small. This observation is consistent with the aforementioned
409 phenomenon from NMR spectra that D is not rich in the alkyl groups that are not bonded to phenyl
410 ring. Figure S4 shows the MS spectra of 1,7-dimethylnaphthalene. The molecular ion peak is
411 increased by an m/z of 3 from 157 under CH₄ to 160 under CD₄. The peaks due to the moiety after

412 the loss of methyl group, however, witnesses a m/z increase of 2 from 142 to 144, suggesting that
413 the average D atom number on the methyl species is 1, confirming that D atoms are rich in benzylic
414 sites.

415 In order to better understand the reaction mechanism, especially the significant ²D-enrichment
416 at the benzylic site, styrene, which possesses an unsaturated -C=C- at the benzylic site, is also used
417 as the feedstock in the aromatization reaction. The liquid product is mainly composed of benzene,
418 toluene, ethylbenzene and naphthalene, based on the GC-MS analysis. The ¹H and ²D NMR spectra
419 of the styrene upgrading liquid product are acquired and compared with those of the non-isotopic
420 enriched one (Figure 5) in order to understand the incorporation of the hydrogen atoms from
421 methane to the products. The peak area ratios to that of CHCl₃, the internal standard in the samples,
422 are tabulated in Table 2. It is clearly noticed that the enrichment of D, coming from methane, on
423 the benzylic sites in the product molecules becomes even more significant, suggesting that the
424 presence of unsaturated site could enhance the activation of methane. The drop of ¹H peak intensity
425 due to the alkyl hydrogen sites under CD₄ condition, however, is negligible, which is consistent
426 with the weak alkyl deuterium signal on the ²D NMR spectrum. This observation may imply that
427 the hydrogen atoms that saturate styrene into ethylbenzene are not contributed by methane, but
428 primarily released during the aromatization of styrene into naphthalene.

429 To obtain a more comprehensive understanding of the evolution of methane during the reaction,
430 Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra are acquired to unveil the role
431 played by propylene as well as methane on the surface of the charged catalyst. As is displayed in
432 Figure 6, upon the adsorption of propylene, the IR pattern due to C-H stretch is plainly observed
433 at high wavenumber range of 2800-3000 cm⁻¹. It is clearly noticed that when CH₄ is present, the
434 peak intensity is higher than that of its N₂ counterpart. In this study, the DRIFT spectra are acquired

435 on the catalyst surface without dilution to enhance the IR signal. Despite that the signal intensity
436 change may not be proportional to the concentration of corresponding sites, the enhanced
437 resonance indicates that some CH₄ is adsorbed on the surface, leading to the increased
438 concentration of C-H bonds. IR vibration at this region, however, is not observed in the spectrum
439 acquired under CH₄ environment without propylene introduction (not displayed in the figure),
440 suggesting that the enhanced signal is related to the interaction between propylene and methane.
441 In other words, propylene pre-adsorption might facilitate the methane adsorption on the catalyst
442 surface. Besides, since propylene is only introduced to the reaction chamber where catalyst is
443 charged at the beginning of the experiments, as the temperature gets higher, the peak intensity
444 decays gradually due to desorption of surface species. At 100 and 200 °C, the enhanced peak
445 intensity when methane is present is more significant, demonstrating that methane adsorption
446 might be more favored and there might be stronger interaction existing between propylene and
447 methane at these temperatures. However, this trend is reversed at 300 °C, which may be because
448 that the product formed by the reaction taking place between the adsorbed propylene surface
449 species and methane dissociates from the catalyst surface more easily compared to the thermal
450 desorption of the adsorbed surface reactants without the engagement of methane. CD₄ is also
451 employed to acquire the spectra, which are compared with the non-isotopic counterpart in order to
452 study the evolution of methane on the catalyst surface. At 25 °C, the peak intensity is slightly lower
453 under CD₄ condition, which can be attributed to the smaller amount of C-H bond. At 100 and 200
454 °C, however, the peak intensity is greatly increased compared with that under non-isotopic methane
455 environment. Interestingly, the peak intensity is even higher than that observed at 25 °C.
456 Considering the fact that propylene is introduced only once, before acquiring the spectra, and as a
457 result, the C-H stretch signal should diminish gradually due to the thermal desorption of adsorbed

458 surface species, the promoted signal intensity should be attributed to the introduced CD₄ between
459 the acquisition of the spectra at 25 and 100 °C. In literature, it has been reported that upon the
460 adsorption of CD₃CN on zeolites, a broad band at around 2900 cm⁻¹ due to the interaction between
461 CD₃CN and the hydroxyl groups from the zeolite surface is observed.[36,37] Based on this
462 observation, the observed increased peak intensity might also be attributed to the interaction
463 between adsorbed CD₄ and hydroxyl groups on the catalyst surface. Compare with the spectra
464 collected under CD₄ condition without the introduction of propylene (Figure 6, green curves),
465 where the peaks at 2800-3000 cm⁻¹ region is absent, it can be almost certainly concluded that the
466 increased peak intensity is due to the synergetic effect between propylene surface species, CD₄ and
467 the catalyst. In order to further justify the methane activation compared with methane adsorption,
468 the spectra at higher temperatures with CD₄ introduction are acquired. At 200 °C, two new peaks
469 at 2754 and 2653 cm⁻¹ are observed on the spectrum collected without propylene introduction,
470 which become more significant when temperature is elevated to 300 °C. They can be assigned to
471 the O-D stretch of the terminal silanol hydroxyl groups and bridging hydroxyl groups,
472 respectively.[38] The formation of these O-D sites suggests the C-D bond cleavage in CD₄
473 molecules, implying the activation of methane on the surface of the catalyst. When propylene
474 surface specie is present at 300 °C, i.e., under C₃H₆+CD₄ condition, the peak at 2754 cm⁻¹ is shifted
475 to 2746 cm⁻¹, strongly suggesting the interaction between propylene, methane and the hydroxyl
476 groups of the catalyst.

477 The co-aromatization of methane and propylene over Ag-Ga/ZSM-5 catalyst is also
478 investigated through employing DSC to study the heat effect of the reaction upon methane
479 introduction. The heat flow when the mixture of propylene and methane is introduced at 400 °C
480 (10~40 min) is displayed in Figure 7. For better comparison, the results collected from its N₂

481 counterpart and the methane-alone run are also included. A stronger negative peak is clearly
482 witnessed over propylene+methane run while that from its N₂ counterpart is a weak one, indicating
483 more exothermic feature occurring from the interaction between methane and propylene molecules.
484 When methane alone is introduced, a small negative peak is observed at ~10 min, which can be
485 attributed to the exothermic feature occurring during adsorption of methane. The heat flow curve
486 after that does not show strong endo- or exothermic effect, suggesting that the dramatically
487 changed heat effect is due to the synergetic effect occurring between propylene and methane.
488 Thermodynamic calculation is also carried out to explore the possible reason behind these
489 phenomena. Due to the complexity of the products, it is difficult to include all the species in the
490 calculation. Based on the analysis on the products obtained from the reaction between propylene
491 and methane (Figure 1 and Table 1), the presence of methane increases the carbon number of the
492 formed aromatics, for instance, more toluene over benzene. It also promotes the formation of C₃H₈
493 along with a small amount of C₄H₈. These key species may play an important role in the escalated
494 exothermic feature of the reaction. Based on this assumption, they are considered in the
495 thermodynamic calculation where the pressure of propylene and methane are set at 0.5 atm. At
496 400 °C, the aromatization of propylene, i.e., 2C₃H₆ = C₆H₆ + 3H₂, displays an enthalpy change of
497 ΔH = -9.6 kcal/mol. When methane is present, resulting in an increased carbon number of
498 aromatics and saturation of propylene, the reaction may be modified to 3C₃H₆ + CH₄ =
499 C₇H₈ + C₃H₈ + 3H₂, with an enthalpy change of ΔH = -33.8 kcal/mol. When considering the
500 enhanced formation of C₃H₈ and C₄H₈ under methane environment, the effect may be represented
501 by 4C₃H₆ + 4CH₄ = C₄H₈ + 4C₃H₈, where the enthalpy change is ΔH = -64.8 kcal/mol. The more
502 negative enthalpy change of these reactions could contribute to the enhanced exothermic feature
503 of the reaction in the presence of methane. Therefore, such exothermic heat effect of the

504 propylene+methane run may provide another evidence of methane participation in the propylene
505 aromatization reaction.

506 *3.3 Correlation between catalyst properties and its performance*

507 In order to identify the correlation between the physical properties of the catalyst and its
508 catalytic performance, versatile characterization techniques including N₂ physisorption, XRD,
509 TEM, DRIFTS, NH₃ TPD, TGA, and XPS have been employed in this study. The porous properties
510 of various catalysts are analyzed through N₂ physisorption and the results are reported in Table 3.
511 Compared to pure HZSM-5 support, Ag and Ga modified zeolite catalyst has increased total
512 surface area and reduced pore volume. In addition, it is worth noting that upon metal loading the
513 external surface area remains intact while the internal surface area is increased significantly, which
514 is attributed to the additional surfaced area induced by metal particles. This phenomenon could
515 benefit the aromatization reaction taking place within the zeolite pores[22] where active metal is
516 well dispersed. After the reaction, the total surface area and pore volume are reduced, which might
517 be due to the formation of coke and adsorption of product molecules.

518 The crystal phase evolution of the catalyst during the reaction is further investigated by
519 resorting to XRD technique. Figure 8 shows the XRD patterns of HZSM-5 support as well as fresh
520 and spent Ag-Ga/ZSM-5 catalyst. The peaks due to the oxide compounds of silver or gallium are
521 not visible, which may be due to their excellent dispersion on the surface of the catalyst. After a
522 closer comparison, it is also noticed that upon the introduction of Ag and Ga species into the
523 HZSM-5 framework, the intensity of their diffraction peaks due to (011), (200) and (020) crystal
524 planes are significantly enhanced in the fresh Ag-Ga/ZSM-5 catalyst. A plausible explanation is
525 that the doped Ag and Ga species migrate into the HZSM-5 framework and enhance the crystalline
526 of these planes. Over the reaction, such interaction is suppressed due to the evolution of the metal

527 species, leading to a reduced crystalline of these planes in the spent catalysts. It is noticed that the
528 peak assigned to the (211) plane is small on the fresh Ag-Ga/ZSM-5, but turns stronger after the
529 reaction, which might also be induced by the evolution of metal species during catalyst preparation
530 and reaction process.

531 Besides XRD patterns released in Figure 8, the samples are further investigated by employing
532 TEM technique. Figure 9 demonstrates the morphology of the Ag and Ga particles dispersed in
533 fresh Ag-Ga/ZSM-5. Lots of small particles with an average size < 2 nm and a few with an average
534 size of 5 nm are detected in Figure 9a and 9b. The elemental distribution on the surface of Ag-
535 Ga/ZSM-5 is further studied by acquiring the EDX spectra of these small particles (Figure 9c) as
536 well as the large ones (Figure 9d). It turns out that the large particles are Ag-rich while the small
537 ones are formed by both Ag and Ga after careful analysis of the collected EDX spectra. The
538 morphology of the spent catalyst after the reaction with propylene under N_2 and CH_4 environment
539 is also investigated. The crystalline of the catalyst framework stays intact and the fringe of the
540 zeolite structure is clearly observed (Figure 10a and 10e). Some large particles with a size of > 20
541 nm are observed on the catalyst. The EDX spectra of these large particles (Figure 10d and 10g)
542 shows that the particles are composed of both Ag and Ga, while the EDX study of other areas on
543 the framework (Figure 10c and 10h) reveals that the concentration of Ag and Ga is low. These
544 observations suggest that the Ag-rich large particles and small particles composed of Ag and Ga
545 in the fresh catalyst tend to form larger particles due to agglomeration during the aromatization
546 reaction.

547 The surface acidity of the Ag-Ga/ZSM-5 catalyst as well as the HZSM-5 support is calibrated
548 by choosing pyridine as the probe. Figure 11 shows the DRIFT spectra collected over HZSM-5
549 and Ag-Ga/ZSM-5 upon the adsorption of pyridine at room temperature. Despite that the Beer-

550 Lambert law, where the absorbance is considered proportional to the concentration[39], may not
551 necessarily hold for accurate quantification, the signals are presented in absorbance to better
552 estimate the acid site concentration change upon metal loading. The peaks around 1440 cm⁻¹ are
553 assigned to Lewis acid sites[39,40], indicating the presence of Lewis acid sites on HZSM-5 and
554 Ag-Ga/ZSM-5. The signal appearing at 1548 cm⁻¹ on HZSM-5 spectrum is due to Brösted acid
555 sites[41] upon pyridine adsorption, suggesting the presence of Brösted acid sites on HZSM-5. The
556 other peaks identified in these spectra are also closely associated to the -OH group of the ZSM-5
557 framework. The peak at 1492 cm⁻¹ on HZSM-5 spectrum is assigned to the 19a mode of pyridinium
558 H-bonded with pyridine as well as the ZSM-5 framework. The signals at around 1600 cm⁻¹ are
559 assigned to the hydrogen-bonded pyridine. The peaks at 1642 cm⁻¹ are due to the 8a and 8b mode
560 of pyridinium H-bonded with pyridine and the ZSM-5 framework,[42] where the noted 8a, 8b, and
561 19a are the mode symbols.[43] These observations suggest that upon the loading of Ag and Ga
562 species on the HZSM-5 framework, the original surface acidity of the ZSM-5 support is suppressed
563 probably because of acidic sites occupation and the number of –OH groups is reduced as a result,
564 while the Lewis acid sites are still present possibly the introduction of metal species on the surface
565 of zeolite support.

566 The features of surface acidic sites of these catalysts are further analyzed using NH₃ TPD, the
567 results of which are displayed in Figure 12 in order to compare the change upon metal modification
568 and reaction. The low-temperature (LT) peak ranging from 200 to 400 °C might originate from the
569 NH₃ molecules desorbed from the weak surface acidic sites and the high-temperature (HT) peak
570 spanning from 400 to 600 °C is probably associated with NH₃ molecules desorbed from strong
571 surface acidic sites.[44,45] The LT peak is observed over all the tested samples, implying the
572 presence of weak acidic sites on the surface the catalysts. Upon Ag and Ga modification, the peak

573 intensity at HT region is decreased, implying some strong acid sites are consumed. Despite the
574 decreased intensity, the HT peaks are witnessed over all the catalyst samples, indicating that strong
575 Brøsted and Lewis acid sites are still available[22] on the catalyst surface, contributing to
576 catalyzing methane and olefin aromatization reactions as suggested by the previous
577 researches.[46–48] In addition, after quantification, the total acid amounts for HZSM-5, Ag-
578 Ga/ZSM-5, spent Ag-Ga/ZSM-5 catalysts obtained under CH₄ and N₂ environment are determined
579 to be 1,047, 526, 506 and 479 $\mu\text{mol NH}_3/\text{g}_{\text{cat}}$, respectively. Ag and Ga loadings into the HZSM-5
580 framework result in significant surface acidity reduction to almost half of its original value, which
581 is consistent with what is observed in pyridine adsorption (Figure 11). Moreover, after the
582 aromatization reaction the total acid amount available on catalyst surface is further reduced to
583 certain degree, indicating that some acid sites might be further occupied probably by the formed
584 coke. TGA analysis (Figure 13) shows that the coke deposit on the catalyst is 5.1% and 5.5% after
585 the reaction under CH₄ and N₂, respectively, when only the second major weight loss is taken into
586 consideration because the first one is mainly due to the desorption of the surface species formed
587 during aromatization reaction. The suppressed coke deposit under CH₄ environment could be
588 related to the larger number of total acid sites remaining upon the reaction, which might play a
589 role on the improved aromatization performance under CH₄ environment.

590 In order to get a better understanding of how each element contained in the Ag-Ga/ZSM-5 gets
591 distributed on the catalyst surface and their corresponding oxidation state, XPS is employed to
592 conduct specific scans at O 1s, Ag 3d, Ga 2p and C 1s regions, respectively. The results are
593 disseminated in Figure 14. Figure 14a shows the XPS spectra acquired at Ag 3d region. The
594 binding energies due to 3d orbitals are shifted to higher value during the reaction, indicating a
595 partial reduction of silver species. Gabrienko et al[24] studied the function of silver species on

596 Ag/ZSM-5 catalyst in methane activation and the reaction intermediates. It was observed methane
597 is converted to O-CH₃ and Ag-H upon the C-H bond cleavage, followed by the formation of
598 ethylene, which was absorbed by silver cations. The participation of silver cations as catalytic
599 active site in the activation process of both methane and -C=C- bond may contribute to the
600 observed reduction. After the reaction the surface concentration of Ag gets decreased probably due
601 to its diffusion from the surface towards the inner pores of the zeolite support, which is consistent
602 with the observation on Ag-Ga modified ZSM-5 catalyst over olefin upgrading under CH₄
603 environment.[49] The concentration of silver species, however, is higher under CH₄ environment.
604 The spectra at the O 1s region are displayed in Figure 14b. There are two O sites observed in the
605 fresh catalyst spectrum. The one at 532.1 eV might be contributed by the Ag₂O and Ga₂O₃
606 species[50,51], while the one at 532.9 eV may be assigned to the SiOH groups on the catalyst
607 surface.[52] The O surface concentration due to the oxide species is reduced after aromatization
608 reaction which is consistent with the hypothesis that some silver oxide compound migrates to the
609 inner pores of the catalyst. Figure 14c demonstrates the XPS spectra collected at the Ga 2p region.
610 The reduced signal intensity upon the reaction indicates that the gallium oxide species might also
611 migrate into the inner pores of the catalyst during the reaction. Based on the above observation, it
612 can be concluded that during reaction silver species as well as the gallium oxide tend to diffuse
613 into the inner pores of the catalyst where is the place aromatization reaction would probably prefer
614 to talk place according to the previous study[22]. More silver oxide species remains on the surface
615 of the catalyst under CH₄ environment, which might be closely associated with the better catalytic
616 performance when CH₄ is present. The increased C 1s signals collected from the spent catalysts
617 (Figure 14d) provide another evidence of coke formation during aromatization reaction when that
618 from the fresh sample is referred in the same figure.

619

620 **4 Conclusions**

621 The present work demonstrates the technical feasibility of simultaneous aromatization of
622 propylene and methane over Ag and Ga modified HZSM-5 catalyst at a low temperature of 400
623 °C, which is close to the temperature of petroleum refining processes. Methane is activated and
624 incorporated into the formed aromatics leading to increased carbon number of both gas and liquid
625 products, along with more exothermic reaction feature. The participation of methane is directly
626 evidenced by ¹H, ²D and ¹³C NMR study of the liquid products. The hydrogen from methane tend
627 to occupy the benzylic sites as well as aromatic hydrogen sites in the product molecules. The
628 interaction between propylene and methane on the catalyst surface can be observed by FTIR
629 starting from 100 °C. The C-H bond cleavage of methane is detected at 200 °C, which becomes
630 more significant at 300 °C, leading to a clear interaction with propylene surface species. The
631 excellent catalytic performance of Ag-Ga/ZSM-5 might be because of the better dispersion of Ag
632 and Ga on the ZSM-5 surface and moderate amount of strong Brøsted and Lewis surface acid sites
633 which may also result in coke formation. Therefore, tuning the surface acidity of charged catalyst
634 for balancing its aromatization performance and coke resistance as well as metal agglomeration
635 prevention for stability enhancement would be a critical future work.

636

637 **Acknowledgements**

638 We gratefully acknowledge the financial supports from Meg Energy Corp. and Alberta
639 Innovates - Energy and Environment Solutions (AI-EES, 2142).

640

641

642

643 **References**

644 [1] J.H. Lunsford, The Catalytic Oxidative Coupling of Methane, *Angew. Chemie Int. Ed.* 34
645 (1995) 970–980. doi:10.1002/anie.199509701.

646 [2] Y. Amenomiya, V.I. Birss, M. Goledzinowski, J. Galuszka, A.R. Sanger, Conversion of
647 methane by oxidative coupling, *Catal. Rev.* 32 (1990) 163–227.
648 doi:10.1080/01614949009351351.

649 [3] U. Zavyalova, M. Holena, R. Schlögl, M. Baerns, Statistical analysis of past catalytic data
650 on oxidative methane coupling for new insights into the composition of high-performance
651 catalysts, *ChemCatChem.* 3 (2011) 1935–1947. doi:10.1002/cctc.201100186.

652 [4] C. Li, C. Dinoi, Y. Coppel, M. Etienne, CH Bond Activation of Methane by a Transient η 2
653 -Cyclopropene/Metallabicyclobutane Complex of Niobium, *J. Am. Chem. Soc.* 137 (2015)
654 12450–12453. doi:10.1021/jacs.5b07859.

655 [5] V.R. Choudhary, K.C. Mondal, S.A.R. Mulla, Simultaneous conversion of methane and
656 methanol into gasoline over bifunctional Ga-, Zn-, In-, and/or Mo-modified ZSM-5 zeolites,
657 *Angew. Chemie Int. Ed.* 117 (2005) 4455–4459. doi:10.1002/anie.200500694.

658 [6] Y. Cui, Y. Xu, J. Lu, Y. Suzuki, Z.G. Zhang, The effect of zeolite particle size on the activity
659 of Mo/HZSM-5 in non-oxidative methane dehydroaromatization, *Appl. Catal. A Gen.* 393
660 (2011) 348–358. doi:10.1016/j.apcata.2010.12.017.

661 [7] Y. Xu, X. Bao, L. Lin, Direct conversion of methane under nonoxidative conditions, *J. Catal.*
662 216 (2003) 386–395. doi:10.1016/S0021-9517(02)00124-0.

663 [8] V.T.T. Ha, A. Sarioglan, A. Erdem-Senatalar, Y. Ben Taarit, An EPR and NMR study on
664 Mo/HZSM-5 catalysts for the aromatization of methane: Investigation of the location of the

665 pentavalent molybdenum, *J. Mol. Catal. A Chem.* 378 (2013) 279–284.
666 doi:10.1016/j.molcata.2013.06.020.

667 [9] X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R.
668 Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao, Direct, nonoxidative conversion of
669 methane to ethylene, aromatics, and hydrogen., *Science.* 344 (2014) 616–619.
670 doi:10.1126/science.1253150.

671 [10] T. V. Choudhary, E. Aksoylu, D. Wayne Goodman, Nonoxidative Activation of Methane,
672 *Catal. Rev.* 45 (2003) 151–203. doi:10.1081/CR-120017010.

673 [11] P. Tang, Q. Zhu, Z. Wu, D. Ma, Methane activation: the past and future, *Energy Environ.*
674 *Sci.* 7 (2014) 2580–2591. doi:10.1039/C4EE00604F.

675 [12] J. Xue, Y. Chen, Y. Wei, A. Feldhoff, H. Wang, J. Caro, Gas to Liquids: Natural Gas
676 Conversion to Aromatic Fuels and Chemicals in a Hydrogen-Permeable Ceramic Hollow
677 Fiber Membrane Reactor, *ACS Catal.* 6 (2016) 2448–2451. doi:10.1021/acscatal.6b00004.

678 [13] V. Abdelsayed, D. Shekhawat, M.W. Smith, Effect of Fe and Zn promoters on Mo/HZSM-
679 5 catalyst for methane dehydroaromatization, *Fuel.* 139 (2015) 401–410.
680 doi:10.1016/j.fuel.2014.08.064.

681 [14] J.J. Spivey, G. Hutchings, Catalytic aromatization of methane, *Chem. Soc. Rev.* 43 (2014)
682 792–803. doi:10.1039/c3cs60259a.

683 [15] V.R. Choudhary, A.K. Kinage, T. V. Choudhary, Low-temperature nonoxidative activation
684 of methane over H-galloaluminosilicate (MFI) zeolite, *Science.* 275 (1997) 1286–1288.
685 doi:10.1126/science.275.5304.1286.

686 [16] T. Baba, H. Sawada, Conversion of methane into higher hydrocarbons in the presence of
687 ethylene over H-ZSM-5 loaded with silver cations, *Phys. Chem. Chem. Phys.* 4 (2002)

688 3919–3923. doi:10.1039/b200615b.

689 [17] T. Baba, Y. Abe, Metal cation-acidic proton bifunctional catalyst for methane activation:
690 Conversion of $^{13}\text{CH}_4$ in the presence of ethylene over metal cations-loaded H-ZSM-5, *Appl.*
691 *Catal. A Gen.* 250 (2003) 265–270. doi:10.1016/S0926-860X(03)00321-1.

692 [18] O.A. Anunziata, G. V Gonzalez, L.B. Pierella, Catalytic activation of methane using n-
693 pentane as co-reactant over Zn/H-ZSM-11 zeolite, *Catal. Letters.* 87 (2003) 167–171.

694 [19] O.A. Anunziata, G.G. Mercado, L.B. Pierella, Improvement of methane activation using n-
695 hexane as co-reactant over Zn/HZSM-11 zeolite, *Catal. Commun.* 5 (2004) 401–405.
696 doi:10.1016/j.catcom.2004.04.008.

697 [20] P. He, W. Shan, Y. Xiao, H. Song, Performance of Zn/ZSM-5 for in Situ Catalytic Upgrading
698 of Pyrolysis Bio-oil by Methane, *Top. Catal.* 59 (2016) 86–93. doi:10.1007/s11244-015-
699 0508-4.

700 [21] M. V. Luzgin, V.A. Rogov, S.S. Arzumanov, A. V. Toktarev, A.G. Stepanov, V.N. Parmon,
701 Understanding methane aromatization on a Zn-modified high-silica zeolite, *Angew. Chemie*
702 *Int. Ed.* 47 (2008) 4559–4562. doi:10.1002/anie.200800317.

703 [22] A. Wang, P. He, M. Yung, H. Zeng, H. Qian, H. Song, Catalytic co-aromatization of ethanol
704 and methane, *Appl. Catal. B Environ.* 198 (2016) 480–492.
705 doi:10.1016/j.apcatb.2016.06.013.

706 [23] M. V. Luzgin, V.A. Rogov, S.S. Arzumanov, A. V. Toktarev, A.G. Stepanov, V.N. Parmon,
707 Methane aromatization on Zn-modified zeolite in the presence of a co-reactant higher
708 alkane: How does it occur?, *Catal. Today.* 144 (2009) 265–272.
709 doi:10.1016/j.cattod.2008.08.043.

710 [24] A.A. Gabrienko, S.S. Arzumanov, I.B. Moroz, A. V. Toktarev, W. Wang, A.G. Stepanov,

711 Methane activation and transformation on Ag/H-ZSM-5 zeolite studied with solid-state
712 NMR, *J. Phys. Chem. C.* 117 (2013) 7690–7702. doi:10.1021/jp4006795.

713 [25] Y.G. Kolyagin, I.I. Ivanova, V. V. Ordomsky, A. Gedeon, Y.A. Pirogov, Methane activation
714 over Zn-modified MFI zeolite: NMR evidence for Zn-methyl surface species formation, *J.*
715 *Phys. Chem. C.* 112 (2008) 20065–20069. doi:10.1021/jp8067766.

716 [26] J. Xu, A. Zheng, X. Wang, G. Qi, J. Su, J. Du, Z. Gan, J. Wu, W. Wang, F. Deng, Room
717 temperature activation of methane over Zn modified H-ZSM-5 zeolites: Insight from solid-
718 state NMR and theoretical calculations, *Chem. Sci.* 3 (2012) 2932–2940.
719 doi:10.1039/c2sc20434g.

720 [27] C. Mukarakate, M.J. Watson, J. ten Dam, X. Baucherel, S. Budhi, M.M. Yung, H. Ben, K.
721 Iisa, R.M. Baldwin, M.R. Nimlos, Upgrading biomass pyrolysis vapors over β -zeolites: role
722 of silica-to-alumina ratio, *Green Chem.* 16 (2014) 4891–4905. doi:10.1039/C4GC01425A.

723 [28] C.D. Baertsch, H.H. Funke, J.L. Falconer, R.D. Noble, Permeation of Aromatic
724 Hydrocarbon Vapors through Silicalite–Zeolite Membranes, *J. Phys. Chem.* 100 (1996)
725 7676–7679. doi:10.1021/jp960226h.

726 [29] A. Primo, H. Garcia, Zeolites as catalysts in oil refining., *Chem. Soc. Rev.* 43 (2014) 7548–
727 7561. doi:10.1039/c3cs60394f.

728 [30] P. He, Y. Xiao, Y. Tang, J. Zhang, H. Song, Simultaneous Low-Cost Carbon Sources and
729 CO₂ Valorizations through Catalytic Gasification, *Energy & Fuels.* 29 (2015) 7497–7507.
730 doi:10.1021/acs.energyfuels.5b01712.

731 [31] W. Ding, G.D. Meitzner, E. Iglesia, The Effects of Silanation of External Acid Sites on the
732 Structure and Catalytic Behavior of Mo/H-ZSM5, *J. Catal.* 206 (2002) 14–22.
733 doi:10.1006/jcat.2001.3457.

734 [32] P. Bijani, M. Sohrabi, S. Sahebdelfar, Thermodynamic Analysis of Nonoxidative
735 Dehydroaromatization of Methane, *Chem. Eng. Technol.* 35 (2012) 1825–1832.
736 doi:10.1002/ceat.201100436.

737 [33] M.-F. Hsieh, Y. Zhou, H. Thirumalai, L.C. Grabow, J.D. Rimer, Silver-Promoted
738 Dehydroaromatization of Ethylene over ZSM-5 Catalysts, *ChemCatChem.* (2017) 1–9.
739 doi:10.1002/cctc.201700192.

740 [34] T. Baba, Y. Iwase, K. Inazu, D. Masih, A. Matsumoto, Catalytic properties of silver-
741 exchanged zeolites for propene production by conversion of methane in the presence of
742 ethene, *Microporous Mesoporous Mater.* 101 (2007) 142–147.
743 doi:10.1016/j.micromeso.2006.11.004.

744 [35] E. Pretsch, P. Buhlmann, M. Badertscher, *Structure Determination of Organic Compounds*,
745 Springer Berlin Heidelberg, 2009. doi:10.1007/978-3-540-93810-1.

746 [36] J. Chen, J.M. Thomas, G. Sankar, IR spectroscopic study of CD₃CN adsorbed on ALPO-18
747 molecular sieve and the solid acid catalysts SAPO-18 and MeAPO-18, *J. Chem. Soc.*
748 *Faraday Trans.* 90 (1994) 3455. doi:10.1039/ft9949003455.

749 [37] J. Jänen, J.H.M.C. Wolput, L.J.M. Ven, J.W. Haan, R. a. Santen, J.H.M.C. van Wolput,
750 L.J.M. van de Ven, J.W. de Haan, R.A. van Santen, FTIR spectroscopic and ¹H MAS NMR
751 studies of the influence of lattice chemistry and structure on Brønsted acidity in zeolites,
752 *Catal. Letters.* 39 (1996) 147–152. doi:10.1007/BF00805574.

753 [38] J.N. Kondo, K. Domen, IR observation of adsorption and reactions of olefins on H-form
754 zeolites, *J. Mol. Catal. A Chem.* 199 (2003) 27–38. doi:10.1016/S1381-1169(03)00015-3.

755 [39] D. Yi, H. Huang, X. Meng, L. Shi, Adsorption-desorption behavior and mechanism of
756 dimethyl disulfide in liquid hydrocarbon streams on modified Y zeolites, *Appl. Catal. B*

757 Environ. 148–149 (2014) 377–386. doi:10.1016/j.apcatb.2013.11.027.

758 [40] S.M.T. Almutairi, B. Mezari, E.A. Pidko, P.C.M.M. Magusin, E.J.M. Hensen, Influence of
759 steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite, J. Catal.
760 307 (2013) 194–203. doi:10.1016/j.jcat.2013.07.021.

761 [41] W. Xu, S.J. Miller, P.K. Agrawal, C.W. Jones, Zeolite topology effects in the alkylation of
762 phenol with propylene, Appl. Catal. A Gen. 459 (2013) 114–120.
763 doi:10.1016/j.apcata.2013.03.019.

764 [42] R. Buzzoni, S. Bordiga, G. Ricchiardi, C. Lamberti, A. Zecchina, G. Bellussi, Interaction of
765 Pyridine with Acidic (H-ZSM5, H- β , H-MORD Zeolites) and Superacidic (H-Nafion
766 Membrane) Systems: An IR Investigation, Langmuir. 12 (1996) 930–940.
767 doi:10.1021/la950571i.

768 [43] V.P. Glazunov, S.E. Odinokov, Infrared spectra of pyridinium salts in solution-I. The region
769 of middle frequencies, Spectrochim. Acta Part A Mol. Spectrosc. 38 (1982) 399–408.
770 doi:10.1016/0584-8539(82)80014-7.

771 [44] F. Lónyi, J. Valyon, On the interpretation of the NH₃-TPD patterns of H-ZSM-5 and H-
772 mordenite, Microporous Mesoporous Mater. 47 (2001) 293–301. doi:10.1016/S1387-
773 1811(01)00389-4.

774 [45] H.G. Karge, Comparative Measurements on Acidity of Zeolites, in: Stud. Surf. Sci. Catal.,
775 1991: pp. 133–156. doi:10.1016/S0167-2991(08)62903-1.

776 [46] Y. Xu, S. Liu, X. Guo, L. Wang, M. Xie, Methane activation without using oxidants over
777 Mo/HZSM-5 zeolite catalysts, Catal. Letters. 30 (1995) 135–149. doi:10.1007/BF00813680.

778 [47] Y. Shu, Y. Xu, S. Wong, L. Wang, X. Guo, Promotional Effect of Ru on the Dehydrogenation
779 and Aromatization of Methane in the Absence of Oxygen over Mo / HZSM-5 Catalysts, J.

780 Catal. 19 (1997) 11–19. doi:<http://dx.doi.org/10.1006/jcat.1997.1726>.

781 [48] K.S. Wong, J.W. Thybaut, E. Tangstad, M.W. Stöcker, G.B. Marin, Methane aromatisation
782 based upon elementary steps: Kinetic and catalyst descriptors, Microporous Mesoporous
783 Mater. 164 (2012) 302–312. doi:[10.1016/j.micromeso.2012.07.002](https://doi.org/10.1016/j.micromeso.2012.07.002).

784 [49] P. He, Y. Lou, H. Song, Olefin upgrading under methane environment over Ag-Ga/ZSM-5
785 catalyst, Fuel. 182 (2016) 577–587. doi:[10.1016/j.fuel.2016.05.126](https://doi.org/10.1016/j.fuel.2016.05.126).

786 [50] C. Tang, W. Sun, W. Yan, Green and facile fabrication of silver nanoparticles loaded
787 activated carbon fibers with long-lasting antibacterial activity, RSC Adv. 4 (2014) 523–530.
788 doi:[10.1039/C3RA44799E](https://doi.org/10.1039/C3RA44799E).

789 [51] D.Y. Guo, Z.P. Wu, Y.H. An, P.G. Li, P.C. Wang, X.L. Chu, X.C. Guo, Y.S. Zhi, M. Lei, L.H.
790 Li, W.H. Tang, Unipolar resistive switching behavior of amorphous gallium oxide thin films
791 for nonvolatile memory applications, Appl. Phys. Lett. 106 (2015) 2–7.
792 doi:[10.1063/1.4907174](https://doi.org/10.1063/1.4907174).

793 [52] K.A. Almeida, R. Landers, D. Cardoso, Properties of faujasite zeolites containing methyl-
794 substituted ammonium cations, J. Catal. 294 (2012) 151–160.
795 doi:[10.1016/j.jcat.2012.07.017](https://doi.org/10.1016/j.jcat.2012.07.017).

796

797

798

799

800

801

802

803

804 **Figure Captions**

805 **Figure 1.** The component distribution of the products obtained from the reaction between
806 propylene and methane at 1.0 (a), 3.0 (b), 5.0 (c) and 7.0 (d) MPa and 400 °C for 1 h

807 **Figure 2.** The ratio between toluene and benzene (a) and the average carbon number (b) of the
808 products obtained from the reaction between propylene and methane at variable pressures

809 **Figure 3.** The ^{13}C NMR spectra of the liquid products collected from the reaction between
810 propylene and $\text{CH}_4/\text{CH}_4^{13}$

811 **Figure 4.** The ^1H NMR spectra (a and b) and ^2D NMR spectra (c and d) of the liquid products
812 collected from the reaction between propylene and CH_4/CD_4

813 **Figure 5.** The ^1H NMR spectra (a and b) and ^2D NMR spectra (c and d) of the liquid products
814 collected from the reaction between styrene and CH_4/CD_4

815 **Figure 6.** DRIFT spectra acquired upon propylene adsorption over Ag-Ga/ZSM-5 under N_2 , CH_4
816 and CD_4 atmosphere at various temperatures. Spectra acquired under CD_4 without propylene
817 introduction are displayed by the green curves

818 **Figure 7.** The DSC profiles collected during the reaction of styrene over Ag-Ga/ZSM-5 under
819 various environments and methane-alone run at 400 °C and 1 atm

820 **Figure 8.** XRD patterns of HZSM-5 and Ag-Ga/ZSM-5 before and after reaction with propylene
821 under various environments at 7.0 MPa and 400 °C for 1h

822 **Figure 9.** TEM images of fresh Ag-Ga/ZSM-5 in Bright Field (a) and High Angle Annual Dark
823 Field (b), and the EDX spectra (c and d) acquired at the corresponding areas in (b)

824 **Figure 10.** TEM images of spent Ag-Ga/ZSM-5 catalyst collected under CH_4 and N_2 environments
825 at 7.0 MPa in Bright Field (a and e) and High Angle Annual Dark Field (b and f), and the EDX
826 spectra (c, d, g and h) acquired at the corresponding areas in (b and f)

827 **Figure 11.** The DRIFT spectra collected over HZSM-5 and Ag-Ga/ZSM-5 upon pyridine
828 adsorption at room temperature

829 **Figure 12.** The NH₃-TPD profiles collected over different catalysts

830 **Figure 13.** TGA profiles collected over spent Ag-Ga/ZSM-5 after reaction with propylene at 7.0
831 MPa and 400 °C for 1 h under CH₄ and N₂

832 **Figure 14.** XPS spectra of Ag-Ga/ZSM-5 before and after reaction with propylene at 7.0 MPa and
833 400 °C for 1 h under different environments at Ag 3d (a), O 1s (b), Ga 2p_{3/2} (c) and C 1s (d) regions

834

835 **Tables**

836 **Table 1.** The gas phase products and methane conversion after the reaction between C₃H₆ and CH₄
837 over Ag-Ga/ZSM-5 catalyst

838 **Table 2.** ¹H NMR peak area ratio with respect to CHCl₃ of the aromatization products of propylene
839 and styrene under CH₄ and CD₄ environment

840 **Table 3.** The porous properties of various catalysts

Table 1. The gas phase products and methane conversion after the reaction between C₃H₆ and CH₄ over Ag-Ga/ZSM-5 catalyst

Pressure/MPa		1.0		3.0		5.0		7.0	
Gas phase		N ₂	CH ₄	N ₂	CH ₄	N ₂	CH ₄	N ₂	CH ₄
H ₂		1.8	2.6	0.8	1.1	0	0	0	0
Methane		0.5	0.9 ^a	0	3.9 ^a	0	13.0 ^a	0	13.9 ^a
C ₂ H ₄		0	0.002	0.01	0.01	0	0.01	0	0
C ₂ H ₆		0.28	1.2	0.05	0.55	0	0	0	0
C ₃ H ₆		5.9 ^a	5.9 ^a	5.9 ^a	6.1 ^a	5.9 ^a	5.9 ^a	5.9 ^a	6.0 ^a
C ₃ H ₈		2.3	3.1	2.2	2.7	2.1	2.4	2.0	1.9
C ₄ H ₈		0	0.21	0	0.33	0	0.35	0	0.41
C ₄ H ₁₀		0.19	0.20	0.28	0.35	0.25	0.34	0.30	0.39
CH ₄		-	1.8	-	2.3	-	4.7	-	3.8
conversion/%									

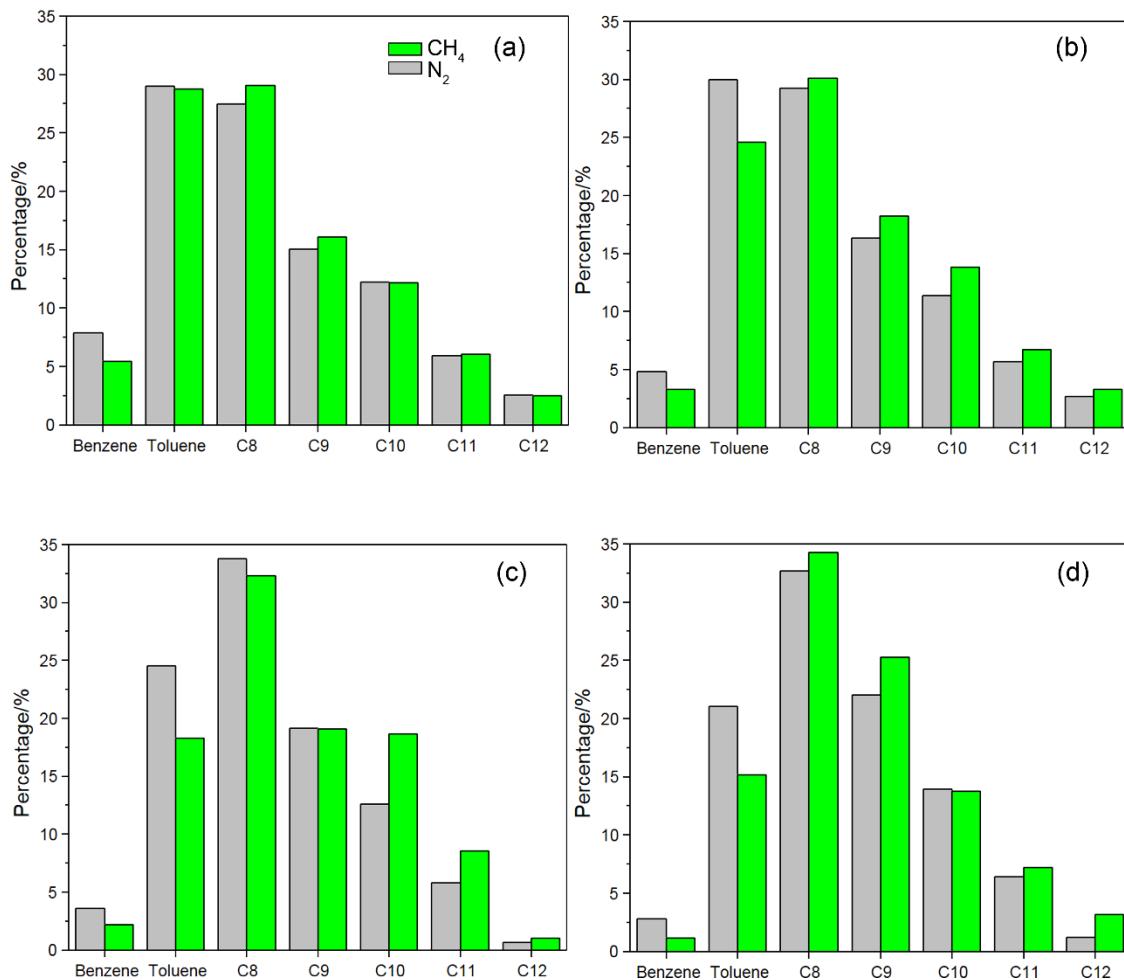

a) converted CH₄ and C₃H₆; unit of data in this table is in mmol

Table 2. ^1H NMR peak area ratio with respect to CHCl_3 of the aromatization products of propylene and styrene under CH_4 and CD_4 environment

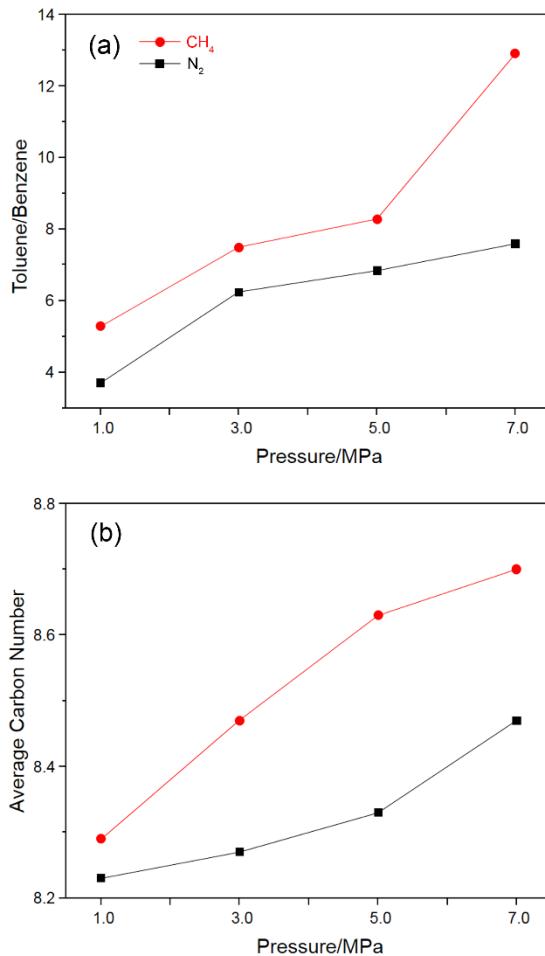
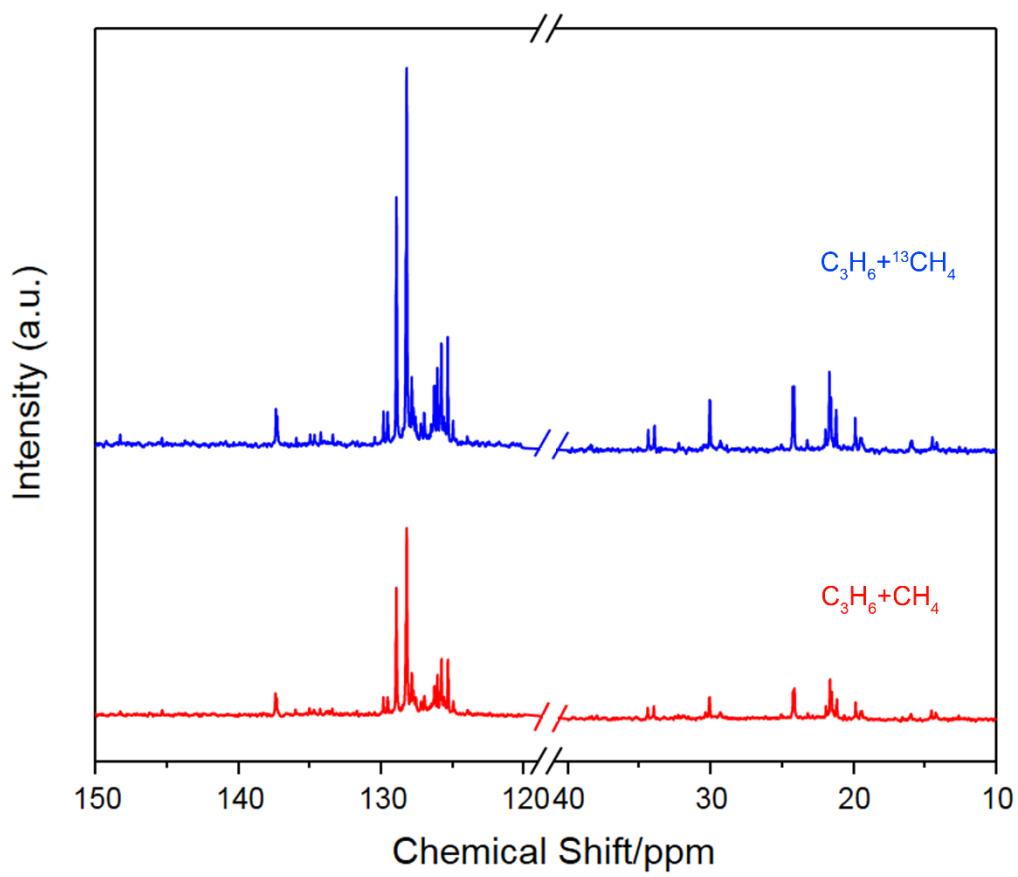
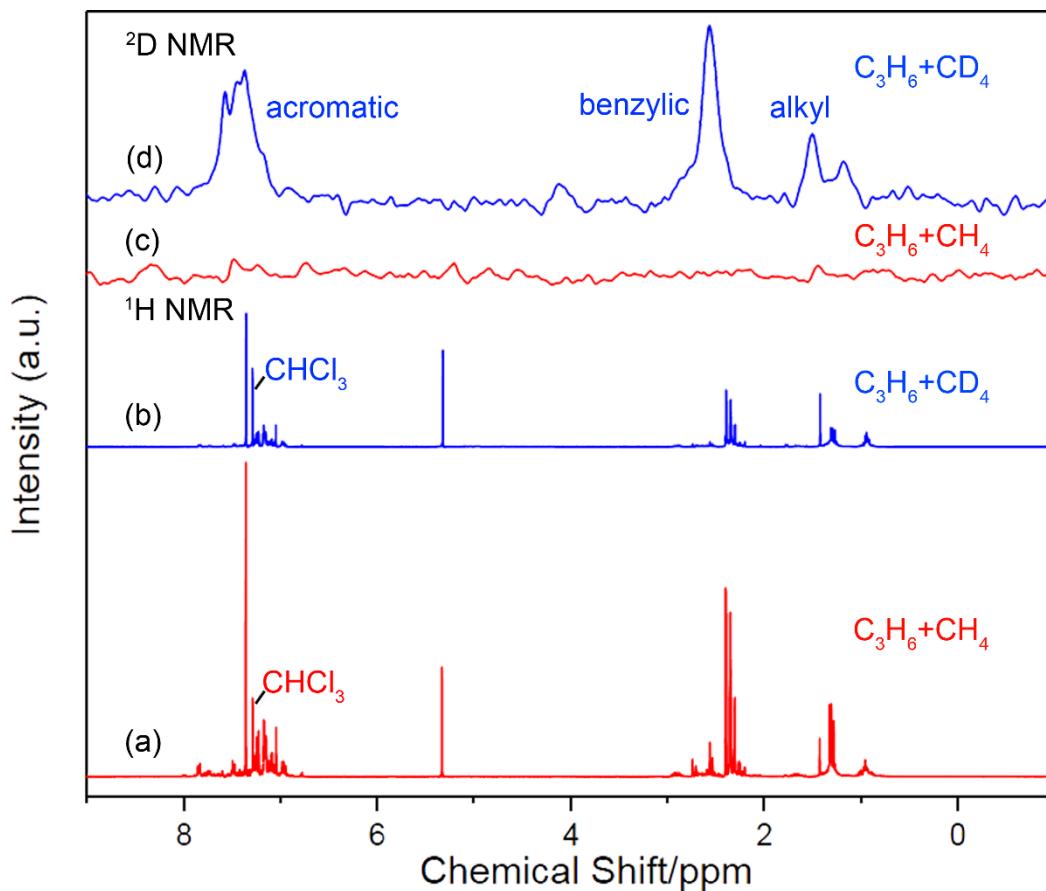
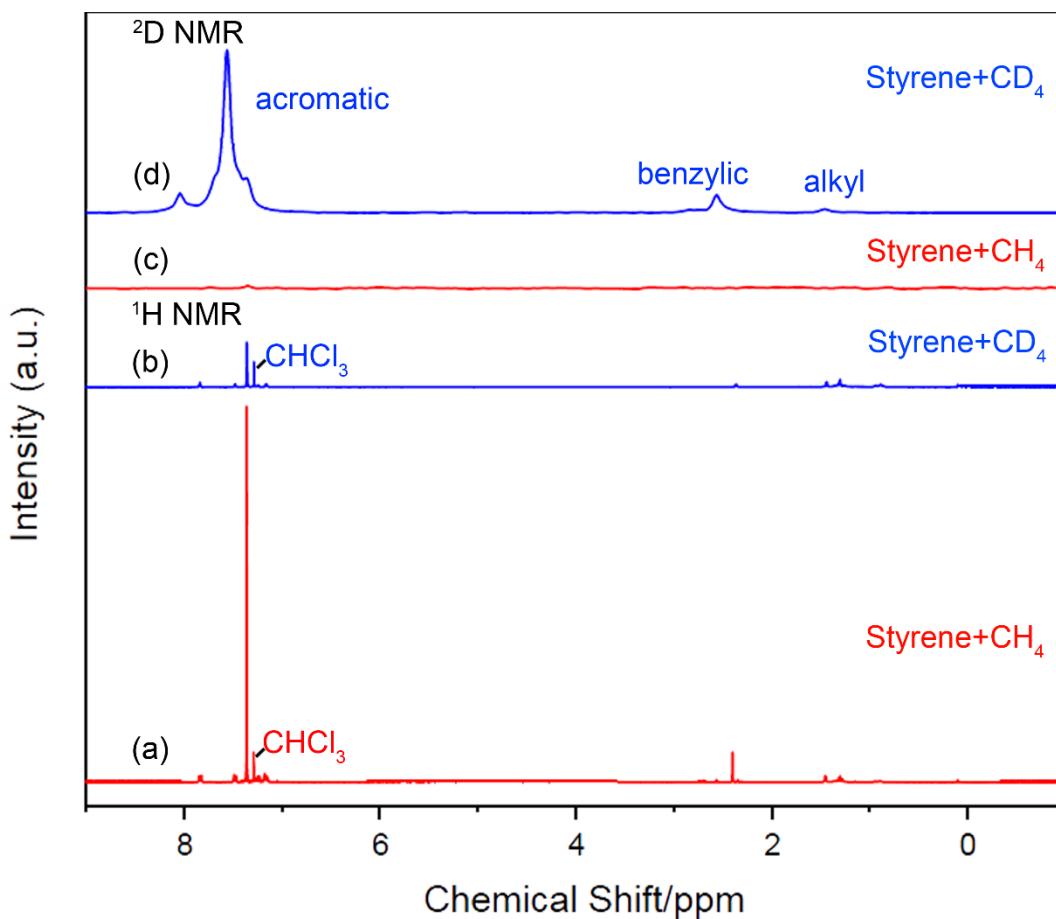
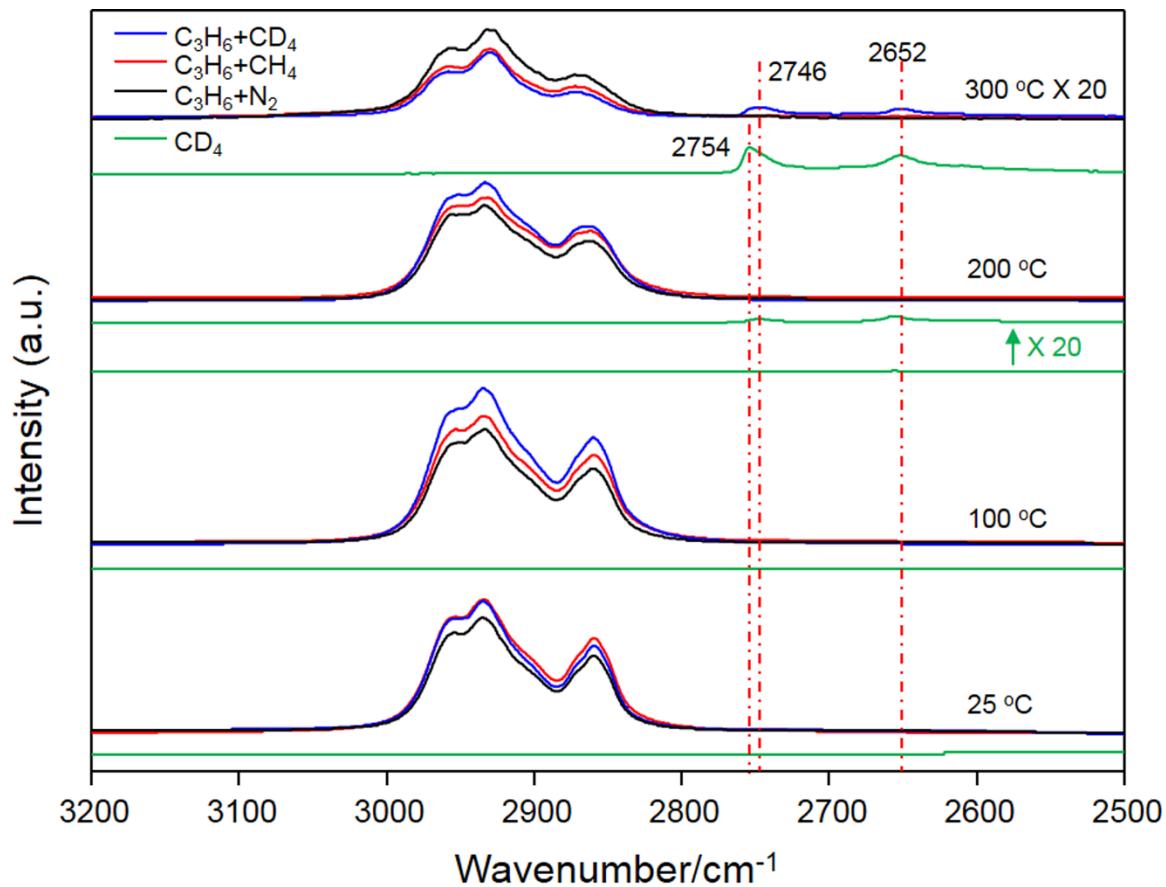

H/D sites	Propylene			Styrene		
	CH_4	CD_4	Decrease/%	CH_4	CD_4	Decrease/%
Aromatics	23.0	9.2	60	19.7	5.3	73
Benzyllic	18.1	6.7	63	2.9	0.51	83
Alkyl	11.4	7.1	38	4.4	4.3	2

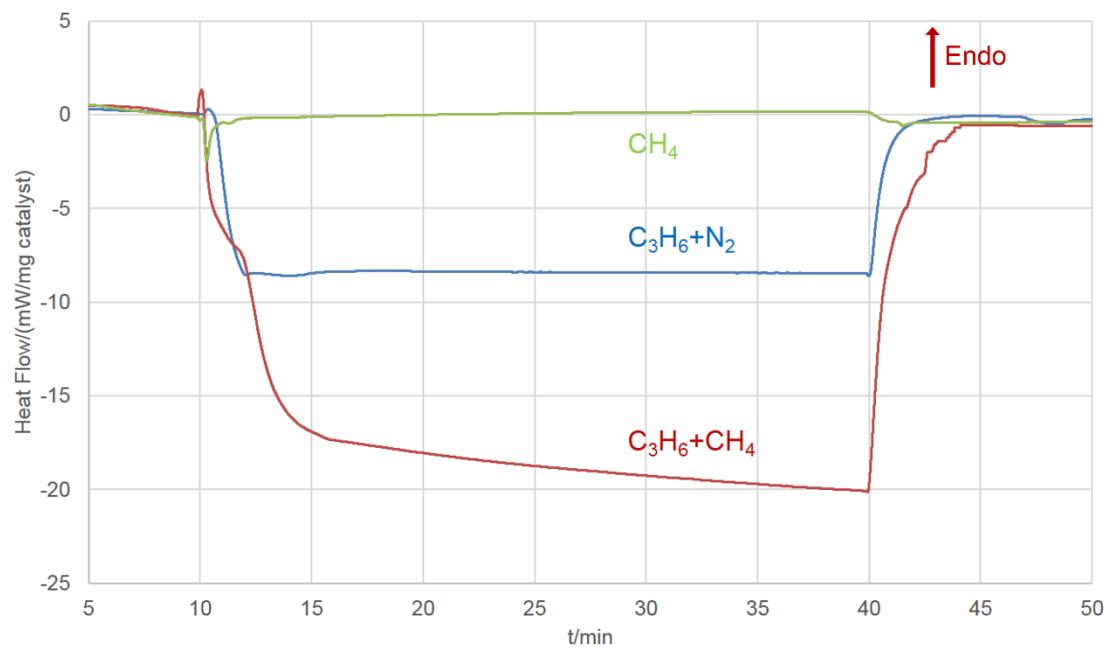
Table 3. The porous properties of various catalysts

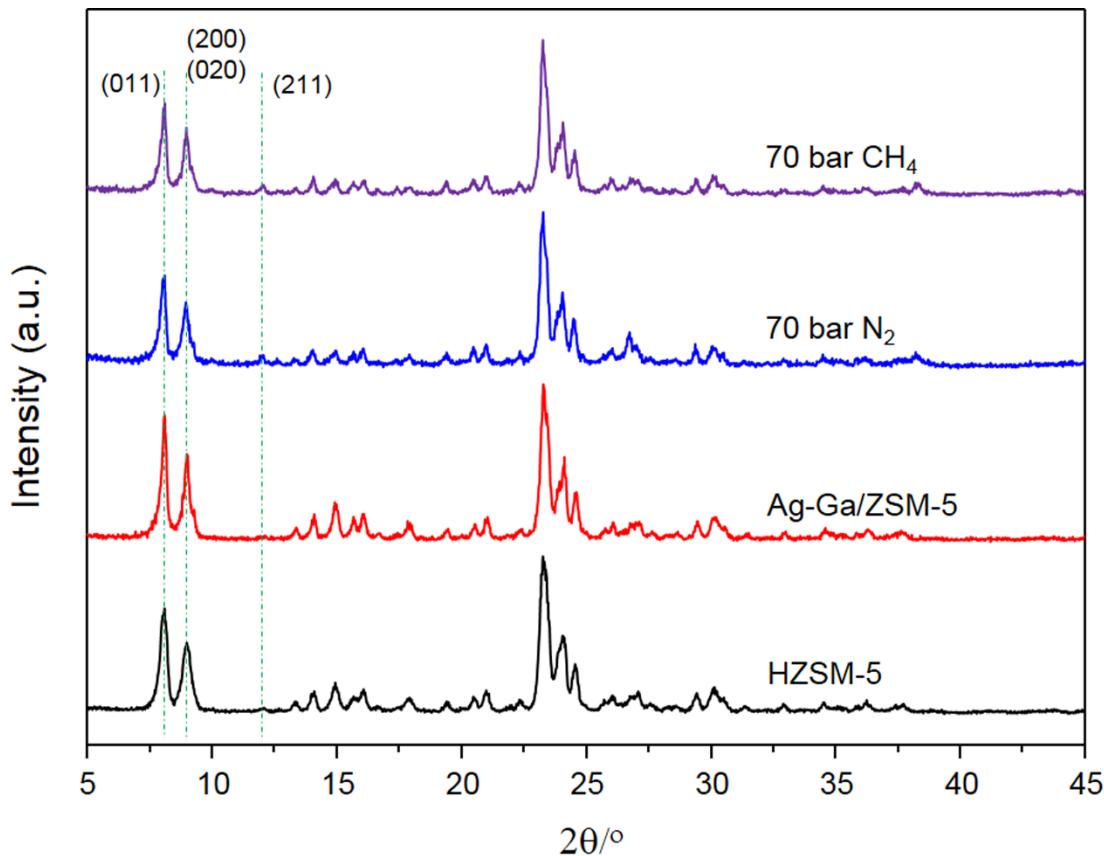

Samples	BET Surface Area (m ² /g)			Porous Volume (cm ³ /g)		
	External	Microporous	Total	Microporous	Mesoporous	Total
HZSM-5	109	292	401	0.149	0.142	0.291
Ag-Ga/ZSM-5	108	346	454	0.142	0.138	0.280
Ag-Ga/ZSM-5 CH ₄	86	241	327	0.123	0.112	0.235
Ag-Ga/ZSM-5 N ₂	83	256	339	0.131	0.120	0.251

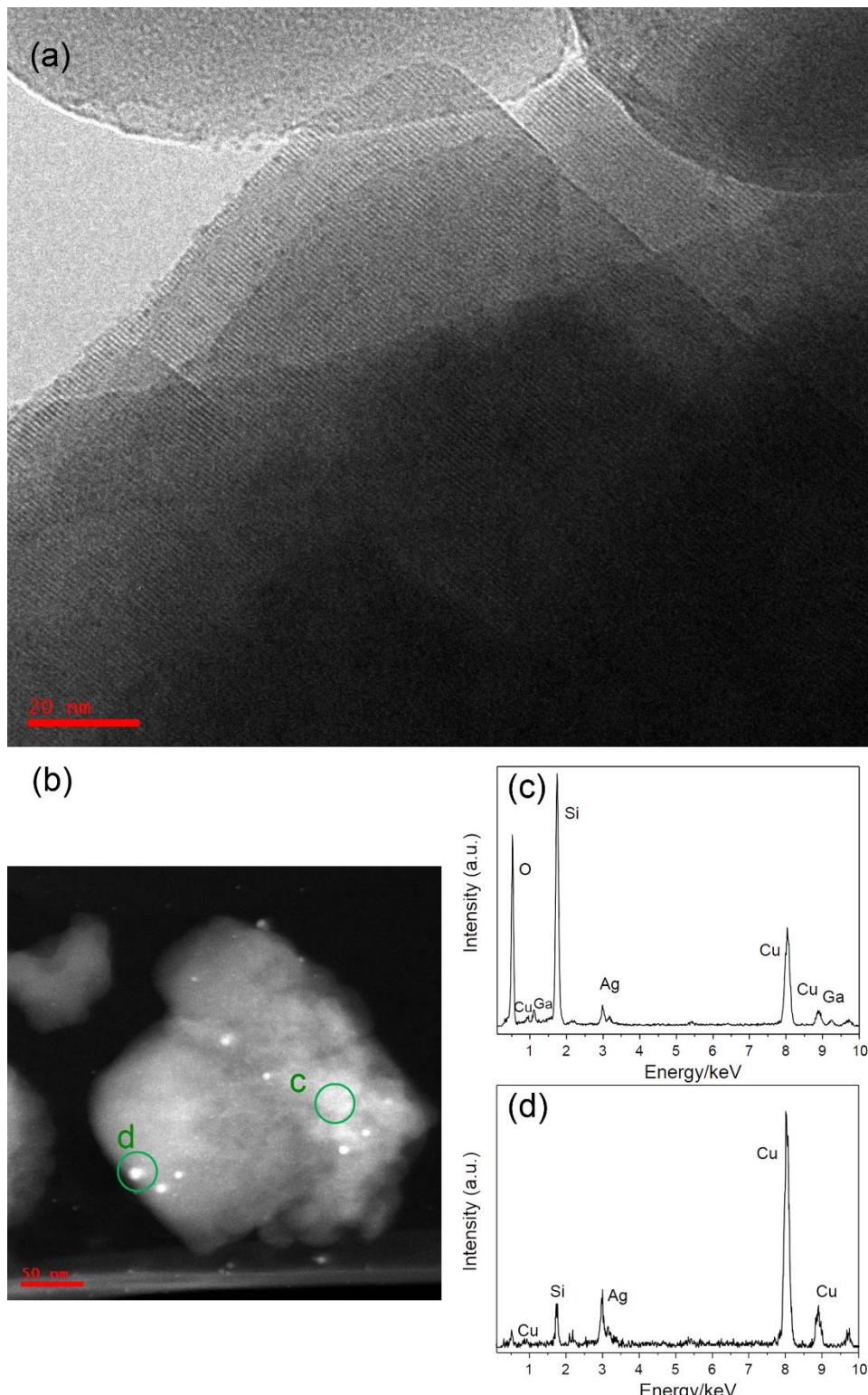

Figure 1. The component distribution of the products obtained from the reaction between propylene and methane at 1.0 (a), 3.0 (b), 5.0 (c) and 7.0 (d) MPa and 400 °C for 1 h

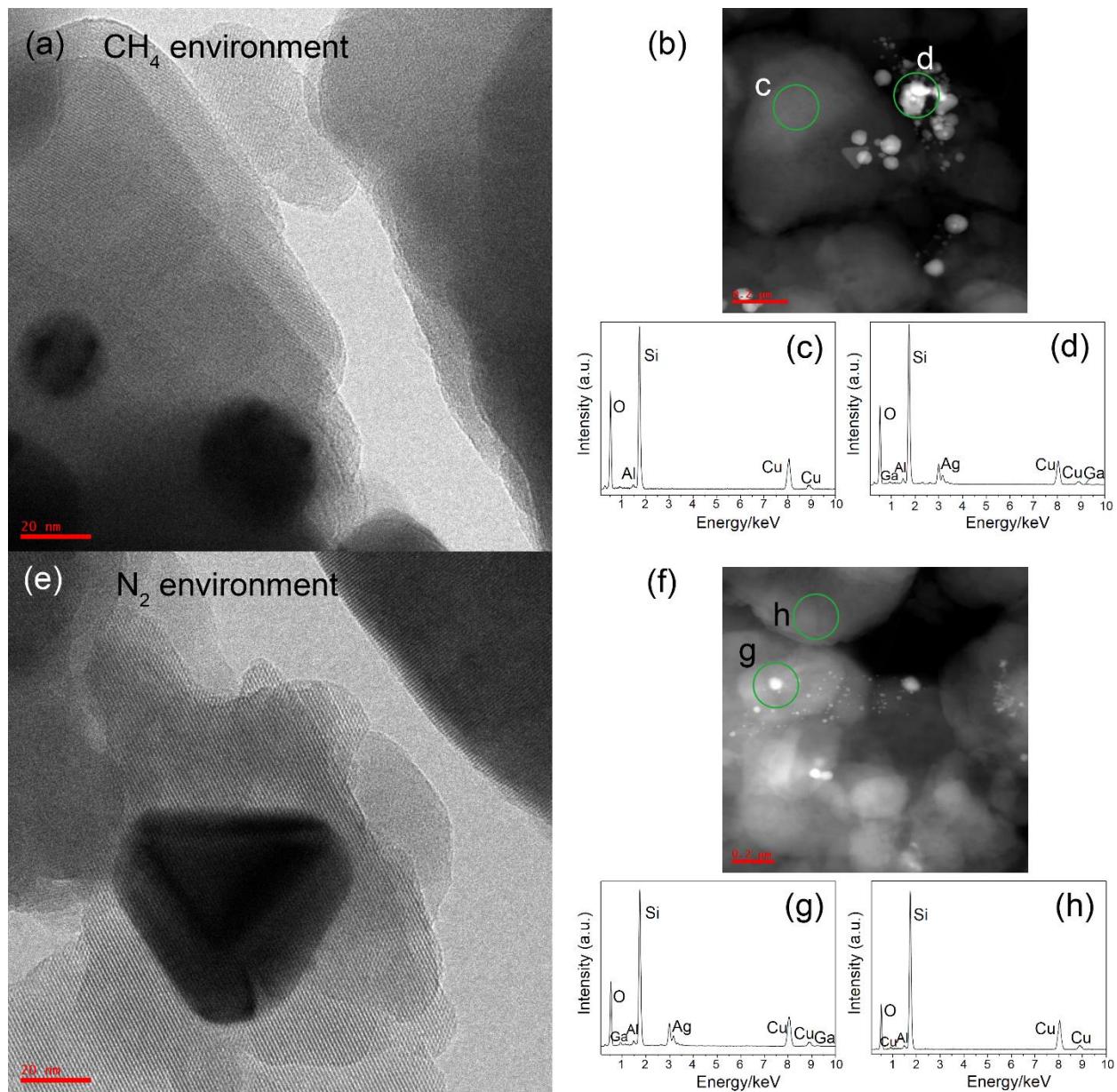

Figure 2. The ratio between toluene and benzene (a) and the average carbon number (b) of the products obtained from the reaction between propylene and methane at 1.0, 3.0, 5.0 and 7.0 MPa and 400 °C for 1 h

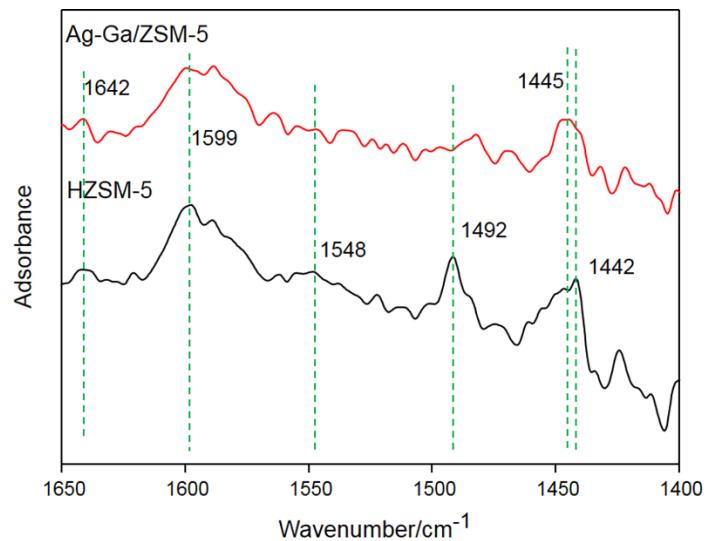

Figure 3. The ¹³C NMR spectra of the liquid products collected from the reaction between propylene and $\text{CH}_4/^{13}\text{CH}_4$ at 0.3 MPa and 400 °C for 1 h

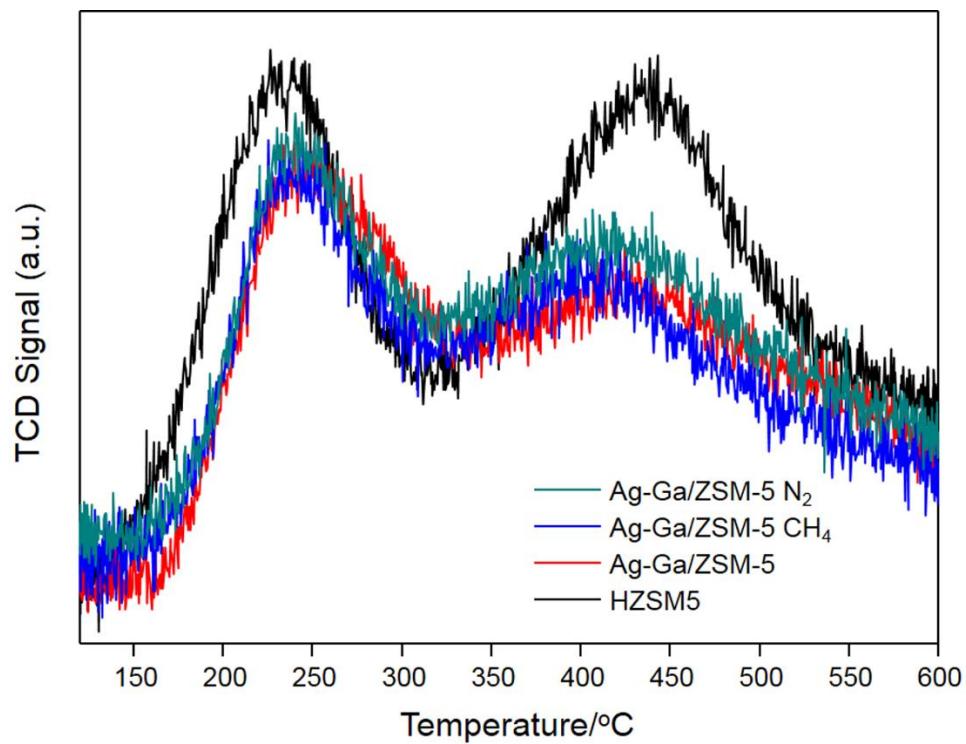

Figure 4. The ^1H NMR spectra (a and b) and ^2D NMR spectra (c and d) of the liquid products collected from the reaction between propylene and CH_4/CD_4 at 0.3 MPa and 400 $^{\circ}\text{C}$ for 1 h

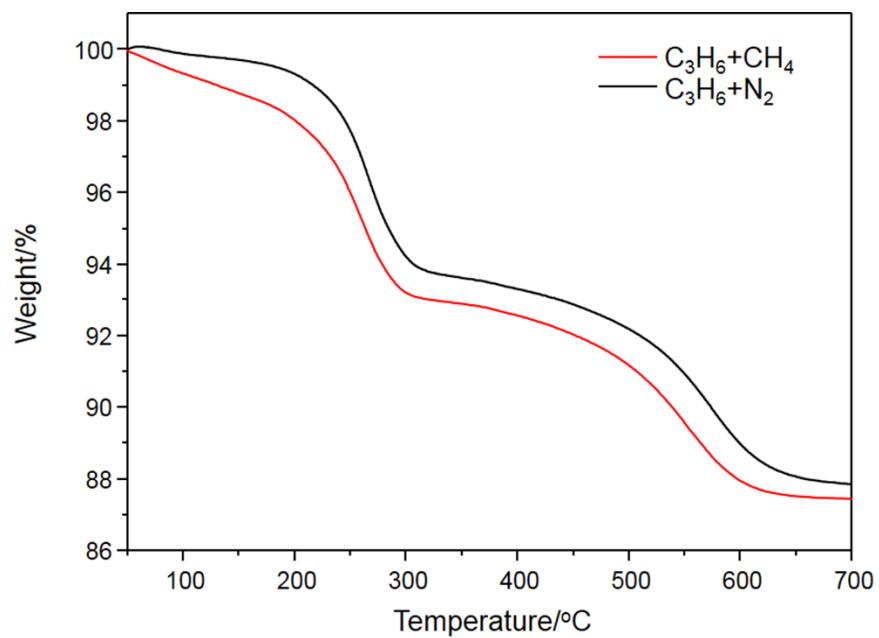

Figure 5. The ^1H NMR spectra (a and b) and ^2D NMR spectra (c and d) of the liquid products collected from the reaction between styrene and CH_4/CD_4 at 0.3 MPa and 400 °C for 1 h


Figure 6. DRIFT spectra acquired upon propylene adsorption over Ag-Ga/ZSM-5 under N_2 , CH_4 and CD_4 atmosphere at various temperatures. Spectra acquired under CD_4 without propylene introduction are displayed by the green curves


Figure 7. The DSC profiles collected during the reaction of styrene over Ag-Ga/ZSM-5 under various environments and methane-alone run at 400 °C and 1 atm


Figure 8. XRD patterns of HZSM-5 and Ag-Ga/ZSM-5 before and after reaction with propylene under various environments at 7.0 MPa and 400 °C for 1h


Figure 9. TEM images of fresh Ag-Ga/ZSM-5 in Bright Field (a) and High Angle Annual Dark Field (b), and the EDX spectra (c and d) acquired at the corresponding areas in (b)


Figure 10. TEM images of spent Ag-Ga/ZSM-5 catalyst collected under CH_4 and N_2 environments at 7.0 MPa in Bright Field (a and e) and High Angle Annual Dark Field (b and f), and the EDX spectra (c, d, g and h) acquired at the corresponding areas in (b and f)

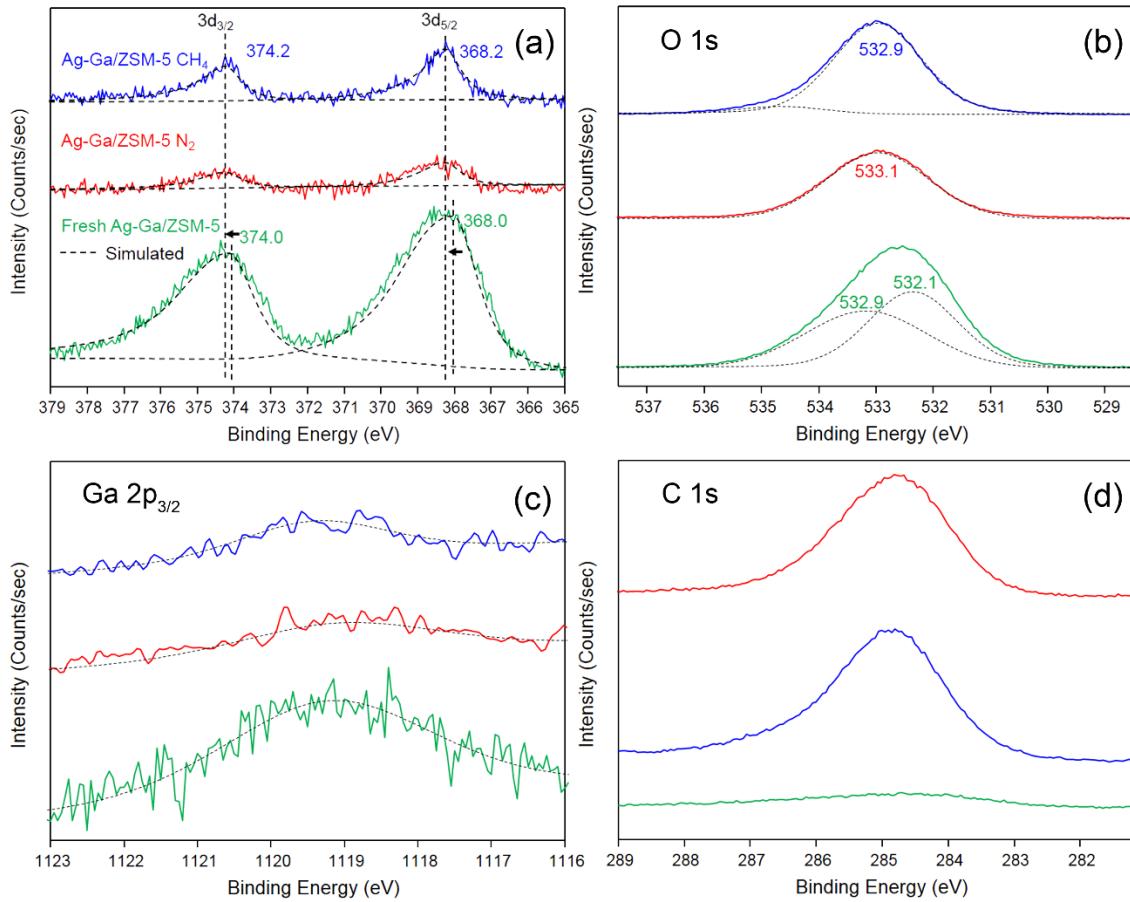

Figure 11. The DRIFT spectra collected over HZSM-5 and Ag-Ga/ZSM-5 upon pyridine adsorption at room temperature

Figure 12. The NH_3 -TPD profiles collected over different catalysts

Figure 13. TGA profiles collected over spent Ag-Ga/ZSM-5 after reaction with propylene at 7.0 MPa and 400 °C for 1 h under CH_4 and N_2

Figure 14. XPS spectra of Ag-Ga/ZSM-5 before and after reaction with propylene at 7.0 MPa and 400 °C for 1 h under different environments at Ag 3d (a), O 1s (b), Ga 2p_{3/2} (c) and C 1s (d) region