DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li–O2 Batteries: A Consideration for the Characterization of Lithium Superoxide

Abstract

We show that a common Li-O2 battery cathode binder, poly(vinylidene fluoride) (PVDF), degrades in the presence of reduced oxygen species during Li-O2 discharge when adventitious impurities are present. This degradation process forms products that exhibit Raman shifts (~1133 and 1525 cm-1) nearly identical to those reported to belong to lithium superoxide (LiO2), complicating the identification of LiO2in Li-O2 batteries. We show that these peaks are not observed when characterizing extracted discharged cathodes that employ poly(tetrafluoroethylene) (PTFE) as a binder, even when used to bind iridium-decorated reduced graphene oxide (Ir-rGO)-based cathodes similar to those that reportedly stabilize bulk LiO2 formation. We confirm that for all extracted discharged cathodes on which the 1133 and 1525 cm-1 Raman shifts are observed, only a 2.0 e-/O2process is identified during the discharge, and lithium peroxide (Li2O2) is predominantly formed (along with typical parasitic side product formation). Our results strongly suggest that bulk, stable LiO2formation via the 1 e-/O2process is not an active discharge reaction in Li-O2 batteries.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1];  [1];  [3];  [4];  [2]; ORCiD logo [1]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  3. Stanford Univ., Stanford, CA (United States). SUNCAT Center for Interface Science and Catalysis and Dept. of Chemical Engineering; SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. IBM Almaden Research Center, San Jose, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1360209
Alternate Identifier(s):
OSTI ID: 1458486
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231; DGE-1106400; NNX16AM56H; CBET-1604927
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Volume: 8; Journal Issue: 6; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Papp, Joseph K., Forster, Jason D., Burke, Colin M., Kim, Hyo Won, Luntz, Alan C., Shelby, Robert M., Urban, Jeffrey J., and McCloskey, Bryan D. Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li–O2 Batteries: A Consideration for the Characterization of Lithium Superoxide. United States: N. p., 2017. Web. doi:10.1021/acs.jpclett.7b00040.
Papp, Joseph K., Forster, Jason D., Burke, Colin M., Kim, Hyo Won, Luntz, Alan C., Shelby, Robert M., Urban, Jeffrey J., & McCloskey, Bryan D. Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li–O2 Batteries: A Consideration for the Characterization of Lithium Superoxide. United States. https://doi.org/10.1021/acs.jpclett.7b00040
Papp, Joseph K., Forster, Jason D., Burke, Colin M., Kim, Hyo Won, Luntz, Alan C., Shelby, Robert M., Urban, Jeffrey J., and McCloskey, Bryan D. Mon . "Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li–O2 Batteries: A Consideration for the Characterization of Lithium Superoxide". United States. https://doi.org/10.1021/acs.jpclett.7b00040. https://www.osti.gov/servlets/purl/1360209.
@article{osti_1360209,
title = {Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li–O2 Batteries: A Consideration for the Characterization of Lithium Superoxide},
author = {Papp, Joseph K. and Forster, Jason D. and Burke, Colin M. and Kim, Hyo Won and Luntz, Alan C. and Shelby, Robert M. and Urban, Jeffrey J. and McCloskey, Bryan D.},
abstractNote = {We show that a common Li-O2 battery cathode binder, poly(vinylidene fluoride) (PVDF), degrades in the presence of reduced oxygen species during Li-O2 discharge when adventitious impurities are present. This degradation process forms products that exhibit Raman shifts (~1133 and 1525 cm-1) nearly identical to those reported to belong to lithium superoxide (LiO2), complicating the identification of LiO2in Li-O2 batteries. We show that these peaks are not observed when characterizing extracted discharged cathodes that employ poly(tetrafluoroethylene) (PTFE) as a binder, even when used to bind iridium-decorated reduced graphene oxide (Ir-rGO)-based cathodes similar to those that reportedly stabilize bulk LiO2 formation. We confirm that for all extracted discharged cathodes on which the 1133 and 1525 cm-1 Raman shifts are observed, only a 2.0 e-/O2process is identified during the discharge, and lithium peroxide (Li2O2) is predominantly formed (along with typical parasitic side product formation). Our results strongly suggest that bulk, stable LiO2formation via the 1 e-/O2process is not an active discharge reaction in Li-O2 batteries.},
doi = {10.1021/acs.jpclett.7b00040},
journal = {Journal of Physical Chemistry Letters},
number = 6,
volume = 8,
place = {United States},
year = {Mon Feb 27 00:00:00 EST 2017},
month = {Mon Feb 27 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 98 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Critical Review of Li∕Air Batteries
journal, January 2012

  • Christensen, Jake; Albertus, Paul; Sanchez-Carrera, Roel S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2, p. R1-R30
  • DOI: 10.1149/2.086202jes

Nonaqueous Li–Air Batteries: A Status Report
journal, October 2014

  • Luntz, Alan C.; McCloskey, Bryan D.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500054y

Advances in understanding mechanisms underpinning lithium–air batteries
journal, September 2016


Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries
journal, December 2014

  • Aetukuri, Nagaphani B.; McCloskey, Bryan D.; García, Jeannette M.
  • Nature Chemistry, Vol. 7, Issue 1
  • DOI: 10.1038/nchem.2132

Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery
journal, April 2010

  • Laoire, Cormac O.; Mukerjee, Sanjeev; Abraham, K. M.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 19
  • DOI: 10.1021/jp102019y

Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications
journal, November 2009

  • Laoire, Cormac O.; Mukerjee, Sanjeev; Abraham, K. M.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 46, p. 20127-20134
  • DOI: 10.1021/jp908090s

The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries
journal, November 2014

  • Johnson, Lee; Li, Chunmei; Liu, Zheng
  • Nature Chemistry, Vol. 6, Issue 12
  • DOI: 10.1038/nchem.2101

Oxygen Reactions in a Non-Aqueous Li+ Electrolyte
journal, May 2011

  • Peng, Zhangquan; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Angewandte Chemie International Edition, Vol. 50, Issue 28, p. 6351-6355
  • DOI: 10.1002/anie.201100879

Tunneling and Polaron Charge Transport through Li 2 O 2 in Li–O 2 Batteries
journal, September 2013

  • Luntz, A. C.; Viswanathan, V.; Voss, J.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 20
  • DOI: 10.1021/jz401926f

Electrical conductivity in Li 2 O 2 and its role in determining capacity limitations in non-aqueous Li-O 2 batteries
journal, December 2011

  • Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.
  • The Journal of Chemical Physics, Vol. 135, Issue 21
  • DOI: 10.1063/1.3663385

Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery
journal, February 2010

  • Hummelshøj, J. S.; Blomqvist, J.; Datta, S.
  • The Journal of Chemical Physics, Vol. 132, Issue 7
  • DOI: 10.1063/1.3298994

Electron and Ion Transport In Li 2 O 2
journal, May 2013

  • Gerbig, Oliver; Merkle, Rotraut; Maier, Joachim
  • Advanced Materials, Vol. 25, Issue 22
  • DOI: 10.1002/adma.201300264

Combining Accurate O 2 and Li 2 O 2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li–O 2 Batteries
journal, August 2013

  • McCloskey, Bryan D.; Valery, Alexia; Luntz, Alan C.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
  • DOI: 10.1021/jz401659f

Limitations in Rechargeability of Li-O 2 Batteries and Possible Origins
journal, September 2012

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz301359t

The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries
journal, November 2012

  • Bryantsev, Vyacheslav S.; Uddin, Jasim; Giordani, Vincent
  • Journal of The Electrochemical Society, Vol. 160, Issue 1
  • DOI: 10.1149/2.027302jes

Predicting Solvent Stability in Aprotic Electrolyte Li–Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O 2 •– )
journal, November 2011

  • Bryantsev, Vyacheslav S.; Giordani, Vincent; Walker, Wesley
  • The Journal of Physical Chemistry A, Vol. 115, Issue 44
  • DOI: 10.1021/jp2073914

Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy
journal, December 2013

  • Leskes, Michal; Moore, Amy J.; Goward, Gillian R.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 51
  • DOI: 10.1021/jp410429k

Direct Detection of Discharge Products in Lithium-Oxygen Batteries by Solid-State NMR Spectroscopy
journal, July 2012

  • Leskes, Michal; Drewett, Nicholas E.; Hardwick, Laurence J.
  • Angewandte Chemie, Vol. 124, Issue 34
  • DOI: 10.1002/ange.201202183

Toward a Lithium–“Air” Battery: The Effect of CO 2 on the Chemistry of a Lithium–Oxygen Cell
journal, June 2013

  • Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja4016765

A lithium–oxygen battery based on lithium superoxide
journal, January 2016

  • Lu, Jun; Jung Lee, Yun; Luo, Xiangyi
  • Nature, Vol. 529, Issue 7586, p. 377-382
  • DOI: 10.1038/nature16484

Interfacial Effects on Lithium Superoxide Disproportionation in Li-O 2 Batteries
journal, January 2015

  • Zhai, Dengyun; Lau, Kah Chun; Wang, Hsien-Hau
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl503943z

Evidence for lithium superoxide-like species in the discharge product of a Li–O2 battery
journal, January 2013

  • Yang, Junbing; Zhai, Dengyun; Wang, Hsien-Hau
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 11, p. 3764-3771
  • DOI: 10.1039/c3cp00069a

Raman Evidence for Late Stage Disproportionation in a Li–O2 Battery
journal, July 2014

  • Zhai, Dengyun; Wang, Hsien-Hau; Lau, Kah Chun
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 15, p. 2705-2710
  • DOI: 10.1021/jz501323n

Matrix infrared spectrum and bonding in the lithium superoxide molecule, LiO2
journal, December 1968

  • Andrews, Lester
  • Journal of the American Chemical Society, Vol. 90, Issue 26, p. 7368-7370
  • DOI: 10.1021/ja01028a048

Mechanistic insights for the development of Li–O 2 battery materials: addressing Li 2 O 2 conductivity limitations and electrolyte and cathode instabilities
journal, January 2015

  • McCloskey, Bryan D.; Burke, Colin M.; Nichols, Jessica E.
  • Chemical Communications, Vol. 51, Issue 64
  • DOI: 10.1039/C5CC04620C

Utilizing in Situ Electrochemical SHINERS for Oxygen Reduction Reaction Studies in Aprotic Electrolytes
journal, May 2016

  • Galloway, Thomas A.; Hardwick, Laurence J.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 11
  • DOI: 10.1021/acs.jpclett.6b00730

Preparation of Graphitic Oxide
journal, March 1958

  • Hummers, William S.; Offeman, Richard E.
  • Journal of the American Chemical Society, Vol. 80, Issue 6, p. 1339-1339
  • DOI: 10.1021/ja01539a017

Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process
journal, July 2010

  • Xu, Yuxi; Sheng, Kaixuan; Li, Chun
  • ACS Nano, Vol. 4, Issue 7, p. 4324-4330
  • DOI: 10.1021/nn101187z

Ir nanoparticles-anchored reduced graphene oxide as a catalyst for oxygen electrode in Li–O2 cells
journal, January 2015

  • Kumar, Surender; Chinnathambi, Selvaraj; Munichandraiah, Nookala
  • New Journal of Chemistry, Vol. 39, Issue 9, p. 7066-7075
  • DOI: 10.1039/C5NJ01124H

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v

Reversibility of Noble Metal-Catalyzed Aprotic Li-O 2 Batteries
journal, November 2015


Amorphous Li 2 O 2 : Chemical Synthesis and Electrochemical Properties
journal, August 2016

  • Zhang, Yelong; Cui, Qinghua; Zhang, Xinmin
  • Angewandte Chemie International Edition, Vol. 55, Issue 36
  • DOI: 10.1002/anie.201605228

Chemical and Electrochemical Differences in Nonaqueous Li–O 2 and Na–O 2 Batteries
journal, March 2014

  • McCloskey, Bryan D.; Garcia, Jeannette M.; Luntz, Alan C.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 7
  • DOI: 10.1021/jz500494s

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Pretreatment of poly(vinyl fluoride) and poly(vinylidene fluoride) with potassium hydroxide
journal, May 1996

  • Brewis, D. M.; Mathieson, I.; Sutherland, I.
  • International Journal of Adhesion and Adhesives, Vol. 16, Issue 2
  • DOI: 10.1016/0143-7496(95)00053-4

Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism
journal, March 2000


Protocol of Electrochemical Test and Characterization of Aprotic Li-O2 Battery
journal, January 2016

  • Luo, Xiangyi; Wu, Tianpin; Lu, Jun
  • Journal of Visualized Experiments, Issue 113
  • DOI: 10.3791/53740

Works referencing / citing this record:

Three-Dimensional Nitrogen-Doped Hollow Carbon Fiber with a Micro-Scale Diameter as a Binder-Free Oxygen Electrode for Li-O 2 Batteries
journal, January 2019

  • Lim, Katie Heeyum; Kweon, Heejun; Kim, Hansung
  • Journal of The Electrochemical Society, Vol. 166, Issue 14
  • DOI: 10.1149/2.1101914jes

Catalysts in metal–air batteries
journal, April 2018


Facile and scalable carbon- and binder-free electrode materials for ultra-stable and highly improved Li–O 2 batteries
journal, January 2018

  • Luo, Cuiping; Li, Jiade; Tong, Shengfu
  • Chemical Communications, Vol. 54, Issue 23
  • DOI: 10.1039/c8cc00148k

Aprotic metal-oxygen batteries: recent findings and insights
journal, April 2017

  • Sharon, Daniel; Hirshberg, Daniel; Afri, Michal
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 7
  • DOI: 10.1007/s10008-017-3590-7

Anomalous Discharge Behavior of Graphite Nanosheet Electrodes in Lithium-Oxygen Batteries
journal, December 2019

  • Wunderlich, Philipp; Küpper, Jannis; Simon, Ulrich
  • Materials, Vol. 13, Issue 1
  • DOI: 10.3390/ma13010043

Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions
journal, February 2019

  • Shu, Chaozhu; Wang, Jiazhao; Long, Jianping
  • Advanced Materials, Vol. 31, Issue 15
  • DOI: 10.1002/adma.201804587

Lithium sulfonate-grafted poly(vinylidenefluoride-hexafluoro propylene) ionomer as binder for lithium-ion batteries
journal, January 2018

  • Wang, Zhiqun; Tian, Shaokang; Li, Shangda
  • RSC Advances, Vol. 8, Issue 36
  • DOI: 10.1039/c8ra02122h

Evaluating chemical bonding in dioxides for the development of metal–oxygen batteries: vibrational spectroscopic trends of dioxygenyls, dioxygen, superoxides and peroxides
journal, January 2019

  • Radjenovic, Petar M.; Hardwick, Laurence J.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 3
  • DOI: 10.1039/c8cp04652b

Probing the Reaction between PVDF and LiPAA vs Li 7 Si 3 : Investigation of Binder Stability for Si Anodes
journal, January 2019

  • Han, Binghong; Piernas-Muñoz, Maria Jose; Dogan, Fulya
  • Journal of The Electrochemical Society, Vol. 166, Issue 12
  • DOI: 10.1149/2.0241912jes

Recent Progress in Protecting Lithium Anodes for Li‐O 2 Batteries
journal, February 2019


Mechanism and performance of lithium–oxygen batteries – a perspective
journal, January 2017

  • Mahne, Nika; Fontaine, Olivier; Thotiyl, Musthafa Ottakam
  • Chemical Science, Vol. 8, Issue 10
  • DOI: 10.1039/c7sc02519j

Electrochemical Oxygen Sensor Based on the Interaction of Double-Layer Ionic Liquid Film (DLILF)
journal, January 2018

  • Zhang, Hao; Liu, Jingyuan; Liu, Qi
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.1431814jes

Strategies Toward Stable Nonaqueous Alkali Metal–O 2 Batteries
journal, May 2019


Flexible 1D Batteries: Recent Progress and Prospects
journal, July 2019


Synergic effect of catalyst/binder in passivation side-products of Li-oxygen cells
journal, November 2019

  • Márquez, Paulina; Amici, Julia; Aguirre, María Jesús
  • Journal of Solid State Electrochemistry, Vol. 23, Issue 12
  • DOI: 10.1007/s10008-019-04417-z

Applications of Conventional Vibrational Spectroscopic Methods for Batteries Beyond Li-Ion
journal, March 2018


A Critical Review on Functionalization of Air‐Cathodes for Nonaqueous Li–O 2 Batteries
journal, February 2019

  • Balaish, Moran; Jung, Ji‐Won; Kim, Il‐Doo
  • Advanced Functional Materials, Vol. 30, Issue 18
  • DOI: 10.1002/adfm.201808303

Controlling the Three‐Phase Boundary in Na–Oxygen Batteries: The Synergy of Carbon Nanofibers and Ionic Liquid
journal, August 2019

  • Pozo‐Gonzalo, Cristina; Zhang, Yafei; Ortiz‐Vitoriano, Nagore
  • ChemSusChem, Vol. 12, Issue 17
  • DOI: 10.1002/cssc.201901351

Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen
journal, March 2019


Gold decoration of silica by decomposition of aqueous gold( iii ) hydroxide at low temperatures
journal, January 2018

  • Macchione, M. A.; Samaniego, J. E.; Moiraghi, R.
  • RSC Advances, Vol. 8, Issue 36
  • DOI: 10.1039/c8ra01032c

Functional and stability orientation synthesis of materials and structures in aprotic Li–O 2 batteries
journal, January 2018

  • Zhang, Peng; Zhao, Yong; Zhang, Xinbo
  • Chemical Society Reviews, Vol. 47, Issue 8
  • DOI: 10.1039/c8cs00009c

Defect Chemistry in Discharge Products of Li-O 2 Batteries
journal, November 2018


Anomalous Discharge Behavior of Graphite Nanosheet Electrodes in Lithium-Oxygen Batteries
journal, December 2019

  • Wunderlich, Philipp; Küpper, Jannis; Simon, Ulrich
  • Materials, Vol. 13, Issue 1
  • DOI: 10.3390/ma13010043