DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine learning for many-body physics: The case of the Anderson impurity model

Abstract

We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.

Authors:
 [1];  [2];  [3];  [1]
  1. Columbia Univ., New York, NY (United States). Dept. of Physics
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  3. Univ. of Basel (Switzerland). Inst. of Physics Chemistry; Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1357598
Alternate Identifier(s):
OSTI ID: 1180270
Grant/Contract Number:  
AC02-06CH11357; 3F-3138
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 90; Journal Issue: 15; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 97 MATHEMATICS AND COMPUTING

Citation Formats

Arsenault, Louis-François, Lopez-Bezanilla, Alejandro, von Lilienfeld, O. Anatole, and Millis, Andrew J. Machine learning for many-body physics: The case of the Anderson impurity model. United States: N. p., 2014. Web. doi:10.1103/PhysRevB.90.155136.
Arsenault, Louis-François, Lopez-Bezanilla, Alejandro, von Lilienfeld, O. Anatole, & Millis, Andrew J. Machine learning for many-body physics: The case of the Anderson impurity model. United States. https://doi.org/10.1103/PhysRevB.90.155136
Arsenault, Louis-François, Lopez-Bezanilla, Alejandro, von Lilienfeld, O. Anatole, and Millis, Andrew J. Fri . "Machine learning for many-body physics: The case of the Anderson impurity model". United States. https://doi.org/10.1103/PhysRevB.90.155136. https://www.osti.gov/servlets/purl/1357598.
@article{osti_1357598,
title = {Machine learning for many-body physics: The case of the Anderson impurity model},
author = {Arsenault, Louis-François and Lopez-Bezanilla, Alejandro and von Lilienfeld, O. Anatole and Millis, Andrew J.},
abstractNote = {We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.},
doi = {10.1103/PhysRevB.90.155136},
journal = {Physical Review. B, Condensed Matter and Materials Physics},
number = 15,
volume = 90,
place = {United States},
year = {Fri Oct 31 00:00:00 EDT 2014},
month = {Fri Oct 31 00:00:00 EDT 2014}
}

Journal Article:

Citation Metrics:
Cited by: 104 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Computational Complexity and Fundamental Limitations to Fermionic Quantum Monte Carlo Simulations
journal, May 2005


Finding Density Functionals with Machine Learning
journal, June 2012


Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


Machine learning of molecular electronic properties in chemical compound space
journal, September 2013


Modeling electronic quantum transport with machine learning
journal, June 2014


Potential energy surfaces for macromolecules. A neural network technique
journal, May 1992


Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks
journal, September 2004


A random-sampling high dimensional model representation neural network for building potential energy surfaces
journal, August 2006

  • Manzhos, Sergei; Carrington, Tucker
  • The Journal of Chemical Physics, Vol. 125, Issue 8
  • DOI: 10.1063/1.2336223

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


Correlated Lattice Fermions in d = Dimensions
journal, January 1989


Hubbard model in infinite dimensions
journal, March 1992


Hubbard model in infinite dimensions: A quantum Monte Carlo study
journal, July 1992


Continuous-Time Solver for Quantum Impurity Models
journal, August 2006


Continuous-time Monte Carlo methods for quantum impurity models
journal, May 2011

  • Gull, Emanuel; Millis, Andrew J.; Lichtenstein, Alexander I.
  • Reviews of Modern Physics, Vol. 83, Issue 2
  • DOI: 10.1103/RevModPhys.83.349

Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
journal, July 2013

  • Hansen, Katja; Montavon, Grégoire; Biegler, Franziska
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 8
  • DOI: 10.1021/ct400195d

The Elements of Statistical Learning
book, January 2009


Towards an exact solution of the Anderson model
journal, November 1980


Analytical approximation for single-impurity Anderson model
journal, March 2010


Dynamical properties of the Anderson impurity model within a diagrammatic pseudoparticle approach
journal, October 2004


Monte Carlo Method for Magnetic Impurities in Metals
journal, June 1986


Numerical renormalization group method for quantum impurity systems
journal, April 2008


Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
journal, January 1996

  • Georges, Antoine; Kotliar, Gabriel; Krauth, Werner
  • Reviews of Modern Physics, Vol. 68, Issue 1
  • DOI: 10.1103/RevModPhys.68.13

Correlated electrons in high-temperature superconductors
journal, July 1994


Theory of the atomic limit of the Anderson model. I. Perturbation expansions re-examined
journal, December 1978


Benchmark of a modified iterated perturbation theory approach on the fcc lattice at strong coupling
journal, August 2012

  • Arsenault, Louis-François; Sémon, Patrick; Tremblay, A. -M. S.
  • Physical Review B, Vol. 86, Issue 8
  • DOI: 10.1103/PhysRevB.86.085133

Orthogonal polynomial representation of imaginary-time Green’s functions
journal, August 2011


A Fast, Simple, and Stable Chebyshev--Legendre Transform Using an Asymptotic Formula
journal, January 2014

  • Hale, Nicholas; Townsend, Alex
  • SIAM Journal on Scientific Computing, Vol. 36, Issue 1
  • DOI: 10.1137/130932223

Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity
journal, March 1994


Block Lanczos tridiagonalization of complex symmetric matrices
conference, August 2005

  • Qiao, Sanzheng; Liu, Guohong; Xu, Wei
  • Optics & Photonics 2005, SPIE Proceedings
  • DOI: 10.1117/12.615410

Correlated Lattice Fermions in d = Dimensions
journal, February 1989


Optimization of probiotic therapeutics using machine learning in an artificial human gastrointestinal tract
journal, January 2021


Modeling electronic quantum transport with machine learning
text, January 2014

  • Lopez-Bezanilla, Alejandro; Von Lilienfeld, O. Anatole
  • American Physical Society
  • DOI: 10.5451/unibas-ep53263

Machine learning of molecular electronic properties in chemical compound space
text, January 2013


Towards an Exact Solution of the Anderson Model
book, August 1996


Fast and accurate modeling of molecular atomization energies with machine learning
text, January 2012

  • Rupp, Matthias; Tkatchenko, Alexandre; Müller, Klaus-Robert
  • American Physical Society
  • DOI: 10.5451/unibas-ep43360

The Elements of Statistical Learning
book, January 2001


Gaussian Approximation Potentials: the accuracy of quantum mechanics, without the electrons
text, January 2009


Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
text, January 2011


Modeling Electronic Quantum Transport with Machine Learning
text, January 2014


A continuous-time solver for quantum impurity models
text, January 2005


The numerical renormalization group method for quantum impurity systems
text, January 2007


Machine learning of molecular electronic properties in chemical compound space
text, January 2013


Works referencing / citing this record:

Machine Learning, Quantum Chemistry, and Chemical Space
book, January 2017

  • Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
  • Reviews in Computational Chemistry, Vol. 30
  • DOI: 10.1002/9781119356059.ch5

Quantum Machine Learning in Chemical Compound Space
journal, March 2018

  • von Lilienfeld, O. Anatole
  • Angewandte Chemie International Edition, Vol. 57, Issue 16
  • DOI: 10.1002/anie.201709686

Feature vector clustering molecular pairs in computer simulations
journal, July 2019

  • Pei, Han‐Wen; Laaksonen, Aatto
  • Journal of Computational Chemistry, Vol. 40, Issue 29
  • DOI: 10.1002/jcc.26028

Crystal structure representations for machine learning models of formation energies
journal, April 2015

  • Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24917

Machine learning phases of matter
journal, February 2017

  • Carrasquilla, Juan; Melko, Roger G.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4035

Quantum machine learning for electronic structure calculations
journal, October 2018


Pattern Learning Electronic Density of States
journal, April 2019


Electronic spectra from TDDFT and machine learning in chemical space
journal, August 2015

  • Ramakrishnan, Raghunathan; Hartmann, Mia; Tapavicza, Enrico
  • The Journal of Chemical Physics, Vol. 143, Issue 8
  • DOI: 10.1063/1.4928757

Projected regression method for solving Fredholm integral equations arising in the analytic continuation problem of quantum physics
journal, October 2017

  • Arsenault, Louis-François; Neuberg, Richard; Hannah, Lauren A.
  • Inverse Problems, Vol. 33, Issue 11
  • DOI: 10.1088/1361-6420/aa8d93

Machine learning & artificial intelligence in the quantum domain: a review of recent progress
journal, June 2018


From DFT to machine learning: recent approaches to materials science–a review
journal, May 2019

  • Schleder, Gabriel R.; Padilha, Antonio C. M.; Acosta, Carlos Mera
  • Journal of Physics: Materials, Vol. 2, Issue 3
  • DOI: 10.1088/2515-7639/ab084b

Deep learning and the Schrödinger equation
journal, October 2017


Accelerated continuous time quantum Monte Carlo method with machine learning
journal, July 2019


Analytic continuation via domain knowledge free machine learning
journal, December 2018


Self-organizing maps as a method for detecting phase transitions and phase identification
journal, January 2019


Matrix product operators for sequence-to-sequence learning
journal, October 2018


Discriminative Cooperative Networks for Detecting Phase Transitions
journal, April 2018


Mapping and classifying molecules from a high-throughput structural database
journal, February 2017


Quantum error correction for the toric code using deep reinforcement learning
journal, September 2019


Electronic spectra from TDDFT and machine learning in chemical space
text, January 2015


Crystal structure representations for machine learning models of formation energies
text, January 2015


Electronic Spectra from TDDFT and Machine Learning in Chemical Space
text, January 2015


Comparing molecules and solids across structural and alchemical space
text, January 2016


Machine learning phases of matter
text, January 2016


Machine Learning Phases of Strongly Correlated Fermions
text, January 2016


Mapping and Classifying Molecules from a High-Throughput Structural Database
preprint, January 2016


Identifying polymer states by machine learning
text, January 2017


Machine Learning Topological Invariants with Neural Networks
text, January 2017


Neural-Network Quantum States, String-Bond States, and Chiral Topological States
text, January 2017


Self-learning Monte Carlo with Deep Neural Networks
text, January 2018


Matrix Product Operators for Sequence to Sequence Learning
text, January 2018


Machine learning of phase transitions in the percolation and XY models
text, January 2018


Probing hidden spin order with interpretable machine learning
text, January 2018


Deep Learning Topological Invariants of Band Insulators
text, January 2018


Pattern Learning Electronic Density of States
text, January 2018


Self-organizing maps as a method for detecting phase transitions and phase identification
text, January 2018


Machine learning density functional theory for the Hubbard model
text, January 2018