DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation study of enhancing laser driven multi-keV line-radiation through application of external magnetic fields

Abstract

Here, we present a path forward for enhancing laser driven, multi-keV line-radiation from mid- to high-Z, sub-quarter-critical density, non-equilibrium plasmas through inhibited thermal transport in the presence of an externally generated magnetic field. Preliminary simulations with Kr and Ag suggest that as much as 50%–100% increases in peak electron temperatures are possible—without any changes in laser drive conditions—with magnetized interactions. The increase in temperature results in ~2–3× enhancements in laser-to-x-ray conversion efficiency for K-shell emission with simultaneous ≲4× reduction in L-shell emission using current field generation capabilities on the Omega laser and near-term capabilities on the National Ignition Facility laser. Increased plasma temperatures and enhanced K-shell emission are observed to come at the cost of degraded volumetric heating. Such enhancements in high-photon-energy x-ray sources could expand the existing laser platforms for increasingly penetrating x-ray radiography.

Authors:
 [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1357372
Alternate Identifier(s):
OSTI ID: 1329490
Report Number(s):
LLNL-JRNL-692158
Journal ID: ISSN 1070-664X
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 10; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 70 PLASMA PHYSICS AND FUSION

Citation Formats

Kemp, G. E., Colvin, J. D., Blue, B. E., and Fournier, K. B. Simulation study of enhancing laser driven multi-keV line-radiation through application of external magnetic fields. United States: N. p., 2016. Web. doi:10.1063/1.4965236.
Kemp, G. E., Colvin, J. D., Blue, B. E., & Fournier, K. B. Simulation study of enhancing laser driven multi-keV line-radiation through application of external magnetic fields. United States. https://doi.org/10.1063/1.4965236
Kemp, G. E., Colvin, J. D., Blue, B. E., and Fournier, K. B. Thu . "Simulation study of enhancing laser driven multi-keV line-radiation through application of external magnetic fields". United States. https://doi.org/10.1063/1.4965236. https://www.osti.gov/servlets/purl/1357372.
@article{osti_1357372,
title = {Simulation study of enhancing laser driven multi-keV line-radiation through application of external magnetic fields},
author = {Kemp, G. E. and Colvin, J. D. and Blue, B. E. and Fournier, K. B.},
abstractNote = {Here, we present a path forward for enhancing laser driven, multi-keV line-radiation from mid- to high-Z, sub-quarter-critical density, non-equilibrium plasmas through inhibited thermal transport in the presence of an externally generated magnetic field. Preliminary simulations with Kr and Ag suggest that as much as 50%–100% increases in peak electron temperatures are possible—without any changes in laser drive conditions—with magnetized interactions. The increase in temperature results in ~2–3× enhancements in laser-to-x-ray conversion efficiency for K-shell emission with simultaneous ≲4× reduction in L-shell emission using current field generation capabilities on the Omega laser and near-term capabilities on the National Ignition Facility laser. Increased plasma temperatures and enhanced K-shell emission are observed to come at the cost of degraded volumetric heating. Such enhancements in high-photon-energy x-ray sources could expand the existing laser platforms for increasingly penetrating x-ray radiography.},
doi = {10.1063/1.4965236},
journal = {Physics of Plasmas},
number = 10,
volume = 23,
place = {United States},
year = {Thu Oct 20 00:00:00 EDT 2016},
month = {Thu Oct 20 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas
journal, April 2009

  • Gotchev, O. V.; Knauer, J. P.; Chang, P. Y.
  • Review of Scientific Instruments, Vol. 80, Issue 4
  • DOI: 10.1063/1.3115983

An electron conductivity model for dense plasmas
journal, January 1984

  • Lee, Y. T.; More, R. M.
  • Physics of Fluids, Vol. 27, Issue 5
  • DOI: 10.1063/1.864744

Imposed magnetic field and hot electron propagation in inertial fusion hohlraums
journal, December 2015

  • Strozzi, David J.; Perkins, L. J.; Marinak, M. M.
  • Journal of Plasma Physics, Vol. 81, Issue 6
  • DOI: 10.1017/S0022377815001348

An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport
journal, December 1971


Measurements of laser-imprinting sensitivity to relative beam mistiming in planar plastic foils driven by multiple overlapping laser beams
journal, July 2005

  • Smalyuk, V. A.; Goncharov, V. N.; Boehly, T. R.
  • Physics of Plasmas, Vol. 12, Issue 7
  • DOI: 10.1063/1.1943900

X-ray diffraction diagnostic design for the National Ignition Facility
conference, September 2013

  • Ahmed, Maryum F.; House, Allen; Smith, R. F.
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.2025666

Interstellare Magnetfelder
journal, May 1950

  • Schlüter, Arnulf; Biermann, Ludwig
  • Zeitschrift für Naturforschung A, Vol. 5, Issue 5
  • DOI: 10.1515/zna-1950-0501

VISRAD—A 3-D view factor code and design tool for high-energy density physics experiments
journal, September 2003


Multi-keV x-ray source development experiments on the National Ignition Facility
journal, August 2010

  • Fournier, K. B.; May, M. J.; Colvin, J. D.
  • Physics of Plasmas, Vol. 17, Issue 8
  • DOI: 10.1063/1.3458904

OMEGA Upgrade laser for direct-drive target experiments
journal, June 1993


Non-LTE kinetics modeling of krypton ions: Calculations of radiative cooling coefficients
journal, June 2006


Advances in NLTE modeling for integrated simulations
journal, January 2010


An Improved Algebraic Multigrid Method for Solving Maxwell's Equations
journal, January 2003

  • Bochev, Pavel B.; Garasi, Christopher J.; Hu, Jonathan J.
  • SIAM Journal on Scientific Computing, Vol. 25, Issue 2
  • DOI: 10.1137/S1064827502407706

Electron-density scaling of conversion efficiency of laser energy into L-shell X-rays
journal, May 2006

  • Fournier, K. B.; Constantin, C.; Back, C. A.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.04.008

Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation
journal, January 1986

  • Epperlein, E. M.; Haines, M. G.
  • Physics of Fluids, Vol. 29, Issue 4
  • DOI: 10.1063/1.865901

Tuning the Implosion Symmetry of ICF Targets via Controlled Crossed-Beam Energy Transfer
journal, January 2009


Krypton K-shell X-ray spectra recorded by the HENEX spectrometer
journal, May 2006

  • Seely, J. F.; Back, C. A.; Constantin, C.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.046

Energy transfer between crossing laser beams
journal, January 1996

  • Kruer, William L.; Wilks, Scott C.; Afeyan, Bedros B.
  • Physics of Plasmas, Vol. 3, Issue 1
  • DOI: 10.1063/1.871863

Solid Iron Compressed Up to 560 GPa
journal, August 2013


Calculation of the radiative cooling coefficient for krypton in a low density plasma
journal, April 2000


The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma
journal, April 2015

  • Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.
  • Physics of Plasmas, Vol. 22, Issue 4
  • DOI: 10.1063/1.4916777

A higher-than-predicted measurement of iron opacity at solar interior temperatures
journal, December 2014

  • Bailey, J. E.; Nagayama, T.; Loisel, G. P.
  • Nature, Vol. 517, Issue 7532
  • DOI: 10.1038/nature14048

Use of external magnetic fields in hohlraum plasmas to improve laser-coupling
journal, January 2015

  • Montgomery, D. S.; Albright, B. J.; Barnak, D. H.
  • Physics of Plasmas, Vol. 22, Issue 1
  • DOI: 10.1063/1.4906055

Laser–plasma interactions in ignition‐scale hohlraum plasmas
journal, May 1996

  • MacGowan, B. J.; Afeyan, B. B.; Back, C. A.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872000

A computational study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser
journal, December 2011


Laser ray tracing and power deposition on an unstructured three-dimensional grid
journal, January 2000


Opacity spectrometer design for opacity measurements at the National Ignition Facility
conference, August 2015

  • Ross, P. W.; Ahmed, M. F.; Bailey, J. E.
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.2188579

Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser
journal, May 2015

  • Kemp, G. E.; Colvin, J. D.; Fournier, K. B.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921250

Basic considerations for scaling Z ‐pinch x‐ray emission with atomic number
journal, February 1990

  • Whitney, K. G.; Thornhill, J. W.; Apruzese, J. P.
  • Journal of Applied Physics, Vol. 67, Issue 4
  • DOI: 10.1063/1.345642

Nernst effect in laser-produced plasmas
journal, January 1985

  • Nishiguchi, A.; Yabe, T.; Haines, M. G.
  • Physics of Fluids, Vol. 28, Issue 12
  • DOI: 10.1063/1.865100

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Works referencing / citing this record:

Nernst thermomagnetic waves in magnetized high energy density plasmas
journal, November 2019

  • Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.
  • Physics of Plasmas, Vol. 26, Issue 11
  • DOI: 10.1063/1.5122178

Confinement of laser plasma expansion with strong external magnetic field
journal, March 2018

  • Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 5
  • DOI: 10.1088/1361-6587/aab2e6