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Abstract
Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with at-
tractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics
simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize
an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions,
peptides assemble into β-sheet-like stacks with strongly favorable monomer association free
energies of ∆F ≈ −25kBT . Aggregation at high-pH produces disordered aggregates desta-
bilized by Coulombic repulsion between negatively charged Asp termini (∆F ≈ −5kBT ). In
simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up
to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time
Markov process, we infer transition rates between different aggregate sizes and microsecond
relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly
in which peptides coalesce into small clusters over tens of nanoseconds followed by structural
ripening and diffusion limited aggregation on longer time scales. This work provides new
molecular-level understanding of early-stage assembly, and a means to study the impact of
peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics,
and morphology of the supramolecular aggregates.

Keywords: π-conjugated oligopeptides, molecular dynamics simulation, supramolecular
peptides, self-assembly, Markov state model
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1. Introduction

The self-assembly of peptides is a promising methodology for the fabrication of novel
macromolecular materials with desirable structural, functional, and biological properties
[1, 2]. Such materials have potential applications in drug and protein delivery, material
templating of inorganic structures, regenerative medicine, and antimicrobials [1–8].
Assembly can be triggered by environmental variables such as pH, temperature, and salt
concentration [9–11]. The morphology of self-assembled peptidic aggregates can be tuned by
the amino acid sequence, and endowed with useful electronic and optoelectronic properties
by the incorporation of aromatic groups into the peptide backbone that establish
inter-peptide π-conjugation upon assembly [10, 12, 13]. The resultant electrical and
electronic properties – electron transport or exciton coupling, for example – provide the
basis for a diverse array of organic electronic devices, such as light-emitting diodes,
field-effect transistors, and solar cells [14–18]. Deterministic control of the structure,
stability, and kinetics of self-assembled organic electronics by tuning monomer chemistry and
environmental conditions presents a powerful route to the fabrication of “designer materials”
possessing desirable structural and functional properties [19]. Conjugated peptides in
particular offer a water soluble and biofunctional medium to fabricate self-assembled
aggregates with tunable biological and electronic properties [10, 13, 17, 18, 20].

In this work, we perform a theoretical study of the self-assembly of synthetic
Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG) oligopeptides containing a π-conjugated
oligophenylenevinylene (OPV) core (Fig. 1). This prototypical peptide-Π-peptide triblock
architecture presents a powerful and flexible architecture for self-assembling optoelectronic
peptidic biomaterials [13, 21]. Experimental work has shown these peptides to exist as water
soluble monomers at neutral or basic pH, and under acidic conditions – due to protonation
of the carboxylic acid termini that screens inter-peptide Coulombic repulsion – to
self-assemble into 1D ribbons driven by inter-peptide hydrogen bonding and π-stacking of
the conjugated cores [13, 22–24]. Experimentally, self-assembled 1-D nanomaterials formed
from a wide variety of aromatic cores have been observed, including the phenylene vinylene
subunit considered here, electron-rich oligothiophenes, diimide-based electron-deficient
π-systems, and a series of polyaromatics of similar composition but increasing size (i.e., bi,
ter tetra, quinque and sexithiophene) [25, 26]. Electronic delocalization along the aromatic
core of this supramolecular construct imbues these aggregates with useful optoelectronic
properties, making them putative candidates as biocompatible conductive ribbons at the
biotic-abiotic interface, and as a triggerable, biocompatible, electro-conductive material with
biosensing applications [10]. Previous experimental work has considered the impact of
variations in the size of the conjugated core, peptide sequence, and N-to-C polarity upon the
structural and photophysical properties of the peptide assemblies [13, 21, 22, 27, 28].
Theoretical work has probed the impact of peptide sequence N-to-C polarity and the impact
of the number of OPV subunits upon the thermodynamic driving forces for dimerization
and peptide sequence upon the morphology of peptide ribbons [13, 21], but the elementary
kinetic steps and molecular mechanisms of self-assembly remain unknown. This work
establishes fundamental understanding of the early stages of DFAG-OPV3-GAFD
self-assembly using molecular simulation.

[Figure 1 near here.]

Molecular dynamics simulations provide a means to study the atomistic structure of
peptide assemblies and probe the thermodynamics and kinetics of peptide aggregation. In
this work, we employ atomistic molecular dynamics simulations in explicit water to study
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the thermodynamic stability and configurational motions of isolated DFAG peptide
monomers and the formation of peptide dimers. We then use the atomistic free energy
landscapes to parameterize an implicit-solvent forcefield for the DFAG peptides that enables
us to study the assembly of higher order aggregates (i.e, trimers, tetramers, pentamers) at
length and time scales inaccessible to the explicit solvent model. As demonstrated by
Mondal et al., an understanding of higher-order aggregate formation, not just dimerization,
is vital for a complete understanding of multi-body self-assembly [29]. Building upon a body
of prior experimental and simulation work [13, 22, 24], this study advances the fundamental
understanding of the molecular forces and mechanisms driving assembly of a prototypical
peptide-Π-peptide triblock molecular to help guide and inform the design of self-assembly
biocompatible and optoelectronic peptidic biomaterials.

2. Methods

2.1. Explicit solvent simulations

Molecular dynamics simulations were conducted using the GROMACS 4.6 simulation suite
[30]. Initial DFAG-OPV3-GAFD peptide configurations were constructed with the
assistance of the GlycoBioChem PRODRG2 Server [31]. Peptides were prepared in two
protonation states, a high-pH (pH ≥ 5) deprotonated state carrying a formal charge of (−4)
on the terminal Asp residues, and a low-pH (pH ≤ 1) protonated state that was electrically
neutral. The protonated state is of primary interest as it is in this state that the peptides
are observed to self-assemble into 1D ribbons [13]. Single peptides or pairs of peptides were
placed in a 10×10×10 nm cubic simulation box with three-dimensional periodic boundary
conditions and solvated with water molecules to a density of 0.994 g/cm3. Where necessary,
Na+ counterions were added such that the system carried no net charge. Peptides and ions
were modeled using the CHARMM27 force field [32], and water with the simple point charge
(SPC) model [33]. Parameters for the OPV3 conjugated core do not exist natively within
the CHARMM27 force field, but were straightforwardly derived by analogy with existing
groups. Specifically, the aromatic rings were modeled using the parameters taken from the
phenylalanine residue, the carbonyl linker from a component of a peptide bond, and the
vinyl group treated as an alkene chain. In total, two additional bonds, 6 angles, and 11
proper dihedrals were added. All force field files are available upon request. The size of the
simulation box was sufficiently large that with a 1.0 nm real space cutoff two peptides –
each a maximum of 3.75 nm long in their fully extended configurations – could be drawn far
enough apart in our umbrella sampling of their dimerization pathway to be non-interacting
(cf. Section 2.3). High energy overlaps in the initial configurations were removed by steepest
descent energy minimization to eliminate forces exceeding 1000 kJ/mol.nm. Simulations
were conducted in the NV T ensemble – fixed number of particles N , volume V , and
temperature T – at 298 K, employing a stochastic dynamics approach to maintain the
temperature by integrating the Langevin equation with a friction constant of γ = 2 ps−1

[34, 35]. Initial atom velocities were randomly assigned from a Maxwell distribution at 298
K and the equations of motion numerically integrated using a leap-frog algorithm with a 2 fs
time step [36]. Bond lengths were fixed using the LINCS algorithm to improve efficiency [37].
Electrostatic interactions were treated using particle mesh Ewald (PME) with a real-space
cutoff of 1.0 nm and a 0.12 nm Fourier grid spacing that were optimized during runtime [38].
Lennard-Jones interactions were shifted smoothly to zero at 1.0 nm, and Lorentz-Berthelot
combining rules used to determine interaction parameters between unlike atoms [39]. A 1 ns
equilibration run was conducted for each system, at which time the temperature, pressure,
energy, and peptide radius of gyration had reached steady values. This equilibrated state
served as the initial state for the umbrella sampling simulations detailed below.

2.2. Implicit solvent simulations

Simulations were conducted using the GROMACS 4.6 simulation suite [30] in which solvent
was modeled implicitly using the Generalized Born model with a relative dielectric constant
of 78.3 [40–42]. Born radii are calculated using the Onufriev, Bashford, Case (OBC) model
with the OBC(II) optimized parameter set of α = 1, β = 0.8, and γ = 4.85 [43], and
recalculated every time step with a cutoff of 3.4 nm and a dielectric offset of 0.009 nm.
Non-polar interactions are treated using the solvent-accessible surface area model.
Calculations were performed using an analytical continuum electrostatic (ACE) type model
using the Born radius of each atom and a surface tension parameter of 2.26 kJ/mol.nm2

[44]. The Generalized Born model has been known to overestimate the stability of
inter-residue interactions [45–47], but has also been shown to accurately treat solvent effects
in simulating proteins [48–50] even when such proteins are stabilized by solvent effects
[51, 52]. Accordingly, we make use of this implicit solvent model in order to reach the
requisite time and length scales to observe peptide self-assembly, but – as detailed in Section
3.3 – we employed a rescaled version of the CHARMM27 force field in which the
Lennard-Jones and Coulomb interactions were scaled such that intramolecular free energy
landscapes for both the peptide monomer and the dimerization free energy pathway in
implicit solvent reproduced those computed under explicit solvation. Simulations were
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otherwise conducted in the same manner as the explicit-solvent systems except that
Lennard-Jones interactions were shifted smoothly to zero at a cutoff of 3.4 nm, and
electrostatics were also treated by shifting to zero at a cutoff of 3.4 nm.

2.3. Umbrella sampling

We employed umbrella sampling to compute the the intramolecular and intermolecular
peptide free energy landscapes along a preselected order parameter by applying artificial
biasing potentials to enforce good sampling [53]. This free energy along a reaction
coordinate is also referred to in the literature as the potential of mean force (PMF). For
single peptides we construct the free energy landscape for peptide collapse by performing
umbrella sampling along the intramolecular head-to-tail distance (h2t) between the
Cα-atoms of the terminal aspartic acid residues. For pairs of peptides, we compute the
dimerization free energy landscape along the center of mass separation (rCOM) between the
peptides. For triplets, we compute the free energy of monomer addition along the center of
mass separation between a preassembled dimer and a monomer. For quads we compute the
free energy for (i) monomer addition to a trimer, and (ii) assembly of two preassembled
dimers along the center of mass separation between the two aggregates. For quints, we
compute the free energy of monomer addition along the center of mass separation between a
preassembled tetramer and a monomer. In all cases, we ensure that the umbrella sampling
simulations are conducted at sufficiently large separations that we reach a plateau in the
free energy, indicating that we have reached the regime at which the two aggregates in the
simulation are effectively non-interacting and the PMF ceases to be a function of separation.

Umbrella windows were initialized by nonequilibrium pulling of our system along the
entire range of the order parameter of interest over the course of 1 ns. Frames of this
trajectory were harvested every 0.2 nm along the order parameter to serve as initial
configurations for each umbrella sampling window. Harmonic biasing potentials with a force
constant of 1000 kJ/mol.nm2 are applied to restrain the system within each window and
biased umbrella simulations conducted for 10 ns. The first 1 ns of each simulation was used
to let the system equilibrate and discarded prior to analysis. The weighted histogram
analysis method (WHAM) [54] implemented in the g_wham module of GROMACS 4.6 [30]
was applied to the umbrella sampling data to obtain the (relative) free energy of the system
as a function of the umbrella coordinate. If a region is found to be poorly sampled – around
15 times fewer samples than the best sampled regions – additional simulations were
conducted in the undersampled region.

3. Results

We now detail the results of our computational investigation of the early-stage self assembly
of the DFAG peptide monomers. First we describe the calculation of the potentials of mean
force for the collapse of isolated peptide monomers and the dimerization of peptide pairs
using computationally expensive explicit solvent simulations, and the use of these data to
parametrize an implicit solvent model to access the long time and length scales required to
observe peptide assembly. We then describe our use of the implicit solvent model to probe
the thermodynamics and morphology of small oligomeric aggregates (n = 2-5) and directly
simulate the first 70 ns of self-assembly from an initial dispersion of monomers.

3.1. PMF of peptide collapse

The potential of mean force (PMF) for a single peptide parameterized by the intramolecular
distance between the Asp Cα atoms quantifies the relative propensities for elongated versus
collapsed conformations of an isolated peptide. We present the PMFs calculated for the
protonated peptide in explicit and implicit solvent in Fig. 2a. In its protonated (low-pH)
state, the peptide PMF in explicit solvent is essentially flat for head-to-tail distances h2t =
1.5-2.5 nm. Unfavorable configurations at long extensions correspond to energetically
unfavorable extension of the torsional angles within the amino acid residues, and at short
extensions to unfavorable bending of the backbone. The PMF for peptide collapse is
governed principally by intramolecular interactions, with the conjugated OPV3 core
remaining rather rigid and extended, and rotation of the Φ and Ψ dihedral angles of the
peptide wings mediating close approach of the peptide head and tail. The PMF computed in
implicit solvent shows very good agreement with the explicit curve over the range h2t =
0.5-3.0 nm, but poorer agreement at longer extensions.

[Figure 2 near here.]

The PMF curves for peptides in the deprotonated (high-pH) state in Fig. 2b also illustrate
relatively good agreement between the explicit and implicit solvent. The global free energy
minimum in implicit solvent is at h2t = 2.6 nm compared to h2t = 3.4 nm for the explicit
case, but the free energy difference is on the order of only ∼1 kBT . As anticipated, the most
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probable peptide configurations are displaced to longer extensions relative to the protonated
state due to electrostatic repulsion between the doubly negatively charged termini.

3.2. PMF of peptide dimerization

The PMF for dimerization parameterized by the distance between the center of mass of the
respective peptides estimates the changes in the free energy of a pair of peptides as they
interact non-covalently through dispersion, Coulombic, and hydrophobic interactions. The
PMFs for protonated peptides in implicit and explicit solvent are presented in Fig. 3a. Five
independent umbrella simulations were conducted in both implicit solvent and explicit
solvent. As expected, dimerization is thermodynamically favorable. In implicit solvent the
change in free energy for a pair of peptides from a non-interacting state to the minimum in
free energy is ∆Fdimer = −(21.9± 1.0)kBT , which differs significantly from the value of
∆Fdimer = −(15.7± 0.7)kBT computed in explicit solvent. Consistent with simulations of
DNA base flipping in Ref. [55], we find simulations conducted in implicit solvent greatly
overestimate the free energy computed in explicit solvent, in this case by 40%.

[Figure 3 near here.]

The PMF curves for deprotonated peptides are presented in Fig. 3b. We compute the free
energy of dimerization for deprotonated peptides in explicit solvent to be
∆Fdimer = −(4.7± 0.9)kBT , indicating that formation of the contact pair is
thermodynamically favored despite the electrostatic repulsion between the negatively
charged termini. Inspection of the configurational ensemble in the global free energy reveals
the associated pair to exist in an “I-shaped” configuration in which the OPV3 cores align
yielding a favorable dispersion and π-stacking interactions between the hydrophobic
conjugated cores while simultaneously orienting the negatively charged termini away from
one another. As with the protonated peptides, the implicit solvent model prediction for the
dimerization free energy, ∆Fdimer = −(11.4± 1.7)kBT , overestimating that predicted by
the explicit solvent model by 140%.

An understanding of higher-order aggregation is essential for a complete understanding of
multi-body self-assembly [29], but the assembly of larger aggregates proceeds at length and
time scales beyond those that can be reasonably obtained using explicit solvent. Implicit
solvent simulations provide a means to explore the longer time assembly of larger aggregates,
but the artifacts introduced by an implicit treatment of solvent observed in the dimerization
PMFs indicate that the implicit forcefield requires reparameterization to match the atomistic
results. We detail in Section 3.3 a systematic procedure to perform this reparameterization.

3.3. Implicit solvent force field parameterization

We have observed that the use of an implicit solvent model introduces significant artifacts
into the PMF curves for dimerization (Fig. 3). To lend confidence to the predictions of the
implicit solvent model at the length and time scales of multi-peptide assembly, we must
reparameterize the CHARMM27 force field in order to match the quantities of interest
[56–59]. In a similar manner to Zhang et al. [60], we adopt a minimally invasive strategy of
rescaling interactions by a constant factor in order to optimally match the free energies
calculated from implicit solvent simulations to those obtained in explicit solvent. Seeking to
account for the absence of molecular water, we uniformly rescale the van der Waals and
Coulomb interactions to reproduce the explicit solvent PMFs for peptide collapse and
dimerization. This simple approach can be considered a form of the PMF matching
approach to force field parameterization frequently used to optimize coarse grained
molecular potentials [55, 61, 62]. In this respect, our approach shares similarities with
Boltzmann inversion (BI) wherein interaction potentials in the coarse-grained system are
optimized to match distribution functions observed in all-atom simulations [59, 63]. In the
case of pair potentials, this reduces to matching of the pairwise PMFs [64]. More
sophisticated procedures to adjust the implicit solvent force field are possible [61, 63], but
we demonstrate below that our simple strategy results in an implicit solvent model that
quantitatively reproduces the explicit solvent results.

In our implicit solvent simulations, the Coulombic interaction energy between two atoms
i and j separated by a distance rij is given by,

VC(rij) =
1

4πε0

qiqj

εrrij
, (1)

where qi is the partial charge on atom i, ε0 is the permittivity of free space, and εr = 78.3 is
the relative dielectric constant of liquid water [42]. The dispersion interaction between
atoms i and j is given by the Lennard-Jones function,

VLJ = 4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]
, (2)
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where the εij and σij Lorentz-Berthelot combining rules were used to determine interaction
parameters between unlike atom types: σij = (σi + σj)/2 and εij =

√
(εiεj) [39]. We adopt

a minimally perturbative approach to reparameterization of the CHARMM27 force field to
account for the absence of molecular solvent by rescaling the non-bonded Lennard-Jones
and Coulomb interactions by a single tuning parameter, α,

ε→ αε q →
√
αq, (3)

that produces a uniform rescaling of the non-bonded interactions,

V nb = VC + VLJ → αV nb, (4)

Considering the protonated and deprotonated peptides independently, we sought the value
of α resulting in an optimal match of the free energy well depth for dimerization ∆Fdimer
measured by the absolute value of the difference between the implicit and explicit well
depths,

∆∆Fdimer(α) = |∆F imp
dimer(α)−∆F exp

dimer|. (5)

Implicit PMFs for the head-to-tail distance of an isolated monomer varied from those from
the explicit simulations by an average of no more than 1.5 kBT for α = 0.6-0.9. Such
variations are indistinguishable from thermal fluctuations, making the monomer PMF
relatively insensitive to rescaling of the non-bonded interactions and a poor criterion by
which to compute the optimal α.

We performed a series of umbrella sampling calculations of dimerization for both the
protonated (low-pH) and deprotonated (high-pH) peptides at values of the scaling
parameter α = {0.80, 0.82, 0.85, 0.87, 0.90, 1.00} for protonated peptides and α = {0.52,
0.60, 0.68, 0.70, 0.72, 0.76, 0.84, 0.92, 1.00} for deprotonated peptides. We illustrate in Fig.
4 the corresponding values of ∆∆Fdimer(α) calculated from these data. In the case of the
protonated peptide, linear interpolation substantiated by direct implicit simulation reveals
that a value of α∗prot = 0.87 accurately matches the explicit solvent dimerization free energy.
For the deprotonated peptide, we determine an optimal value of α∗deprot = 0.72.

[Figure 4 near here.]

Despite our choice of a simple single-parameter approach to rescale the non-bonded
interactions in the CHARMM27 forcefield to account for the absence of molecular water, we
achieved excellent agreement of the implicit solvent PMFs for peptide dimerization with
those computed in explicit solvent. The explicit and rescaled implicit dimer PMFs for the
protonated peptides are illustrated in Fig. 5a, from which it is apparent that the rescaling of
the non-bonded interactions has achieved quantitative agreement of PMF(rCOM) and
∆Fdimer. The analogous plots for the deprotonated peptides in Fig. 5b show less good
agreement, and while we have quantitatively matched the depth of the dimerization PMF,
the minimum of the free energy well is shifted by (−0.10) nm from 0.74 nm in explicit
solvent to 0.64 nm in implicit. We note that it is the protonated peptides that assemble into
the 1D ribbons and which are therefore of primary interest in this work, so the slightly
poorer quality of the deprotonated reparameterization is not of undue concern. The PMFs
for peptide collapse (Fig. 2) are governed principally by intramolecular interactions, and are
minimally perturbed by the rescaling procedure (data not shown).

Colloquially, our results indicate that the standard (unscaled) CHARMM27 force field in
implicit solvent makes the peptides too “sticky”, resulting in an artificial enhancement in the
free energy of dimerization. Accordingly, it is vital that we perform rescaling of the
non-bonded interactions to eliminate these artifacts as much as possible and lend credence
to the predicted behavior of monomers, dimers, and higher order aggregates in our implicit
solvent simulations.

[Figure 5 near here.]

3.4. Thermodynamics and morphology of higher order aggregation

Our reparameterized implicit solvent model permits us to efficiently perform umbrella
simulations to compute the free energy of association for the formation of higher order
aggregates and probe the elementary events at the early stages of assembly.

3.4.1. Protonated peptides
Considering first protonated (low-pH) peptides, we computed the association free energies
for the formation of a pentamer along two different paths (i) successive monomeric addition,
and (ii) dimer condensation followed by monomeric addition. We illustrate the two pathways
and report the computed free energy changes in Fig. 6. Uncertainties are computed by
standard propagation of errors over five independent runs accounting for the variance
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between runs and the bootstrap uncertainties within each run. As illustrated in Fig. 5, the
dimerization free energy is highly favorable at ∆F1+1 = −(14.5± 1.2) kBT . The successive
addition of two more monomers is also strongly spontaneous at ∆F2+1 = −(24.5± 2.4) kBT
and ∆F3+1 = −(23.6± 3.0) kBT , with the larger magnitude value reflecting favorable
interactions between the approaching monomer and the multiple monomers in the cluster.
Condensation of two dimers into a tetramer is also strongly favorable with
∆F2+2 = −(27.6± 3.7) kBT . The free energy for tetramer formation by successive
monomeric addition is ∆Ftetra = (∆F1+1 + ∆F2+1 + ∆F3+1) = −(62.5± 4.1) kBT , and by
dimer condensation is ∆Ftetra = (2×∆F1+1 + ∆F2+2) = −(56.5± 4.1) kBT , where error
bars are computed by standard propagation of uncertainties. Since free energy is a pathway
independent state variable, it serves as an important internal validation of our methodology
that the free energy for the assembly of a tetramer by these two paths is in agreement
within error bars. The free energy to form a pentamer by monomeric addition to a tetramer
is ∆F4+1 = −(25.0± 1.9) kBT .

Representative images of the equilibrium structure of each oligomer are also presented in
Fig. 6, from which it is apparent that the preferred structural morphology of each oligomer
is a β-sheet-like stack of monomers. Our umbrella sampling simulations constrained only the
center of mass distance between the peptide clusters. That they spontaneously adopted this
structure provides evidence that the early stages of self-assembly leads to the formation of
short peptide stacks that serve as nuclei for subsequent monomeric addition and elongation
into the experimentally observed 1D ribbons [13, 22, 23].

[Figure 6 near here.]

In Fig. 7 we plot the free energy for monomer addition to small aggregates of protonated
peptides under low-pH conditions. It is expected that the free energy for the addition of
monomer to a stack of n peptides should become increasingly favorable with increasing n,
since there exist more atoms within the cluster to provide favorable dispersion interactions
with the approaching monomer. At sufficiently large n, the free energy should saturate since
the approaching monomer will not significantly interact with peptides located far from the
end of the stack. Fig. 7 shows the monomeric addition free energy plateauing surprisingly
quickly at the trimer, with ∆F2+1 ≈ ∆F3+1 ≈ ∆F4+1 ≈ −25kBT indistinguishable within
error bars. This indicates that the free energy of monomeric addition in the early stages of
assembly is both strongly favorable and essentially independent of oligomer size.

[Figure 7 near here.]

We can decompose the free energy of assembly of a peptide aggregate of size n from initially
non-interacting peptide monomers into its various energetic and entropic contributions,

∆Fn =∆U intrapeptide
n + ∆Upeptide−peptide

n + ∆Upeptide−water
n

+ ∆Uwater−water
n − T∆Sn + P∆V, (6)

where ∆U intrapeptide
n is the change in the intramolecular peptide energy upon aggregation,

∆Upeptide−peptide
n accounts for the intermolecular dispersion and electrostatic interactions

between peptides in the cluster, ∆Upeptide−water
n is the change in the peptide-water

interaction energy upon association, T is the temperature, P the pressure, ∆Sn the entropy
change upon association, and ∆V the volume change. The value for ∆Fn for n = 1-5 is
computed by summing the monomeric addition free energies reported in Figs. 6 and 7. By
performing an energetic analysis of our equilibrated peptide monomers, dimers, trimers,
tetramers, and pentamers residing at the global free energy minimum of our the potential of
mean force curves determined by umbrella sampling, we explicitly compute the values of
∆U intrapeptide

n and ∆Upeptide−peptide
n . Assuming that the peptide configurational entropy

does not change significantly from the monomeric to oligomeric state, and neglecting
pressure-volume work as a small contribution at standard temperature and pressure for such
small aggregates [65] we define the solvent-mediated contribution to the aggregation free
energy as,

∆F solvent
n = ∆Upeptide−water

n + ∆Uwater−water
n − T∆Swater

n

≈ ∆Fn −∆U intrapeptide
n −∆Upeptide−peptide

n . (7)

We plot in Fig. 8a the free energy of aggregation for oligomers of size n = 1-5, and its
decomposition into ∆U intrapeptide

n , ∆Upeptide−peptide
n , and ∆F solvent

n . The plot reveals that
the moderately favorable free energy of aggregation is the result of large competing
energetic and entropic contributions. As anticipated, there is a large favorable
peptide-peptide interaction on the order of ∼-100 kBT per peptide that is balanced by a
small unfavorable intrapeptide energy change of ∼10 kBT per peptide. That the latter
contribution is relatively small is consistent with the assumption that the configurational
ensemble explored by the peptide is relatively similar in the monomeric and oligomeric
states, and a small change in peptide entropy upon assembly. This contribution does grow
with aggregate size, suggesting that peptides adopt increasingly unfavorable configurations
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in larger clusters. The solvent mediates a net large and unfavorable contribution to assembly
on the order of ∼80 kBT per peptide. This contribution accounts for the unfavorable free
energy change associated with cavity formation and disruption of the hydrogen bonding
network, loss of peptide-water interactions due to formation of the oligomeric aggregate, and
the entropy change induced in the water due to oligomerization [65–67].

To unravel the relative contributions of the conjugated peptide core and peptide wings to
the peptide-peptide interaction energy, we have further decomposed this term as,

∆Upeptide−peptide
n = ∆Uwing−wing

n + ∆Ucore−core
n + ∆Uwing−core

n , (8)

where ∆Uwing−wing
n accounts for intermolecular dispersion and electrostatic interactions

between the amino acid wings of all of the peptides in the aggregate of size n, ∆Ucore−core
n

is the interaction between the conjugated cores, and ∆Uwing−core
n accounts for the cross

interactions between the wings and cores. We plot this decomposition in Fig. 8b.
Interactions between the aromatic cores accounts for approximately 20% of the
peptide-peptide interaction energy for all aggregate sizes considered. In small oligomers of
size n = 2-3, the wing-core interactions dominate the intermolecular interactions, which can
be understood from the structure of the dimers and trimers wherein the peptide wings
double back on themselves to interact with the conjugated cores (cf. Fig. 6).

[Figure 8 near here.]

Finally, we characterize the structure of the peptides within oligomers of various sizes by
analyzing the equilibrated peptide stacks containing n = 1-5 peptides in simulations
conducted at the minimum of the assembly PMF determined by umbrella sampling. In Fig.
9a,b we report the mean center of mass spacing and angular offset between all pairs of
nearest neighbors in the oligomeric aggregates. Consistent with our prior work [13, 21], we
find the spacing between neighboring peptides to be ∼0.45 nm, and insensitive to aggregate
size. The angular offset between neighboring peptide cores is determined by associating to
each peptide a vector between the terminal carbon atoms of the OPV3 core, and computing
the dot product between these vectors. Since the core is relatively rigid and linear (cf.
Section 3.1), these vectors provide a good representation of the spatial orientation of each
peptide in the stack. We observe that neighboring peptides in these small oligomers remain
approximately parallel for all aggregate sizes studied, possessing a mean angular offset of
(10.9 ± 7.0)◦. These structural characterizations indicate that the π-conjugated cores of the
peptides are closely stacked in well-aligned stacks. In Fig. 9c we report the number of intra
and intermolecular hydrogen bonds per peptide as a function of aggregate size. A hydrogen
bond is defined between an eligible donor and acceptor according to a geometric criterion
such that the donor-acceptor distance is less than 0.35 nm and the hydrogen atom lies not
more than 30◦ offset from the vector connecting the donor and acceptor [68, 69]. We detect
hydrogen bonds using the g_hbond program within the GROMACS 4.6 simulation suite
[30]. The number of hydrogen bonds formed by each peptide in an aggregate is relatively
insensitive to oligomer size, with each peptide forming approximately 1 and 3 intra and
intermolecular hydrogen bonds, respectively. These results indicate the importance of
inter-peptide hydrogen bonding in stabilizing the assembled oligomers. In sum, this
structural characterization of the oligomers reveals that efficient stacking and alignment
between peptides engenders favorable dispersion interactions and π-stacking between the
aromatic cores and hydrogen bonding between the peptide wings, promoting self-assembly
into β-sheet-like aggregates (cf. Fig. 8).

[Figure 9 near here.]

3.4.2. Deprotonated peptides
Shifting our focus now to deprotonated peptides under high-pH conditions, we compute the
free energy for the formation of a pentamer, this time only along the monomeric addition
pathway. As shown in Fig. 10 the formation of dimers is slightly favorable with
∆F1+1 = −(4.0± 0.7) kBT . Surprisingly, further monomeric addition continues to be
favorable with ∆F2+1 = −(6.3± 0.9) kBT , ∆F3+1 = −(6.0± 0.8) kBT , and
∆F4+1 = −(4.6± 1.2) kBT . Despite the Coulombic repulsion between doubly negatively
charged Asp termini, favorable dispersion interactions, hydrophobicity, and π-stacking
between the aromatic peptide cores is sufficient to drive the assembly of small oligomers.
The morphology of the oligomers is less ordered than under low-pH conditions, with the
peptide wings orienting away from one another to mitigate the unfavorable Coulombic
repulsion while the cores associate into a weakly bound stack. The increasing concentration
of negative charge on the growing aggregate makes the addition of subsequent monomers
beyond the trimer successively less favorable and the aggregates more structurally
disordered, suggesting that assembly will be ultimately self-limiting.

[Figure 10 near here.]
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3.5. Time scale correspondence in explicit and implicit solvent simulations

Compared to explicit solvent, the absence of molecular solvent in implicit solvent
simulations may result in artificially accelerated dynamics [70]. In order to ascertain the
time scale of the implicit solvent runs, we follow an approach commonly used to define the
time scale in coarse-grained simulations by comparing the translational self-diffusion
coefficient computed in the implicit calculations to that predicted from an explicit solvent
calculation, which, possessing all atomic degrees of freedom, evolves with real-time dynamics
[71–73]. We performed five independent 20 ns simulations of a single isolated peptide in
implicit solvent using the parameters given in Section 2.2 then calculated for each run the
self-diffusion coefficient by tracking the mean squared displacement of the peptide center of
mass and applying the Einstein relation [74]. We take the mean of these five values as our
estimate of the self-diffusivity, and report uncertainties in our estimate as the standard
deviation over the estimates from the five independent runs, to determine a value of
Dimp = (6.6± 0.2)× 10−5 cm2/s. We compare this value to that of
Dexp = (7.1± 0.6)× 10−5 cm2/s, computed in explicit solvent from block averaging of a 10
ns simulation conducted using the parameters given in Section 2.1, with the exception that
we instead of a Langevin thermostat we implement a Nosé-Hoover thermostat with a time
constant of 0.5 ps, a value commonly used in the literature [75, 76], that has been shown to
reliably approximate the true dynamical time scales of the atomic system [77]. The
agreement of the implicit and explicit self-diffusion coefficients within error bars indicates
that the Langevin thermostat implemented within our implicit runs with a time constant of
2 ps−1 accurately mimics the dynamics of random collisions of solvent molecules with our
peptide [78–80] resulting in dynamical time scales in good agreement with explicit solvent
simulations.

3.6. Aggregation and structural evolution in early-stage assembly

Our reparameterized implicit solvent model permits simulation of the self-assembly of
hundreds of protonated peptides over the time scales of ∼100 ns to probe in molecular detail
the microscopic events in the early stages of self-assembly [13, 21, 22]. Using the simulation
parameters detailed in Section 2.2, we performed 70 ns simulations of 64 and 125 protonated
(low-pH) peptides in a 50×50×50 nm cubic simulation box to simulate peptide aggregation
at concentrations of 0.85 mM and 1.66 mM. We selected these concentrations as
experimentally realizable values at which self-assembly of π-conjugated peptide monomers
has been observed [22]. (For reference, a concentration of 0.868 mM corresponds to 0.1 mg
mL−1.) We conducted three independent simulations at each concentration commencing
from an initial monomeric dispersion in which the peptides were evenly spaced over a 3D
grid and assigned random initial velocities drawn from a Maxwell distribution at 298 K.
Each simulation required approximately 40 years of CPU time on high-performance parallel
computing facilities. By rendering accessible time and length scales unattainable by explicit
solvent models, our implicit solvent model permits direct observation of peptide collision,
dissociation, and structural relaxation events over the first 70 ns of assembly. Movies of one
of our assembly trajectories at each concentration were rendered using VMD [81] and are
provided in the Supplementary Information.

We quantify the aggregation behavior by monitoring the formation of peptide clusters
over the course of the simulation. A cluster is defined as a set of contiguously connected
peptides, where a pair of peptides is deemed connected if any of their respective atoms are
separated by less than rcut = 0.5 nm. This cutoff was selected as a value close to the
minimum of the Lennard-Jones potential for larger atoms, which is expected to be
sufficiently small to mitigate the chance of false positives, while sufficiently large that
peptides forming are part of the same aggregate will be recognized as such. Indeed, the
location of the free energy minimum in the dimerization PMF lies very close to 0.5 nm (cf.
Fig. 5).

3.6.1. Low concentration
We present in Fig. 11 the time evolution of the cluster size distribution observed in each of
the three independent simulations at 0.85 mM concentration. In all three replicas we observe
very similar trends in the mass fraction of monomers, dimers, and trimers. Tetramers also
exhibited similar trends, but the time taken to form the first tetramer varies by 30 ns
between runs. A single pentamer was observed at the end of run 1, but beyond this no
higher order aggregates were observed. This suggests that our simulations are insufficiently
large to furnish statistically robust data on clusters larger than trimers since the formation
of such large aggregates over the course of a 70 ns simulation containing only 64 monomers
is a very rare event. Accumulating better statistics on larger aggregates at this
concentration would require that we simulate several times as many monomers in an
correspondingly enlarged simulation box for a longer duration.

The good agreement in the trends for the smaller clusters permits us to draw statistical
conclusions regarding their aggregation behavior. After an initial lag time of ∼7 ns, the
mass fraction of monomers monotonically decreases over the course of the simulation, falling
to ∼20% by the end of the 70 ns run. Recalling that the initial state of the system
comprised of monomers evenly spaced over a 3D grid, this lag time corresponds to the
characteristic time for monomer-monomer collisions commencing from this initial
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configuration. After the ∼7 ns lag the mass fraction of dimers begins to grow from zero,
increasing monotonically for the first 55 ns to ∼50% but then decreasing to ∼40% by the
end of the simulation. We do observe a small number of trimer dissociation events, but the
trimer mass fraction also grows nearly monotonically beginning at ∼10 ns to occupy ∼15%
of the system mass. Aggregation is observed to proceed both through monomeric addition
and the condensation of larger aggregates. Of the eight tetramers that formed, three
assembled through dimer-dimer condensation (cf. Table 1).

[Figure 11 near here.]

In Fig. 12 we present selected snapshots over the course of a trimerization event observed
in one of the 0.85 mM simulations. We observe that smaller clusters of 2-4 peptides tend to
relax to a well-aligned β-sheet-like stack on the time scale of <10 ns, regardless of the
configuration in which the peptides initially associate.

[Figure 12 near here.]

3.6.2. High concentration
We present in Figs. 13 and 14 plots for the cluster size distribution for the 1.66 mM runs.
Under these conditions, the largest cluster observed was an 11-mer, with the increased
number of peptides and the elevated concentration favoring the more rapid formation of
heavier aggregates. We observe good correspondence between the three independent
simulations in the dynamical evolution of the mass fraction of monomers, dimers, trimers,
and tetramers Fig. 13, but relatively poorer agreement in the case of the higher order
aggregates for which far fewer assembly or disassembly events occur Fig. 14. Again, larger
and longer simulations would be required to furnish statistically robust data on the
formation and dissociation of larger aggregates.

At this concentration we observe more interesting assembly behaviors than at the lower
concentration. The mass fraction of monomers again falls essentially monotonically, but in
this case drops to a terminal value of only ∼10%. Dimer assembly commences much more
rapidly after a lag period of only ∼1 ns, leading to a peak in the dimer mass fraction of
∼40% at ∼15 ns and a subsequent drop off to ∼20% by the end of the simulation as the
dimers contribute to the assembly of heavier aggregates. Trimer assembly commences at ∼5
ns and increases essentially monotonically to plateau at a terminal mass fraction of
∼(15-35)%. Tetramer assembly commences at ∼15 ns, reaching a mass fraction of
∼(10-15)% by the end of the run. Finally, we observe the assembly of small numbers of
pentamers, hexamers, heptamers, octamers, decamers, and undecamers, but no nonamers.
Assembly proceeds not only by monomeric addition, but the agglomeration of higher order
aggregates such as dimer-trimer and trimer-trimer association events (cf. Fig. 15 and Table
2). We also observed dissociation of all cluster sizes into smaller aggregates, although only
one such event was observed for the rarely observed heptamers and octamers.

[Figure 13 near here.]

[Figure 14 near here.]

In Fig. 15 we show snapshots of a sequence of aggregation events leading to the formation
of a heptamer. As was observed in the 0.85 mM simulations, smaller aggregates of n=2-4
monomers tend to structurally relax into well-aligned β-sheet-like stacks, but those
containing more n > 4 peptides tend to lack this precise structural ordering. This finding
suggests that larger aggregates may be kinetically trapped into disordered configurations on
the time scale of our simulations, and the experimentally observed organization into 1D
ribbons exhibiting π-stacking of the conjugated cores occurs on the time scale of hundreds of
ns or longer [13, 22–24].

[Figure 15 near here.]

3.7. Kinetics of early-stage self-assembly

Given the time evolution of the cluster size distribution for the protonated (low-pH)
peptides, we can gain insight into the microscopic assembly kinetics by extracting from
these data effective rate constants for transitions between different cluster sizes during the
early stages of assembly. We posit that we may model the aggregation process as a time
homogeneous (i.e. stationary) continuous time Markov chain (CTMC) between different
cluster sizes [82–89]. This modeling approach assumes that the rate at which an aggregate of
a particular size transitions into an aggregate of a different size – when observed on
sufficiently long time scales [84, 85, 90] – can be approximated as spatially invariant, time
invariant, and memoryless. In other words, the transition rates do not depend upon the
location of the aggregate or the time at which it is observed, and neither the remaining time
that the system will spend in the current state nor the state to which it will transition next
depend on its history. Since we initialize our system from a homogeneous mixture of
monomers over a 3D grid, there should not – at least over relatively short time scales – exist
large concentration gradients in the system, suggesting that we need not spatially resolve
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the system and may treat it as well-mixed. That time homogeneity should a priori be
satisfied is less clear, since the rate at which one aggregate transforms into another certainly
depends on the aggregation state of its neighbors with which it can collide. We provide
below a posteriori validation that the rate constants extracted from our 70 ns simulations
are not a function of the observation time. We select the lag time used to estimate the
transition rates from our simulation trajectories as that which best reproduces the observed
time evolution of the cluster size distribution, with good agreement between the predicted
and observed distributions validating the memoryless assumption. Furthermore, we will
demonstrate that this lag time exceeds the Markov time, verifying that the system possesses
the Markov (i.e., memoryless) property on this time scale [84].

We define the states of our Markov process as aggregates of different sizes. This
necessarily discards any information regarding the internal structure of the clusters, but we
anticipate that omitting these details will – at least for the relatively small cluster sizes
observed during early-stage assembly – admit a Markovian description provided that the
internal cluster organization does not significantly affect the transition rates between
different aggregate sizes or that clusters are typically able to relax into β-sheet-like
configurations prior to undergoing further transitions. We show below that the transition
rates for aggregates of a particular size are consistent over the multiple aggregates with
different internal architectures observed in three independent simulations. The
instantaneous state of the system as at a time instant t is represented as a probability row
vector of length n holding the mass fraction of the system existing as clusters of size 1 to n,
p(t), where n is the largest aggregate observed in any of the three independent simulations
at the concentration of interest. By the definition of the mass fraction, the ith element of
this vector defines the probability with which a peptide monomer exists in an aggregate of
size i [91]. Employing the same definition as above, a cluster is defined as a set of
contiguously connected peptides, where pair of peptides are defined as connected if any of
their respective atoms are separated by less than rcut = 0.5 nm.

We denote as Q the transition rate matrix – or infinitesimal generator matrix – whose
off-diagonal elements qij are transition rates of monomers from aggregates of size i to
aggregates of size j, and whose diagonal elements are the negative sum of transition rates
out of state i, qii = −

∑n
j=1 qij [82]. By performing a Taylor expansion in time, the

probability distribution of monomers among the various aggregate sizes at time (t+ ∆t)
given that it was distributed as p(t) at time t, is given by p(t+ ∆t) ≈ p(t)(I + ∆tQ), where
∆t is an infinitesimal time increment [82]. Defined as such, the monomer distribution among
the various cluster sizes at time t, given an initial distribution p(0), may be formally
integrated to yield [82, 83, 90],

p(t) = p(0)eQt = p(0)T(t), (9)

where T(t) = eQt is the transition matrix whose elements tij(t) are the probabilities that a
monomer will be found in an aggregate of size j after an elapsed time t given that it initially
resided in an aggregate of size i [83, 84, 88]. We estimate the matrix exponential using the
scaling squaring method of Lawson [92, 93],

T(t) = eQt ≈ [rm(Qt/2s)]2
s
, (10)

where rm(x) is the [m/m] Padé approximation for ex and s is chosen so that
||Qt/2s||∞ ≈ 1. We perform this estimation using the algorithm developed by Al-Mohy and
Higham [94] and implemented in SciPy (http://www.scipy.org). We note that because our
simulations are out of thermodynamic equilibrium, we do not enforce detailed balance in the
estimation of our matrix elements [84].

We extract maximum likelihood estimator of the off-diagonal elements of Q from our
simulation trajectories using the expression [90],

qij =
Nij

Ri
, (11)

where Nij is the number of occasions a monomer was observed to transition from a cluster
of size i to one of size j over the course of the simulation, and Ri is the total holding time in
cluster size i, defined as the sum of time periods that a cluster of size i was observed
summed over all such clusters. To define whether or not a transition has occurred, we adopt
a lag time, τ such that Nij is incremented by one if a peptide is observed to reside in a
cluster of size i at time t and in one of size j at time (t+ τ). Small values of τ are desirable
in that they most closely reflect the assumption of a time continuous Markov process and
provide fine time resolution of the dynamics. Cluster association and dissociation events are,
however, associated with high frequency oscillations in the cluster size due to our definition
of a hard cutoff in peptide proximity defining monomer connectivity. Accordingly, the value
of τ should be sufficiently large such that the transition rate estimates are not artificially
elevated due to the short time fluctuations inherent to cluster agglomeration and
fragmentation events.

To select an appropriate value of the lag time, we compute the maximum likelihood
estimates of the transition rate matrix Q at various choices of τ using Eqn. 11 to estimate
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its off-diagonal elements qij as an average over all time blocks of length τ over the three
independent simulations at each concentration. Diagonal elements are computed as
qii = −

∑n
j=1 qij [82]. We then employ Eqn. 9 to predict the evolution of our system from

its initial state in which it exists exclusively as monomers (i.e., p(0) = [1, 0, . . . , 0, 0]). By
comparing the cluster size distribution predicted by our Markov model to that directly
observed in our simulations, we select the lag time that best reproduces the simulation data.
As anticipated, we observe a trade-off in accuracy as a function of the lag time: τ must be
sufficiently large to average out the high frequency fluctuations in cluster association and
dissociation, but sufficiently small to resolve the short-time dynamics of the system. We find
τ = 100 ps to be optimal, or near-optimal, for all six simulation trajectories as measured by
root mean square deviation between the time evolution of the cluster size distribution
predicted by Eqn. 9 and those measured directly from the simulation trajectory.

In Appendix A we show that the estimates of qij extracted from our simulation
trajectories are time invariant, supporting the assumption of a time homogeneous
continuous time Markov chain. In Appendix B we demonstrate that the time evolution of
the cluster size distribution is also well modeled as a discrete time Markov chain (DTMC)
employing a lag time τ = 100 ps. We also show that this lag time exceeds that Markov time
for the system, verifying that the discrete time Markov model constructed with this lag time
possesses the Markov (i.e., memoryless) property [84].

3.7.1. Low concentration
In Table 1, we report the maximum likelihood estimates of the transition rates qij extracted
from our 0.85 mM concentration simulations using a lag time of τ = 100 ps. In Fig. 16, we
compare the time evolution of the cluster size distribution predicted from the transition rate
matrix using Eqn. 9 to that measured directly from the simulation trajectories. The CTMC
predictions show good agreement with the simulation results, reproducing the trends in the
mass fraction observed over the course of the simulations. This good agreement validates
that the system is well modeled as a temporally and spatially homogeneous Markov process.
We can understand this agreement by comparing the characteristic transition time for an
aggregate of a size i, 1/|qii|, to the characteristic time for the structural relaxation of
aggregates of this size subsequent to their formation (c.f., Figs. 12 and 15 for illustrative
examples). Our analysis reveals the characteristic relaxation time to be shorter than the
transition time for aggregates of size < 5, validating our assumption that small aggregates
should structurally relax into β-sheet-like aggregates before their next transition, and
therefore that our Markov state decomposition should be approximately memoryless. For
larger aggregates of size ≥ 5, we find these time scales to be approximately equal, indicating
that structural relaxation occurs on a similar time scale to the transition time, and that a
Markov state decomposition partitioning based on both aggregate size and geometry may be
required to accurately describe the aggregation kinetics of much larger aggregates than
those observed in this work.

The transition rates of this process provide insight into the microscopic kinetics of the
early stage assembly process. In particular, the relaxation times of the system – also known
as the implied time scales – ti are related to the (magnitude) of the eigenvalues of the
transition matrix T as [84, 95],

ti = −
τ

ln(|λi|)
, (12)

where τ is the lag time used to construct the transition matrix and λi is a (possibly
complex) eigenvalue of T arranged in non-ascending order of magnitude {λ2 ≥ λ3 ≥ . . .}
and neglecting the leading unit eigenvalue λ1 = 1 associated with the steady state
distribution. The slowest relaxation time t2 provides an estimate of the characteristic
relaxation time of any system observable [96], and may therefore be related to experimental
measurements of structural relaxation kinetics [89, 97]. For this system, we calculate a value
of t2 ≈ 2.5 µs with a 95% confidence interval of 0.5 µs to 9.3 µs. (We numerically estimate
the confidence interval by generating 100,000 matrices with off-diagonal elements randomly
drawn from a normal distributions with mean and standard deviation reported in Table 1.)

It is important to note that the absence of observations of higher order aggregates means
that the transition rate matrix is a partial block of the full transition rate matrix between
all possible cluster sizes of n = 1-64. As such, this relaxation time scale reflects only the
subset of transitions that were actually observed in our simulation trajectories, and may be
interpreted as the slowest relaxation time associated with early-stage assembly. Nevertheless,
the estimation of a relaxation time from relatively short molecular simulations by modeling
aggregation as a CTMC is a powerful feature of this analysis technique [88, 96], and
suggests that simulations on the order of microseconds would be required to probe beyond
early-stage assembly [96]. The large computational expense of such long simulations would
likely require the use of even more highly coarse-grained models than those presented herein.

[Table 1 near here.]

[Figure 16 near here.]
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3.7.2. High concentration
In Table 2 and Fig. 17 we present the inferred transition rates and predictions of the time
evolution of the cluster size distribution for our 1.66 mM concentration simulations using a
lag time of τ = 100 ps. We obtain good agreement between the simulation results and our
model predictions for the lower order aggregates (n = 1-6), but poorer agreement for the
larger aggregates (n = 7-11) for which our transition rate estimates are less statistically
robust due to very few observations of the formation and dissociation of the larger clusters.
Nevertheless, the qualitative trends in the time evolution in the mass fractions of all
aggregates are adequately recapitulated by the CTMC. As with the 0.866 mM simulation,
we find that typical structural relaxation occurs on time scales shorter than or similar to the
characteristic transition time, validating our assumption that a Markov state decomposition
based on aggregate size should be approximately memoryless. Encouragingly, we observe
that nine of the twelve off-diagonal transition rates between the lower order aggregates (n =
1-4) are in agreement within error bars between the two concentrations studied (cf. Tables 1
and 2), suggesting that the transition rates inferred by our approach are not a strong
function of concentration and lending confidence in the CTMC modeling approach. Of the
three transition rates that fall outside of error bars, q14 differs by only 0.4 µs−1 after error,
and q13, and q23 by ∼7 µs−1. The absence of resolved transitions out of the heptamers,
decamers, and undecamers over the time and length scales of our simulations reflects the
behavior of these aggregates as sink states. At this concentration, we estimate the largest
relaxation time for early-stage assembly to be t2 ≈ 302 ns with a 95% confidence interval of
105 ns to 423 ns. This time scale is around an order of magnitude smaller than that
computed at the lower concentration, but still suggests that simulations on the order of a
microsecond would be required to observe events beyond the early stage assembly events
studied in this work [96].

[Table 2 near here.]

[Figure 17 near here.]

4. Conclusions

We have conducted molecular dynamics simulations to study the early-stage assembly of
DFAG-OPV3-GAFD peptides in implicit and explicit solvent. We obtained the potential of
mean force for the collapse of individual peptides and for pairwise dimerization using
umbrella sampling in explicit solvent, and rescaled the non-bonded interactions of the
CHARMM27 force field to reproduce these free energy landscapes with implicit solvation.
Using this model, we employed biased sampling techniques to compute the equilibrium
morphologies and association free energies for the formation of peptide dimers, trimers,
tetramers, and pentamers under low-pH conditions where the four terminal carboxyl groups
are protonated and the peptides are electrically neutral. Aggregates exist as β-sheet-like
stacks mediated by π-stacking of the aromatic cores and hydrogen bonding between the
peptidic wings. We predict a favorable dimerization free energy of ∆F ≈ −15kBT , and
compute a strongly favorable and approximately constant driving force for further monomer
addition to the elongating stack of ∆F ≈ −25kBT . Interestingly, under high-pH conditions
where the peptides are deprotonated and carry a net (-4) formal charge, we find
dimerization to remain favorable with ∆F ≈ −4kBT driven by dispersion interactions,
hydrophobicity, and π-stacking between the aromatic cores with the charged termini
oriented away from one another in an “I-shaped” configuration. Successive monomer
addition to form trimers, tetramers, and pentamers is also marginally favorable with
∆F ≈ −5kBT , but becomes less so with increasing aggregate size due to higher
concentrations of negative charge on the growing oligomer. These findings suggest that the
peptides exist in smaller oligomeric clusters under high-pH conditions that form the
fundamental units of assembly in pH-triggered assembly [10, 13, 21, 22].

The reparameterized implicit solvent model permitted us to access to larger time and
length scales than are accessible in explicit solvent, permitting us to directly simulate the
early stages of self assembly of the low-pH assembly of hundreds of protonated peptide
monomers over several tens of ns. At 0.85 mM concentration we see monotonic depletion of
monomers leading to assembly of dimers, trimers, tetramers, and pentamers over the first 70
ns of assembly. These light aggregates are sufficiently small to undergo rapid internal
structural relaxation to form well-aligned β-sheet-like stacks, but the assembly and
structural relaxation of of heavier aggregates proceeds on time scales of tens of ns. At 1.66
mM concentration we see rapid depletion of monomers to form aggregates of size n=2-11 by
both monomeric addition and the condensation of heavier aggregates. Morphologically,
aggregates of size n ≤ 4 undergo internal structural rearrangement into well-aligned
β-sheet-like stacks that serve as nuclei for further elongation of the nascent ribbon. The
larger aggregates appear to be kinetically trapped in disordered configurations on time
scales of tens of ns. By modeling the assembly dynamics observed in our simulations as a
continuous time Markov chain (CTMC), we extracted from our simulations transition rates
between aggregates of different sizes providing insight into the microscopic kinetics of
early-stage assembly. The predictions for the time evolution of the cluster size distribution
from the CTMC are in good agreement with those extracted directly from our simulations,
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and predict early stage assembly to possess a slowest relaxation time on the order of several
µs.

Our observations suggest a hierarchical model of early-stage assembly at experimentally
relevant concentrations, in which light n=1-4 aggregates first rapidly assemble and
reorganize into thermodynamically stable β-sheet-like stacks. These small subsequently
agglomerate into larger disordered aggregates with internal structural relaxation times
exceeding several tens of ns. These early stages of peptide assembly observed in our
simulations resemble the initial stages of models of amyloid fibril formation in which
amyloid peptides nucleate into roughly spherical micelle-like structures bound by primarily
hydrophobicity, before ripening into beta-sheet-like structures with a defined backbone and
linear stacking arrangement [98–103]. Moving beyond the 70 ns time horizon, our results
suggest that the next phase of assembly to be structural ripening of these larger aggregates
into well-aligned β-sheet-like stacks coupled with the formation of larger aggregates. The
aggregation of small clusters with high mobilities into larger, less mobile clusters – we
compute the self-diffusivity of monomers, tetramers, and octamers to be (6.6 ± 0.2), (1.64 ±
0.04), and (0.74 ± 0.02) × 10−5 cm2/s respectively – suggests that higher order aggregation
will likely be diffusion limited. Further testing of these hypotheses would require the
simulation of larger simulation boxes to gather sufficient data to draw statistically robust
data on higher aggregate formation, and longer simulation times to probe higher-order
assembly on microsecond time scales. We are currently working to both secure computing
time on large-scale cyberinfrastructure and to develop more highly coarse-grained models to
perform these simulations.

In future work, we will employ our reparameterized implicit solvent model to investigate
the impact of modifications to peptide sequence and the conjugated core upon the
thermodynamics, kinetics, and morphologies in early-stage assembly to make contact
between monomer chemistry and assembly behavior. Specifically, we will study (i) the
DXXX-OPV3-XXXD peptide family where X = {G,A,I,V,F} [13, 21, 22, 24, 28], and (ii)
the DFAG-Π-GAFD family where Π corresponds to different conjugated cores of different
characters and sizes, including oligophenylvinylenes, oligothiophenes, and rylene diimides
[21, 23, 27] to identify amino acid sequences and cores predicted to possess desirable
assembly characteristics. Peptide composition has a direct influence on both the structure of
the assembled nanomaterials, such as the extent of fibrillization, as well as their
functionality, such as the energy transport characteristics [13, 20]. For example, different
peptide chemistries have been observed to produce nanomaterials with excited state exciton
outcomes spanning from the formation of “charge-trapped” excimer states that might be
useful for light emission applications, to the formation of strong electronic coupling relevant
for charge carrier transport [20]. Future computational studies can help to unravel the
molecular-level morphologies underpinning this structure and function, and help guide the
rational design of new biocompatible optoelectronic nanomaterials for energy transport and
storage applications.
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FIGURES

Figure 1. Chemical structure of the DFAG-OPV3-GAFD peptide studied in this work. The N-terminus
to C-terminus directionality of each peptide wing proceeds away from the conjugated core, leading to an
oligopeptide architecture possessing two C-termini. The pKA of the carboxyl terminus and aspartic acid side
chain residing at the C-termini are 2.09 and 3.86, respectively [104]. At pH ∼5 or greater, the oligopeptides
are effectively fully deprotonated, carrying a formal charge of (−4) that precludes extended assembly due to
Coulombic repulsion [13]. At pH ∼1 or less, the peptides are effectively fully protonated, and self-assemble
into aggregates stabilized by inter-peptide hydrogen bonding and π-stacking of the conjugated cores.
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Figure 2. PMF curves for isolated DFAG-OPV3-GAFD peptides in explicit and implicit solvent in the (a)
protonated (low-pH) and (b) deprotonated (high-pH) states parameterized by the intramolecular head-to-
tail distance, h2t, between the Cα atoms of the terminal aspartic acid residues. Error bars in this and all
subsequent PMF curves were computed by performing 100 bootstrap resamples of the data. Representative
molecular structures extracted from our simulations and projected along the umbrella sampling coordinate
in this and all subsequent figures were rendered in VMD [81].
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Figure 3. PMF curves for pairs of DFAG-OPV3-GAFD peptides in explicit and implicit solvent in the
(a) protonated (low-pH) and (b) deprotonated (high-pH) states parameterized by peptide center of mass
separation, rCOM. The dimerization free energy predicted by the explicit solvent model for the protonated
(low-pH) peptides is strongly favorable at ∆Fprot

dimer = −(15.7±0.7) kBT , whereas that for the deprotonated
(high-pH) peptides is only weakly so at ∆Fdeprot

dimer = −(4.7± 0.9) kBT .

20



May 17, 2017 Molecular Physics manuscript

0.80 0.85 0.90 0.95 1.00
−4
−2

0
2
4
6
8

∆
∆
F

in
k
B
Ta)

0.6 0.7 0.8 0.9 1.0
−4
−2

0
2
4
6
8

10

∆
∆
F

in
k
B
Tb)

α
Figure 4. ∆∆Fdimer(α) = |∆F imp

dimer(α) −∆F exp
dimer| for (a) protonated peptides at values of the scaling

parameter α = {0.80, 0.82, 0.85, 0.87, 0.90, 1.00}, and (b) deprotonated peptides at α = {0.52, 0.60, 0.68,
0.70, 0.72, 0.76, 0.84, 0.92, 1.00}.
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Figure 5. PMF curves for pairs of DFAG-OPV3-GAFD peptides in explicit and implicit solvent at the
optimal value of (a) α∗prot = 0.87 in the protonated (low-pH) and (b) α∗deprot = 0.72 in the deprotonated
(high-pH) states parameterized by peptide center of mass separation, rCOM. The dimerization free energy
predicted by the rescaled implicit solvent model for the protonated (low-pH) peptides is strongly favorable
at ∆Fprot

dimer = −(14.5 ± 1.2) kBT , whereas that for the deprotonated (high-pH) peptides is only weakly
so at ∆Fdeprot

dimer = −(4.0 ± 0.7) kBT . Both values are in excellent agreement with the explicit solvent
predictions of ∆Fprot

dimer = −(15.7± 0.7) kBT and ∆Fdeprot
dimer = −(4.7± 0.9) kBT .
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Figure 6. Elementary free energy changes for pentamer formation by monomeric addition (lower path)
and dimer condensation plus monomeric addition (upper path) for protonated (low-pH) peptides computed
by umbrella sampling using the reparameterized implicit solvent model. Uncertainties are computed by
standard propagation of errors over five independent runs accounting for the variance between runs and
the bootstrap uncertainties within each run. The free energy change for formation of the tetramer from
the dimer along the upper and lower paths are identical within error bars. For ease of comprehension,
representative molecular structures of the equilibrium clusters are presented with cartoon diagrams in
which each red oblong represents a peptide monomer.
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Figure 7. Free energy of monomeric addition to preassembled oligomers containing between one and
four peptides under protonated (low-pH) conditions computed by umbrella sampling. Uncertainties are
computed by standard propagation of errors over five independent runs accounting for the variance between
runs and the bootstrap uncertainties within each run. The calculated free energy change for the addition
of a monomer to a dimer, trimer, or tetramer are indistinguishable within error bars, suggesting that the
free energy for monomer addition to the elongating β-sheet-like stack is strongly favorable and essentially
independent of the size of the stack at ∆Fn+1 ≈ −25kBT .
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Figure 8. Decomposition of the energetic and entropic contributions to the free energy of association as a
function of aggregate size for oligomers containing between two and five peptides. (a) The free energy of as-
sembly of an aggregate of size n from non-interacting monomers ∆Fn and its decomposition into the change
in the intramolecular, ∆U intrapeptide

n , and intermolecular, ∆Upeptide−peptide
n , peptide energies, and the

solvent-mediated contribution to aggregation, ∆F solvent
n = ∆Upeptide−water

n +∆Uwater−water
n −T∆Swater

n ,
which we estimate as ∆F solvent

n ≈ ∆Fn −∆U intrapeptide
n −∆Upeptide−peptide

n , neglecting pressure-volume
work and the entropy change of the peptides upon assembly. Intermolecular terms comprise dispersion and
electrostatic interactions, while intramolecular terms comprise dispersion, electrostatic, and bonded inter-
actions (b) Partitioning of ∆Upeptide−peptide

n into interactions between the peptide wings, aromatic cores,
and cross interactions between the wings and cores. Error bars are computed by the standard deviation of
the energy computed over the course of the 10 ns simulation and standard propagation of uncertainties.
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Figure 9. Structural characterization of oligomeric aggregates containing between two and five peptides.
(a) Mean center of mass separation between nearest neighbor peptides in the aggregate. (b) Mean angular
offset between nearest neighbor peptides computed by calculating the dot product between vectors oriented
along the OPV3 cores of the peptides. (c) Mean number of intra and intermolecular hydrogen bonds per
peptide. Error bars represent the standard deviation computed over the course of the 10 ns simulation.
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Figure 10. Free energy of monomeric addition to preassembled oligomers containing between one and
four peptides under deprotonated (high-pH) conditions computed by umbrella sampling. Uncertainties are
computed by standard propagation of errors over five independent runs accounting for the variance between
runs and the bootstrap uncertainties within each run. Monomer addition is thermodynamically favored
by dispersion interactions, hydrophobicity, and π-stacking between the aromatic cores, but significantly
destabilized relative to the protonated (low-pH) conditions by unfavorable Coulombic repulsions between
the doubly negatively charged Asp termini. The increasing concentration of negative charge on the growing
oligomer makes monomer association increasingly unfavorable beyond the trimer.
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Figure 11. Mass fraction as a function of scaled simulation time for an unbiased simulation of 64 peptides
at 0.85 mM for (a) one simulation, and (b-e) each of the three independent simulations tracking (b) 1-mers,
(c) 2-mers, (d) 3-mers, and (e) 4-mers.
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Figure 12. Representative snapshots of a trimerization event observed in Run 2 of the 0.85 mM concentra-
tion protonated (low-pH) peptide self-assembly simulations conducted over 70 ns using our reparameterized
implicit solvent model. (a) Collision of two monomers at t = 5.3 ns induces rise to internal structural re-
arrangements until (b) the two conjugated cores are aligned to form the equilibrium dimer (cf. Fig. 7)
after ∼5 ns. (c) Collision of the dimer with a third monomer at t = 12 ns results in (d) further structural
reorganization and relaxation over 2 ns undergoes minor rearrangements to form (e) an equilibrium trimer
β-sheet-like stack at t = 36.7 ns (cf. Fig. 7).
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Figure 13. Mass fraction as a function of scaled simulation time for an unbiased simulation of 125 peptides
at 1.66 mM for (a) one simulation, and (b-e) each of the three independent simulations tracking (b) 1-mers,
(c) 2-mers, (d) 3-mers, and (e) 4-mers.
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Figure 14. Mass fraction as a function of scaled simulation time for an unbiased simulation of 125 peptides
at 1.66 mM for (a) one simulation, and (b-e) each of the three independent simulations tracking (b) 5-mers,
(c) 6-mers, (d) 7-mers, and (e) 8-mers.
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t = 16.0 ns t = 22.0 ns t = 24.2 ns t = 37.3 ns t = 70.0 ns

Figure 15. Representative snapshots of a heptamerization event observed in Run 3 of the 1.66 mM con-
centration protonated (low-pH) peptide self-assembly simulations conducted over 70 ns using our repa-
rameterized implicit solvent model. (a) Collision of two pre-assembled dimers at t = 16 ns produces (b) a
tetramer β-sheet after 6 ns that (c) interacts with a fifth monomer to produce a pentamer. (d) The pen-
tamer collides with a dimer to generate (e) a disordered heptamer that has not fully undergone structural
rearrangement into an ordered β-sheet-like stack by the termination of the simulation at t = 70 ns.
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Figure 16. Comparison of the cluster size distribution in the 0.85 mM system predicted by the Markov
model with a lag time of τ = 100 ps (dashed lines) to that directly observed in the simulations (sold lines
with every 20th point plotted) for aggregates of size n = 1-5. The simulation data is plotted as the mean
and standard deviation of the mass fraction over the three simulations. No error bars are reported when
only a single observation was obtained at that particular time interval.
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Figure 17. Comparison of the cluster size distribution in the 1.66 mM system predicted by the Markov
model with a lag time of τ = 100 ps (dashed lines) to that directly observed in the simulations (sold lines
with every 20th point plotted) for aggregates of size (a) n = 1-6 and (b) n = 7-11. The simulation data is
plotted as the mean and standard deviation of the mass fraction over the three simulations. No error bars
are reported when only a single observation was obtained at that particular time interval.
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TABLES

Table 1. Maximum likelihood estimate of transition rates between aggregate sizes in units of µs−1 in the con-
tinuous time Markov model for the 0.85 mM system employing a lag time of τ = 100 ps. Off-diagonal elements
are estimated as an average over all time blocks of length τ over the three independent simulation trajectories,
and uncertainties estimated as the standard error in the values constituting the mean. Diagonal elements are
computed as qii = −

∑n
j=1 qij , and the associated uncertainly estimated by standard propagation of errors.

Transition rates for which no such transitions were observed over the course of the simulation trajectories, or the
total residence time was less than the lag time, are reported as zero.

To 1-mer To 2-mer To 3-mer To 4-mer To 5-mer
From 1-mer −26.4 ± 5.8 21.1 ± 3.0 2.9 ± 0.9 1.5 ± 0.8 1.0 ± 0.7
From 2-mer 13.5 ± 6.8 −25.4 ± 8.0 9.1 ± 2.6 2.8 ± 1.4 0.0 ± 0.0
From 3-mer 3.9 ± 2.8 7.8 ± 5.5 −30.7 ± 13.1 19.0 ± 10.8 0.0 ± 0.0
From 4-mer 6.2 ± 4.5 0.0 ± 0.0 18.7 ± 13.6 −51.0 ± 25.4 26.1 ± 20.1
From 5-mer 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 −0.0 ± 0.0
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Table 2. Maximum likelihood estimate of transition rates between aggregate sizes in units of µs−1 in the con-
tinuous time Markov model for the 1.66 mM system employing a lag time of τ = 100 ps. Off-diagonal elements
are estimated as an average over all time blocks of length τ over the three independent simulation trajectories,
and uncertainties estimated as the standard error in the values constituting the mean. Diagonal elements are
computed as qii = −

∑n
j=1 qij , and the associated uncertainly estimated by standard propagation of errors.

Transition rates for which no such transitions were observed over the course of the simulation trajectories, or the
total residence time was less than the lag time, are reported as zero.

To 1-mer To 2-mer To 3-mer To 4-mer To 5-mer
From 1-mer −41.3 ± 5.5 25.0 ± 4.4 11.7 ± 1.7 3.6 ± 0.9 2.1 ± 0.7
From 2-mer 25.0 ± 10.1 −56.3 ± 11.2 21.6 ± 2.9 4.6 ± 1.4 3.8 ± 1.4
From 3-mer 6.5 ± 4.5 6.8 ± 3.0 −42.9 ± 7.6 14.7 ± 3.5 8.4 ± 2.7
From 4-mer 1.8 ± 1.1 0.7 ± 0.7 5.5 ± 3.3 −28.0 ± 7.0 14.3 ± 5.1
From 5-mer 5.2 ± 4.8 13.3 ± 6.8 19.9 ± 10.2 20.9 ± 19.3 −107.0 ± 34.2
From 6-mer 18.9 ± 18.2 0.0 ± 0.0 8.3 ± 8.4 0.0 ± 0.0 94.3 ± 91.1
From 7-mer 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
From 8-mer 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
From 9-mer 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
From 10-mer 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
From 11-mer 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
. . . To 6-mer To 7-mer To 8-mer To 9-mer To 10-mer To 11-mer

0.8 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
0.0 ± 0.0 0.7 ± 0.5 0.5 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
4.2 ± 2.2 1.2 ± 0.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 1.1
0.0 ± 0.0 2.6 ± 1.8 1.4 ± 1.4 0.0 ± 0.0 1.7 ± 1.7 0.0 ± 0.0

42.5 ± 24.3 5.3 ± 3.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
−167.2 ± 102.3 0.0 ± 0.0 6.7 ± 6.8 0.0 ± 0.0 39.1 ± 40.3 0.0 ± 0.0

0.0 ± 0.0 −0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
0.0 ± 0.0 0.0 ± 0.0 −75.8 ± 83.3 0.0 ± 0.0 0.0 ± 0.0 75.8 ± 83.0
0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 −0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 −0.0 ± 0.0 0.0 ± 0.0
0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 −0.0 ± 0.0
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MOVIES

Movie 1. Movie of the 70 ns implicit solvent simulation of peptide self-assembly at a
peptide concentration of 0.85 mM.

Movie 2. Movie of the 70 ns implicit solvent simulation of peptide self-assembly at a
peptide concentration of 1.66 mM.
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Appendix A. Time dependence of transition rate matrix

By modeling the system as a time homogeneous continuous time Markov chain, we
implicitly assume that the elements of the transition rate matrix Q are time invariant. We
present a posteriori validation of this assumption by dividing each 70 ns simulation
trajectory into contiguous 3.5 ns blocks, and computing the maximum likelihood estimates
for the off-diagonal elements of the matrix qij in each block as an average over all time
intervals of length equal to the lag time of τ = 100 ps over the three independent
simulations at each concentration. Uncertainties are estimated as the standard error in the
values constituting the mean. Diagonal elements are computed as qii = −

∑n
j=1 qij , and the

associated uncertainly estimated by standard propagation of errors.
In Fig. A1, we present a time resolved plot of the estimates of the transition rate matrix

elements for the 0.85 mM concentration and in Fig. A2 analogous plots for the 1.66 mM
concentration. Rarely observed transitions precluded the reporting of reliable transition rate
estimates for all time blocks, but the calculable transition rate are time invariant within
estimated uncertainties. By conducting additional simulations, it is possible that these
uncertainties may be reduced to the point that statistically meaningful time dependencies in
the transition rates may be extracted, but the observed insensitivity of the transition rates
to the observation time coupled with the good reproduction of the time evolution of the
cluster size distribution (cf. Figs. 11, 13 and 14) supports the assertion that the dynamical
evolution is adequately modeled as a time homogeneous Markov process.

[Figure A1 near here.]

[Figure A2 near here.]
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Figure A1. Time dependence of the transition rate matrix elements extracted from three 70 ns simulations
of the aggregation of 64 protonated (low-pH) peptides at a concentration of 0.85 mM using our reparame-
terized implicit solvent model. Off-diagonal elements qij are reported over 3.5 ns time blocks as an average
over all time intervals of length equal to the lag time of τ = 100 ps over the three independent simulations.
Uncertainties are estimated as the standard error in the values constituting the mean. Diagonal elements
are computed as qii = −

∑n
j=1 qij , and the associated uncertainly estimated by standard propagation of

errors. The absence of an error bar implies that the transition was sufficiently rare that fewer than three
data points were obtained for that time interval. The absence of data at a given time implies that no
peptides of that size existed in any of the simulations at that time so the transition rate out of such a state
cannot be quantified.
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Figure A2. Time dependence of the transition rate matrix elements extracted from three 70 ns simulations
of the aggregation of 125 protonated (low-pH) peptides at a concentration of 1.66 mM using our reparame-
terized implicit solvent model. Off-diagonal elements qij are reported over 3.5 ns time blocks as an average
over all time intervals of length equal to the lag time of τ = 100 ps over the three independent simulations.
Uncertainties are estimated as the standard error in the values constituting the mean. Diagonal elements
are computed as qii = −

∑n
j=1 qij , and the associated uncertainly estimated by standard propagation of

errors. The absence of an error bar implies that the transition was sufficiently rare that fewer than three
data points were obtained for that time interval. The absence of data at a given time implies that no
peptides of that size existed in any of the simulations at that time so the transition rate out of such a state
cannot be quantified.
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Appendix B. Discrete time Markov chain (DTMC)

Our molecular simulation trajectories are continuous in time, making it possible to estimate
the transition rate matrix Q directly from the data and model the system evolution as a
continuous time Markov chain (CTMC). We may then predict the time evolution of the
cluster size distribution at any future time t by forming the matrix exponential eQt and
applying Eqn. 9 [82]. We favor the continuous time formulation for its attractive capacity to
predict the cluster size distribution at an arbitrary future time point, but it is also possible
to model the system as a discrete time Markov chain (DTMC). In the discrete-time
formulation, the transition matrix T(τ) containing the transition probabilities between the
various cluster sizes over a particular observation interval, or lag time, τ is estimated
directly from the data, rather than as the exponential of the transition rate matrix Q (cf.
Eqn. 9). Similar to the CTMC approach, the discrete time treatment assumes that the
transition probabilities possess neither temporal nor spatial dependencies, and depend only
on the current state of the system and not its past history. The cluster size distribution at
some integer multiple of the lag time can be estimated from repeated applications of the
transition matrix as [84, 88],

p(nτ) = p(0) [T(τ)]n . (B1)

This relationship makes clear that the discrete time formulation is restricted to predict the
cluster size distribution at discrete time intervals. The element tij(τ) of the transition
matrix T represents the probability that a monomer will be found in an aggregate of size j
after a lag time τ given that it initially resided in an aggregate of size i. Maximum
likelihood estimates for the transition probabilities are given by [84, 88, 90],

tij(τ) =
Nij(τ)∑M

m=1Nim(τ)
, (B2)

where Nij is the number of transitions observed from state i to state j over the observation
interval τ . We estimate transition probabilities as an average over all time blocks of length τ
over the three independent simulations conducted at each concentration. For the DTMC to
possess the Markov (i.e., memoryless) property, the lag time must exceed the Markov time
for the system [84]. The Chapman-Kolmogorov applied to a time homogeneous DTMC
possessing the memoryless property states that [84],

T(nτ) = [T(τ)]n , (B3)

providing a mathematical statement that n repeated application of a transition matrix
constructed with a lag time of τ should be equivalent to a single application of a transition
matrix constructed with a lag time of nτ . Testing this condition provides a commonly used
validation that the lag time τ is sufficiently large that the system is Markovian [84].

In Fig. B1, we compare the observed time evolution of the cluster size distribution
measured directly from our simulations at 0.85 mM concentration to that predicted from the
CTMC using Eqn. 9 and employing a lag time of 100 ps, and two DTMCs using Eqn. B1,
and employing lag times of 100 ps and 400 ps. In Fig. B2 we present the analogous plot for
the 1.66 mM concentration system. The predictions of the three Markov models are in
excellent agreement, demonstrating that the time evolution of the system can be equally
well formulated as a CTMC or DTMC, and that a lag time of τ = 100 ps is sufficiently high
to assure Markovian behavior.

[Figure B1 near here.]

[Figure B2 near here.]
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Figure B1. Comparison of the cluster size distribution in the 0.85 mM system predicted by the (i) CTMC
with τ = 100 ps (blue dot-dash lines), (ii) DTMC with a lag time of τ = 100 ps (red dashed lines), (iii)
DTMC with a lag time of 4τ = 400 ps (green dashed lines) to that directly observed in the simulations (solid
black lines, every 20th point plotted). The simulation data is plotted as the mean and standard deviation
of the mass fraction over the three simulations. We present in each panel the results for (a) monomers,
(b) dimers, (c) trimers, and (d) tetramers. No error bars are reported when only a single observation was
obtained at that particular time interval.
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Figure B2. Comparison of the cluster size distribution in the 1.66 mM system predicted by the (i) CTMC
with τ = 100 ps (blue dot-dash lines), (ii) DTMC with a lag time of τ = 100 ps (red dashed lines), (iii)
DTMC with a lag time of 4τ = 400 ps (green dashed lines) to that directly observed in the simulations (solid
black lines, every 20th point plotted). The simulation data is plotted as the mean and standard deviation
of the mass fraction over the three simulations. We present in each panel the results for (a) monomers, (b)
dimers, (c) trimers, (d) tetramers, (e) pentamers, (f) hexamers, (g) heptamers, (h) octamers, (i) decamers,
and (j) undecamers. No nonamers were formed during our simulations. No error bars are reported when
only a single observation was obtained at that particular time interval.
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