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Background: Although uncertainty quantification has been making its way into nuclear theory, these methods have yet to be
explored in the context of reaction theory. For example, it is well known that different parameterizations of the optical
potential can result in different cross sections, but these differences have not been systematically studied and quantified.

Purpose: The purpose of this work is to investigate the uncertainties in nuclear reactions that result from fitting a given model
to elastic-scattering data, as well as to study how these uncertainties propagate to the inelastic and transfer channels.

Method: We use statistical methods to determine a best fit and create corresponding 95% confidence bands. A simple model
of the process is fit to elastic-scattering data and used to predict either inelastic or transfer cross sections. In this initial
work, we assume that our model is correct, and the only uncertainties come from the variation of the fit parameters.

Results: We study a number of reactions involving neutron and deuteron projectiles with energies in the range of 5–25 MeV/u,
on targets with mass A=12–208. We investigate the correlations between the parameters in the fit. The case of deuterons
on 12C is discussed in detail: the elastic-scattering fit and the prediction of 12C(d,p)13C transfer angular distributions,
using both uncorrelated and correlated χ2 minimization functions. The general features for all cases are compiled in a
systematic manner to identify trends.

Conclusions: Our work shows that, in many cases, the correlated χ2 functions (in comparison to the uncorrelated χ2 func-
tions) provide a more natural parameterization of the process. These correlated functions do, however, produce broader
confidence bands. Further optimization may require improvement in the models themselves and/or more information
included in the fit.

PACS numbers: 24.10.Eq, 25.40.Dn, 25.40.Fq, 25.40.Hs, 02.60.Ed
Keywords: uncertainty quantification, elastic scattering, inelastic scattering, transfer reactions, direct reac-
tion theory

I. INTRODUCTION

For nuclei close to the limits of stability, nuclear the-
ory needs to become more predictable, because not all
systems will be measured directly. For those nuclei that
are studied experimentally, a deep understanding of the
probe and its uncertainties is essential. For these exotic
systems, diverse reaction probes exist that enable the
study of a wide variety of nuclear phenomena. A solid
understanding of reaction theory is crucial in the inter-
pretation of these experiments. This understanding must
include the sources of uncertainty within the models.

There are four main sources of uncertainty in reac-
tion theory, as discussed in [1]. These include approx-
imations to (a) the few-body problem, (b) the effective
interactions used, and (c) the structure functions (such
as overlaps). Most of these have been investigated, in
[1] (and the references therein) and elsewhere. However,
these investigations typically rely on the comparison of
two models or parameterizations. Concerning (a), for
example, methods such as the adiabatic approximation
or continuum-discretized coupled channels method have
been benchmarked against the Faddeev method [2–4]. To
address (b), the uncertainty from the effective interac-
tions used, the standard procedure is to use two different
parameterizations of the optical model within the same
reaction theory framework, with the percent errors com-
ing from the difference between the results obtained with

these two parameterizations. The same approach is taken
when investigating (c), the effect of simplifications in the
structure functions.

Although comparative methods can be used to inves-
tigate each of these sources of uncertainties, they are not
systematic. They also do not allow us to know, a pri-
ori, when these effects will become important. In order
to move the field forward, systematic ways to compute
uncertainties must be developed.

As opposed to reaction theory, in other nuclear the-
ory subfields, systematic methods of uncertainty quan-
tification have become widespread. Bayesian methods
for parameter estimation are being used in effective field
theories (EFTs), for example [5, 6], as well as in nuclear
data evaluations [7]. Truncation errors are being system-
atically investigated in EFTs and the derivation of the
nuclear force [8–11]. Uncertainty quantification has also
been investigated in and applied to density functional
theory (DFT), for example in [12–14].

Uncertainty quantification has also been used widely in
fields outside low energy nuclear physics. For example,
Bayesian approaches are used in measuring neutron star
radii [15] and estimating parameters for heavy-ion colli-
sions [16]. Of course, systematic error quantifications are
also the topic of research in fields beyond physics. The
many lessons learned from the large array of applications
can guide the work on uncertainty quantification in reac-
tion theory; however, many specifics need to addressed to
improve on the state of the art. Our approach therefore
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is to start with simple formulations of the process and fo-
cus on developing a systematic and robust methodology
that holds specifically for nuclear reactions. This work
represents the first step in this process.

Our goal here is to quantify uncertainties coming from
parameter variations of the effective interaction within
a given model. In Section II, we discuss the formulation
used for our study of uncertainties and summarize the re-
action models that we are considering. The systems that
we have studied are introduced in Section III. Results
are presented in Section IV, including a detailed exam-
ple and a summary of the overall trends, and in Section
V, these results are discussed. We conclude in Section
VI by presenting ideas for improving this analysis.

II. THEORETICAL FRAMEWORK

Throughout this work, we assume that all uncertain-
ties are coming from our choice of parameterization of
the interaction and not from the reaction model itself.
Uncertainties in the reaction model are discussed briefly
in Section VI.

A. Uncorrelated χ2 fitting

The goal is to describe a true function, σ(θ), with a
known model, σth(x, θ), where the model is a function
of angle, θ, and has N free parameters x = (x1, ..., xN ).
In this work, the model is a formulation for a differen-
tial cross section, and the free parameters are the pa-
rameters in the optical potential; these are discussed in
Section II E. The model describes M sets of data points
{(θ1, σexp

1 ), ..., (θM , σ
exp
M )}, each with an associated ex-

perimental error, ∆σi. Typically, the data and errors
are independent of one another and normally distributed,
such that

σexp
i = σ(θi) + εi, (1)

with the measurement errors being described as

εi ∼ N (0, (∆σi)
2), (2)

where N is the normal distribution.
In matrix form, this is

σexp ∼ N (σ,Σ), (3)

where Σ is an M ×M diagonal matrix with (∆σi)
2 on

the diagonal.
The residuals, the differences between the data and the

model, then have the multivariate normal distribution:[
σth(x, θ1)− σexp

1 , ..., σth(x, θM )− σexp
M

]T ∼ N (0,Σ).
(4)

Maximizing the associated likelihood of x gives us the
minimization objective function,

χ2
UC(x) =

M∑
i=1

(
σth(x, θi)− σexp

i

∆σi

)2

, (5)

which is proportional to the definition of the standard χ2

function (here, UC stands for uncorrelated). In minimiz-
ing this function, we can find the best-fit set of parame-
ters, x̂.

From here, we can define the 95% confidence region
about x̂. To do so, we further assume that the true pa-
rameter values are normally distributed around the min-
imum of the χ2 function,

N (x̂,Cp) ∼ exp[−1

2
(x− x̂)TCp(x− x̂)], (6)

where Cp is the N × N parameter covariance matrix,
describing the correlations between the fit parameters
[17]. This assumption of a normal distribution can be
supported empirically by looking at the two-dimensional
slices of parameter space as a function of χ2

UC value. To
take into account the goodness of the fit, we scale the
parameter covariance matrix by the degrees of freedom

s2 =
χ2
UC

M −N
, (7)

such that in Eq. 6 Cp is replaced by s2Cp.
Parameter sets can then be drawn from the scaled dis-

tribution (6) and run through the model σth. At each
angle where the model was evaluated, the highest 2.5%
and lowest 2.5% of the calculations are removed in order
to obtain a 95% confidence band.

We can then define the average width of the uncorre-
lated confidence band as

WUC =
1

Nθ

Nθ∑
i=1

(σmax
i − σmin

i ), (8)

where σmax
i (σmin

i ) is the cross section value at the
upper (lower) limit of the 95% confidence band for a given
angle θi and Nθ is the number of angles included in the
calculation.

B. Correlated χ2 fitting

If there are correlations between the εi errors (e.g.,
between the predicted values of the cross section for dif-
ferent angles), one needs to take a different approach.

Consider, for example, the single-channel elastic cross
section, typically expressed by a partial wave decompo-
sition as

dσ

dΩ
=

1

4k2

∣∣∣∣∣
∞∑
L=0

(2L+ 1)PL(cosθ)(SL − 1)

∣∣∣∣∣
2

, (9)
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where k is the incoming momentum, PL(cosθ) are the
Legendre polynomials, and SL is the corresponding S-
matrix [18]. Because fitting at one angle influences the
cross-section values at all other angles, the correlations
between angles may need to be taken into account in the
fitting process.

Therefore, along with the condition of Eq. 3, we as-
sume

[σth(x, θ1), ..., σth(x, θM )]T ∼ N (σ,Cm); (10)

that is, our model is normally distributed with theM×M
model covariance matrix, Cm, which describes the corre-
lations within the model at each of the experimentally
measured angles. This leaves the residuals distributed as[
σth(x, θ1)− σexp

1 , ..., σth(x, θM )− σexp
M

]T ∼ N (0,Cm+Σ).
(11)

The resulting correlated χ2 minimization objective
function becomes

χ2
C(x̂) =

M∑
i=1

M∑
j=1

Wij(σ
th(x, θi)−σexp

i )(σth(x, θj)−σexp
j ),

(12)
where Wij are the (ij)th matrix elements of W = (Cm +
Σ)−1. Note that interference can occur between the resid-
uals at different angles because the individual model co-
variance matrix elements Wij do not have to be positive.
This causes χ2

C to be less than χ2
UC . In general, we see

that χ2
UC/M ≤ 1 is no longer the definition of a sta-

tistical fit because the model covariance matrix is not
normalized.

Once the set of parameters corresponding to the best
fit is found with this minimization objective function,
95% confidence bands can be defined in the same way
as described as in Section II A, substituting χ2

C for χ2
UC .

The average width of the correlated confidence bands can
be defined identically to Eq. 8 where σmax

i and σmin
i are

associated with the correlated 95% confidence bands.

C. Matrices

The parameter covariance matrix is defined as

Cp = (JT J)−1, (13)

where the matrix elements of the Jacobian, J, are

Jij =
∂σth(x, θi)

∂xj

∣∣∣∣
x=x̂

. (14)

From the covariance matrix, the parameter correlation
matrix can be defined [17] as

Ccorr = ATCpA. (15)

Here, A is the matrix that has, as its diagonal ele-
ments, the inverse of the square roots of the diagonal

elements of Cp and zeros on its off-diagonal elements

(Aii = 1/
√

(Cp)ii). The magnitude of the matrix ele-
ments of the correlation matrix range from zero to one.
Zero means no correlation between the two parameters,
and (negative) one means that the two parameters are
fully (anti-)correlated. Therefore, the diagonal elements
of the correlation matrix are all one, since every param-
eter is fully correlated with itself.

D. Non-Gaussian parameter space

The χ2 function around the minimum in parameter
space may not be approximately quadratic, an assump-
tion required by Eq. 6. If this is the case, we can pull
the parameter sets from the actual distribution (defined
by contours of constant χ2), rather than the multivariate
Gaussian of Eq. 6. For each parameter set pulled, its
χ2(x) value is tested in the inequality

χ2(x)− χ2(x̂) ≤ 9M, (16)

which gives sets of parameters that are approximately
within 3 standard deviations of the minimum [18].

If the χ2(x) associated with the parameter set fulfills
the requirement of Eq. 16, the parameter set is kept; oth-
erwise, it is thrown away. When 200 parameter sets have
been accepted, these are run through the model. Since
Eq. 16 defines a 99.7% region, confidence bands must
be slightly expanded to represent the 0.3% of parameters
sets that are rejected. This is accounted for by removing
the highest 2.35% and lowest 2.35% of the calculations
at each angle.

E. Reaction models

In this work, we fit elastic-scattering data to predict
inelastic-scattering cross sections as well as transfer cross
sections. Because the focus of this work is to introduce
methodology to systematically quantify uncertainties in
predictions of nuclear reactions, here, we try to keep the
reaction mechanisms as simple as possible. Therefore, we
focus on two reaction models, the coupled-channels Born
approximation (CCBA) when performing elastic- and
inelastic-scattering calculations and the distorted-wave
Born approximation (DWBA) when performing elastic
scattering and transfer calculations [18]. Improvements
on reaction models themselves will be performed else-
where at a later stage.

1. CCBA

CCBA couples the elastic and inelastic channels to-
gether by solving N coupled-channel equations,

[Hα − Eα]ψααi(Rα) +

N∑
β 6=α

Vαβψβαi(Rβ) = 0, (17)
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where αi denotes the incoming elastic channel, ψααi is
the two-body wave function for a given outgoing channel
α, and Vαβ is the coupling potential [18].

In this work, CCBA is used when calculating neutron
elastic- and inelastic-scattering cross sections, coupling
only the first excited state to the ground state.

2. DWBA

For A(d, p)B reactions, the one-step distorted wave
approximation is made. The elastic scattering of the
deuteron is described by an effective deuteron-target in-
teraction, VdA. For the transfer reaction, in DWBA, in-
stead of solving the true scattering three-body d+A prob-
lem, the three-body deuteron scattering wave function is
replaced by the deuteron elastic component, namely a
deuteron distorted wave multiplied by the corresponding
bound state of the deuteron [18]:

TDWBA
post = 〈ΦnA(~rnA)χp(~Rf )|Vnp+∆|Φnp(~rnp)χd~ki(

~Ri)〉.
(18)

Here, Φnp(~rnp) is the initial bound-state wave function

for the deuteron, χd~ki(
~Ri) is the distorted wave of the

d + A system, ΦnA(~rnA) is the final bound-state wave

function of B, χp(~Rf ) is the distorted wave of the outgo-
ing proton interacting with B, Vnp is the deuteron bind-
ing potential, and ∆ is the difference between the A+ p
and B + p optical potentials.

After calculating the transfer cross section, spectro-
scopic factors are typically extracted from(

dσ

dΩ

)exp

= Sexp

(
dσ

dΩ

)DWBA

(19)

at the first peak of the angular distributions. Sexp de-
scribes the single-particle nature of the transfered nu-
cleon in the composite nucleus, B, relative to nucleus A
[18].

3. Optical model

For both the CCBA and DWBA calculations, optical
potentials are used. These are characterized by a real
and an imaginary part,

U(r) = V (r) + iW (r). (20)

The imaginary part takes into account the flux that
leaves the elastic channel and is not explicitly described
by the model.

These potentials have volume, surface, and spin-orbit
parts that are characterized by a Woods-Saxon shape or
derivatives of a Woods-Saxon shape. If we consider

V (r) = − Vo

1 + exp( r−Roao
)

(21)

and

W (r) = − WV

1 + exp( r−Rwaw
)

(22)

for the volume terms, there are six free parameters in
the fit. In this parameterization, Ri = riA

1/3, where A
is mass number and the fitted parameter is ri. The sur-
face term is defined by the derivative of a Woods-Saxon
shape and is typically purely imaginary, which introduces
another three parameters, Ws, rs, and as. The spin-
orbit potential is also parameterized by the derivative
of a Woods-Saxon shape; however, to limit the number
of free parameters for this introductory work, we keep
all the spin-orbit parameters fixed at the original values
from the parameterizations referenced in Table I. The
Coulomb potential is included in the usual way (e.g., [19])
and is parameterized by a single Coulomb radius, which
is also kept fixed throughout this work.

III. NUMERICAL DETAILS

In each of the cases studied, elastic-scattering data was
fit, and then either inelastic-scattering or transfer cross
sections were predicted and compared to data. Table I
summarizes the systems that were studied, including ref-
erences to the starting optical model and corresponding
data set.

System Energy (MeV) Data Potential
12C(d,d)12C 11.8 [20] [21]
12C(d,p)13C 11.8 [22] —
90Zr(d,d)90Zr 12.0 [23] [24]
90Zr(d,p)91Zr 12.0 [25] —
12C(n,n)12C 17.29 [26] [27]

12C(n,n’)12C(2+
1 ) 17.29 [26] —

48Ca(n,n)48Ca 7.97 [28] [29]
48Ca(n,n’)48Ca(2+

1 ) 7.97 [28] —
54Fe(n,n)54Fe 16.93 [30] [31]

54Fe(n,n’)54Fe(2+
1 ) 16.93 [30] —

208Pb(n,n)208Pb 26.0 [32] [30]
208Pb(n,n’)208Pb(3−

1 ) 26.0 [33] —

TABLE I: Reactions studied in this work. The third col-
umn gives the reference for the corresponding data set, and
the fourth column gives the reference for the starting optical
model parameterization.

The δ2 values used in this work for the inelastic scat-
tering of 12C, 48Ca, and 54Fe are 1.0852 fm, 0.85 fm, and
0.967 fm, respectively. For 208Pb, δ3 = 0.296 fm for the
uncorrelated fit, and δ3 = 0.230 fm for the correlated fit.
This difference was introduced to better match the mag-
nitude of the calculated inelastic-scattering cross sections
to the data. All values were adjusted from [34] to better
describe the magnitude of the inelastic cross sections.
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For the two (d, p) reactions, the outgoing channels
were defined by the potentials described in [22] for the
12C(d,p) and [25] for the 90Zr(d,p) reactions. The bind-
ing potential between the target and transfered neutron
was described by a Woods-Saxon shape with radius of 1.2
fm and diffuseness of 0.60 fm. The depth of this poten-
tial was adjusted to reproduce the experimental binding
energy. A spin-orbit potential was also included, with
standard depth, radius, and diffuseness of 7.0 MeV, 1.2
fm, and 0.60 fm, respectively. The np interaction for the
deuteron is taken from [35].

The statistical approach described in Section II is
newly implemented, but it makes use of the reaction
codes FRESCO and SFRESCO (which employs the MI-
NUIT [36] minimization routines) [37].

IV. RESULTS

To demonstrate our method, we will consider one of
the cases from Table I in detail: fitting 12C(d,d)12C elas-
tic scattering to predict the 12C(d,p)13C transfer cross
section. We focus on the difference between uncorrelated
and correlated fitting. The results from all other reac-
tions are then summarized.

A. Detailed example

Starting from the parameterization referenced in Table
I for 12C(d,d)12C and using the χ2

UC minimization func-
tion of Eq. 5, we reach the best-fit parameterization of
Table II (UC). The blue parameters were simultaneously
minimized, and their variations give rise to the 95% con-
fidence bands; the green parameters were initially varied
but fixed during the final fitting procedure in order to
keep these parameter values from becoming unphysical
during the minimization process.

Vo(MeV) ro(fm) ao(fm) Ws(MeV) rs(fm) as(fm)

UC 111.505 1.002 0.7308 27.582 1.235 0.2841

C 55.126 1.121 0.6700 40.931 1.193 0.1963

TABLE II: (Color online) Best-fit parameters when
12C(d,d)12C cross sections were fit to predict the 12C(d,p)13C
transfer cross section. The second row gives the parameters
for the uncorrelated fit (UC), and the third row gives the pa-
rameters for the correlated fit (C). The second, third, and
fourth (fifth, sixth, and seventh) columns are the real volume
(imaginary surface) potential parameters. Blue parameters
were simultaneously minimized, while the green parameters
were fixed during the final fitting procedure.

In order to explore the shape of the χ2
UC function

around this minimum, 2D χ2
UC contours were con-

structed, shown in Figure 1, for one standard deviation
on either side of the best-fit parameterization. Since the

FIG. 1: (Color online) Pairwise two-dimensional χ2
UC contour

plots for the best-fit parameterization of Table II. Black stars
show the best-fit parameters.

contours are elliptical and centered around the best-fit
parameterization, we can safely pull parameter sets from
the multivariate Gaussian (Eq. 6) to construct the con-
fidence bands. Pulling from the multivariate Gaussian is
useful because pulling directly from a χ2 distribution can
be time consuming computationally. The resulting 95%
confidence bands (brown) are shown in Figure 2. The
elastic-scattering cross section, as a ratio to the Ruther-
ford cross section, is shown in panel (a), and the transfer
cross section (normalized to the data) is shown in panel
(b).

The best-fit parameterization, shown in red, passes
through most of the elastic-scattering data (Figure 2a);
however, at the forward angles where the reaction models
should be the most accurate, the best fit does not entirely
describe the experimental cross sections. The predicted
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FIG. 2: (Color online) 95% confidence bands constructed
from the uncorrelated fitting of d+12C elastic-scattering
data, for elastic-scattering angular distribution (a) and the
12C(d,p)13C(g.s.) transfer angular distribution (b, predicted)
both at 11.8 MeV deuteron energy. The cross-section cal-
culations from the best-fit parameterization are shown in red
(solid), and the 95% confidence bands in brown (hatched); the
black circles show the elastic-scattering and transfer data.

transfer cross section (Figure 2b) has been normalized to
the data, thus giving an experimental spectroscopic fac-
tor, Sexp = 0.435+0.019

−0.017, but the predicted angular distri-
bution does not agree with the data for θ > 30◦. The
average width of the elastic-scattering band is 1.2211 (as
a ratio to the Rutherford cross section), and the aver-
age width of the predicted transfer cross section band is
0.75735 mb/sr. These values seem to be extremely small
and do not appear to capture the true uncertainties in
the parameters.

As mentioned in Section II B, there can be correlations
in our model that are not taken into account in the fit-
ting process. We can visualize these model correlations

FIG. 3: (Color online) Visual representation of model corre-
lation for the elastic-scattering data set for 12C(d,d)12C, for
select angles. The blue histograms show the frequency around
the average value of the cross-section values at the given an-
gle. The scatter plots show the correlation between each pair
of angles.

by looking at the scatter of cross-section values at two
different angles. If these two angles are uncorrelated, the
scatter plot should be roughly circular; a more elliptical
scatter plot indicates more correlation between those two
angles.

In Figure 3, this angular correlation is shown for a se-
lected set of angles for the d+12C elastic scattering we are
considering here. The histograms on the diagonal give
the frequency of cross-section values at the given angle;
the off-diagonal scatter plots show the angular correla-
tions. Angles near each other are highly correlated – al-
most straight lines – regardless of whether the angles are
forward or backward, while there is a much less localized
scatter for angles farther away from one another.

Because of the strong correlations, we reanalyze this
case with the χ2

C function of Eq. 12. The elastic-
scattering best-fit parameterization is shown in Table II
(C). From the differences in the parameterization, we can
see that introducing correlations in the model plays a sig-
nificant role in the fitting procedure, especially for the
depths of the potentials. This is discussed more in Sec-
tion V.

The corresponding 2D χ2
C contour plots for one stan-

dard deviation around the best-fit parameterization are
shown in Figure 4. Because the contour plots are not en-
tirely elliptical within this region, parameters are drawn
from the empirical χ2

C distribution instead of the multi-
variate Gaussian. The 95% confidence bands for the fit-
ted elastic-scattering angular distributions and predicted
transfer angular distributions are shown in Figure 5a and
5b, respectively. The elastic scattering describes the data
nearly perfectly at forward angles, and even though the
best-fit parameterization is above the data at intermedi-
ate angles, there is still good agreement with the over-
all trend as well as the magnitude at backward angles.
For the transfer calculation, the extracted spectroscopic
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FIG. 4: (Color online) Same as Figure 1 for the correlated
best-fit parameterization of Table II.

factor, Sexp = 0.352+0.223
−0.050, is smaller than for the uncor-

related case, but the predicted angular distribution im-
proves the description of the data. The average width for
the elastic-scattering band is 16.606 (ratio to Rutherford
cross section), and the average width for the predicted
transfer cross section band is 6.2968 mb/sr. These val-
ues better reflect the uncertainties of the problem.

B. Summary of results from all calculations

We now repeat this procedure for all of the reactions
listed in Table I. In this section, we summarize the results
of these calculations, including χ2 values for each of the
fits and average widths of the confidence bands. Table III
gives this summary for the uncorrelated and correlated
fits.

FIG. 5: (Color online) Same as Figure 2 for the correlated fit.

V. DISCUSSION

In the following section, we discuss the results of our
calculations, first for the d+12C reaction from the pre-
vious section. We then make a few comments on the
n+54Fe and d+90Zr cases and summarize with general
comments from all of the cases studied.

A. Comments on 12C(d,d)12C and 12C(d,p)13C

By looking at the comparison between the 12C(d,d)12C
best-fit elastic-scattering cross sections and the
12C(d,p)13C(g.s.) transfer predictions, we can bet-
ter understand the differences that arise when model
correlations are included in the calculation. Figure 6
shows this comparison between the best-fit parameteri-
zations of the uncorrelated (black solid) and correlated
(red dashed) angular distributions for elastic-scattering
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System χ2
UC/M WUC χ2

C/M WC

12C(d,d)12C 4.513 1.3577 0.283 18.181
12C(d,p)13C(g.s.) — 0.77888 — 7.9226

90Zr(d,d)90Zr 1.421 0.086926 0.142 0.22664
90Zr(d,p)91Zr(g.s) — 1.5235 — 2.2567

12C(n,n)12C 68.321 204.35 0.483 382.52
12C(n,n’)12C(2+

1 ) — 17.212 — 51.253
48Ca(n,n)48Ca 22.344 134.21 2.142 380.91

48Ca(n,n’)48Ca(2+
1 ) — 7.164 — 35.586

54Fe(n,n)54Fe 158.098 151.20 1.080 92.191
54Fe(n,n’)54Fe(2+

1 ) — 1.4722 — 2.2338
208Pb(n,n)208Pb 3.678 86.105 1.731 697.13

208Pb(n,n’)208Pb(3−
1 ) — 0.42104 — 0.87376

TABLE III: Summary of the properties of all of the reactions
studied for this work. The first column gives the reaction,
while χ2/M values for the uncorrelated (correlated) fits are
given in column two (four), and the average width (over all
angles) of the uncorrelated (correlated) 95% confidence bands
is given in the third (fifth) column.

(panel a) and transfer (panel b) cross sections. With
the model correlations, the angular distributions from
the best-fit parameterization provide an overall more
consistent description of the angular distributions. For
the elastic scattering, this is true more so around grazing
angles, which is where we expect our model to be the
most accurate. Even at backward angles, however, the
experimental elastic-scattering angular distribution is
better described by the correlated angular distribution,
which continues to rise instead of flattening off, as in
the uncorrelated calculation. At central angles (around
∼ 90◦), the uncorrelated calculation is in almost perfect
agreement with the data, but the correlated calculation
still reproduces the overall trend.

Furthermore, χ2
C is lower than χ2

UC by a factor of
about 8. Correlated fitting also produces larger confi-
dence bands for both the elastic and transfer cross-section
calculations, as can be seen by comparing the third and
fifth columns of Table III.

Table II shows significant differences between the cor-
related and uncorrelated parameterizations. The real
and imaginary potential depths for the correlated min-
imum are extremely atypical, which could explain the
small spectroscopic factor that is extracted from the
calculation. The uncorrelated spectroscopic factor still
falls within the error bands of the correlated calculation;
within error bars, these two parameterizations are consis-
tent. If we instead fix the real volume depth at the more
physical value of 111.505 MeV and vary the remaining
five parameters to find a minimum, the imaginary sur-
face depth increases to keep a low χ2

C value, and the
extracted spectroscopic factor does not change.

There is an understanding that DWBA does not pro-
vide an accurate description of this reaction (e.g., [38])

FIG. 6: (Color online) Comparison of uncorrelated (black
solid) and correlated (red dashed) cross-section calculations
using the best-fit parameterization when elastic cross-section
data was fit to predict transfer cross sections for 12C(d,d)12C.
Panel (a) shows the elastic-scattering calculations, and panel
(b) shows the predicted transfer calculations.

and that an effective deuteron optical potential that does
not explicitly account for np breakup is unreliable [2].
The strong variation of the minimum found between the
uncorrelated and correlated cases can be a symptom of
the reaction model simplification.

B. Comments on other specific reactions

1. n+54Fe elastic and inelastic scattering

Some of the reactions we studied show a greater differ-
ence between the cross sections resulting from the uncor-
related and correlated minima. Figure 7 shows the an-
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FIG. 7: (Color online) Comparison of correlated and uncor-
related cross-section calculations using the best-fit parame-
terization when elastic-scattering data was fit to predict in-
elastic cross sections, for 54Fe-n scattering. Panel (a) shows
the elastic-scattering fits, and panel (b) shows the inelastic-
scattering predictions. Shown are uncorrelated (black solid)
and correlated (red dashed) fits and predictions.

gular distributions for elastic scattering (a) and inelastic
scattering (b) compared with data for n+54Fe at 16.93
MeV. The correlated best-fit calculations (red, dashed)
better describe the trends of the experimental angular
distributions compared to the uncorrelated calculations
(black, solid) for the elastic calculation. Our results also
show that the correlated best-fit prediction better de-
scribes both the shape and the magnitude of the experi-
mental inelastic angular distributions.

The best-fit parameters for these uncorrelated and cor-
related minima for n+54Fe scattering are given in Table
IV. Despite the small radius for the real volume term,
the rest of the parameters for the correlated minimum

Vo(MeV) ro(fm) ao(fm) WV(MeV) rw(fm) aw(fm)

UC 29.411 1.609 0.4439 7.432 1.078 0.5603

C 47.371 0.9324 0.6001 2.292 1.161 0.1120

— — — Ws(MeV) rs(fm) as(fm)

UC — — — 22.550 1.504 0.1246

C — — — 5.433 1.104 0.5852

TABLE IV: (Color online) Best-fit parameters for
54Fe(n,n)54Fe elastic scattering. The second and fifth
(third and sixth) rows give the uncorrelated (correlated)
minimum. Vo, ro, and ao are the real volume terms, WV, rw,
and aw are the imaginary volume terms, and Ws, rs, and as

are the imaginary surface terms.

take on more physically meaningful values than the cor-
responding parameters from the uncorrelated minimum;
this is especially evident for the depths of the potentials.

2. d+90Zr elastic scattering and transfer

The spectroscopic factors for 90Zr(d,p)91Zr(g.s.) are
0.720+0.097

−0.060 for the uncorrelated parameterization and

0.689+0.194
−0.079 for the correlated parameterization, which

are less than the values extracted in [25]. For this case,
the parameterizations between the uncorrelated and cor-
related minima are significantly different, but this does
not have much of an effect on the resulting transfer an-
gular distributions, as evident by the similarities in the
spectroscopic factors. Again, the resulting 95% confi-
dence band is larger for the correlated calculation.

C. General comments

We now can discuss general properties for all of the
reactions that we studied. In all cases, the correlated
minima provide better descriptions of the data at forward
angles, if not everywhere. As shown in the preceding
sections, this is true for both fitted and predicted cross
sections. When model correlations are present, however,
the best-fit calculations may vary systematically from the
data. Moreover, χ2

C is always smaller than χ2
UC , because

of the introduction of the model covariance matrix.
In almost all cases, the average width of the confidence

bands from the correlated fit is larger than for the uncor-
related case. Part of the reason for this is that the pa-
rameter covariance matrix is larger for the correlated fits
than for the uncorrelated fits (because of the introduc-
tion of the model covariance matrix) – and even though
it is scaled by s2 as defined in Eq. 7, there is still a wider
range for the parameters to be pulled from.

Although not shown, we can make two comments on
the correlations between the fitted parameters across all
reactions studied here. The first is that radii tend to
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decouple by 10–15% from the potential depth when go-
ing from uncorrelated to correlated fitting. (These are
generally the most correlated pairs of parameters.) Sec-
ond, the depths of the interactions couple more strongly
to one another by 30–40% when model correlations are
added. This coupling may influence the wider confidence
bands for the correlated case, depending on whether the
couplings are positively or negatively correlated.

These same conclusions also hold when starting from
other global optical model parameterizations and per-
forming an independent minimization. Even with
different spin-orbit potential parameters and different
Coulomb radii, the general comments of this section are
valid.

We conclude that a large uncertainty can be introduced
from the variation in parameters. However, this comes
from assuming nearly nothing about constraints on the
parameter space; including more information about the
model space before the fit could decrease this uncertainty.
Furthermore, there are still large modeling errors that are
not treated here; these also need to be taken into account
systematically.

VI. CONCLUSIONS AND FUTURE WORK

We have used a statistical model to construct 95% con-
fidence bands for six reactions in the range A=12–208
at energies below 30 MeV/u in order to study uncer-
tainties coming from the parameterization of the opti-
cal potentials. These parameters were allowed to vary
in order to fit elastic cross sections to elastic-scattering
data and were then used to predict cross sections for in-
elastic scattering and transfer reactions. A correlated
χ2 function was introduced to take into account some
of the correlations present in the reaction model. One
case, fitting 12C(d,d)12C elastic scattering to predict
12C(d,p)13C cross sections, was discussed in detail.

In general, we find that the χ2
C function provides a

more physical description of the cross section, in terms of
parameter values in the optical potentials and the shape
of the calculated angular distributions with respect to
the experimental ones. The χ2

C values are lower than
the χ2

UC values. However, the 95% confidence bands
constructed from the correlated fits are larger than the
bands constructed from the uncorrelated fits. Although
the optical potential parameters are all highly coupled,
in the correlated calculations, the potential depths and

corresponding radii decouple slightly from one another,
but the potential depths couple more strongly to one an-
other.

The incoming elastic channel is only one part of the
optical potential that must be specified. For the transfer
cases, ambiguity in the outgoing channels also leads to
uncertainties in reaction observables, which could be sys-
tematically studied if elastic-scattering data for both the
incoming and outgoing channels were available. Having
elastic, inelastic, and transfer data for various isotopes
across an isotopic chain at several energies would allow
us to study systematic trends of these confidence bands
in order to better understand how our predictive power
changes toward the edges of stability and towards the
edges of the known nuclear chart.

A better description of the uncertainties coming from
the parameter variations is only half of the story. Uncer-
tainties coming from the approximations within the the-
ory framework must also be quantified, and these effects
will likely be dependent on the specific reaction being
studied. Couplings to higher lying excited states in the
target nucleus of transfer reactions can change the magni-
tude of the cross section at the peak by up to 15% [38, 39].
Inclusion of deuteron break-up is another important ef-
fect, and even when using the adiabatic wave approxima-
tion, differences between results from those calculations
and full three-body Faddeev calculations can be around
20% [40]. For these reasons, depending on the reaction
model used, one will obtain differing spectroscopic fac-
tors extracted from the same transfer data [41]. However,
by including more degrees of freedom into the reaction
model than what we have done in the present work, error
bands will potentially decrease as more reaction channels
can be described and therefore more constraints can be
added to the fitting procedure. Investigations into model
uncertainties are underway.
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