DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

Abstract

At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined formore » Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

Authors:
 [1];  [1];  [2];  [1];  [1]; ORCiD logo [1];  [3];  [3];  [4]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
  4. XCEL Engineering Inc., Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1353395
Grant/Contract Number:  
FC02-01ER54648; AC02-CH0911466
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 57; Journal Issue: 5; Related Information: The digital data for this paper can be found following the links from http://arks.princeton.edu/ark:/88435/dsp01g445cg642; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Tokamak; ICRH; Waves; Plasma; HHFW; Minority heating; Tokamak plasmas; Absorption; Equations; Geometry; Nstx

Citation Formats

Bertelli, N., Valeo, E. J., Green, D. L., Gorelenkova, M., Phillips, C. K., Podestà, M., Lee, J. P., Wright, J. C., and Jaeger, E. F. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions. United States: N. p., 2017. Web. doi:10.1088/1741-4326/aa66db.
Bertelli, N., Valeo, E. J., Green, D. L., Gorelenkova, M., Phillips, C. K., Podestà, M., Lee, J. P., Wright, J. C., & Jaeger, E. F. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions. United States. https://doi.org/10.1088/1741-4326/aa66db
Bertelli, N., Valeo, E. J., Green, D. L., Gorelenkova, M., Phillips, C. K., Podestà, M., Lee, J. P., Wright, J. C., and Jaeger, E. F. Mon . "Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions". United States. https://doi.org/10.1088/1741-4326/aa66db. https://www.osti.gov/servlets/purl/1353395.
@article{osti_1353395,
title = {Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions},
author = {Bertelli, N. and Valeo, E. J. and Green, D. L. and Gorelenkova, M. and Phillips, C. K. and Podestà, M. and Lee, J. P. and Wright, J. C. and Jaeger, E. F.},
abstractNote = {At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.},
doi = {10.1088/1741-4326/aa66db},
journal = {Nuclear Fusion},
number = 5,
volume = 57,
place = {United States},
year = {Mon Apr 03 00:00:00 EDT 2017},
month = {Mon Apr 03 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Fast-wave heating of a two-component plasma
journal, October 1975


All-orders spectral calculation of radio-frequency heating in two-dimensional toroidal plasmas
journal, May 2001

  • Jaeger, E. F.; Berry, L. A.; D’Azevedo, E.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1359516

A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code
journal, September 2016


Self-consistent full-wave and Fokker-Planck calculations for ion cyclotron heating in non-Maxwellian plasmas
journal, May 2006

  • Jaeger, E. F.; Berry, L. A.; Ahern, S. D.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2173629

Local full-wave energy and quasilinear analysis in nonuniform plasmas
journal, June 1989


Effects of non-Maxwellian species on ion cyclotron waves propagation and absorption in magnetically confined plasmas
journal, April 2005

  • Dumont, R. J.; Phillips, C. K.; Smithe, D. N.
  • Physics of Plasmas, Vol. 12, Issue 4
  • DOI: 10.1063/1.1881472

Advances in numerical simulations of ion cyclotron heating of non-Maxwellian plasmas
journal, July 2009


Simulations of combined neutral beam injection and ion cyclotron heating with the TORIC-SSFPQL package
journal, September 2011


Modelling of D majority ICRH at JET: impact of absorption at the Doppler-shifted resonance
journal, March 2009


Integrated modeling for ion cyclotron resonant heating in toroidal systems
journal, April 2011


Variational approach to radiofrequency waves in magnetic fusion devices
journal, July 2009


Heating and current drive by ion cyclotron waves in the activated phase of ITER
journal, December 2012


A model for self-consistent simulation of ICRH suitable for integrating modelling
journal, August 2013


Numerical simulation of ion cyclotron waves in tokamak plasmas
journal, January 1999


Mode conversion electron heating in Alcator C-Mod: Theory and experiment
journal, May 2000

  • Bonoli, P. T.; Brambilla, M.; Nelson-Melby, E.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874012

Plasma Dielectric Tensor for Non-Maxwellian Distributions in the FLR Limit
conference, January 2003

  • Phillips, C. K.
  • RADIO FREQUENCY POWER IN PLASMAS: 15th Topical Conference on Radio Frequency Power in Plasmas, AIP Conference Proceedings
  • DOI: 10.1063/1.1638087

An algorithm for fast Hilbert transform of real functions
journal, April 2014

  • Bilato, Roberto; Maj, Omar; Brambilla, Marco
  • Advances in Computational Mathematics, Vol. 40, Issue 5-6
  • DOI: 10.1007/s10444-014-9345-4

Fast wave heating in the NSTX-Upgrade device
conference, January 2014

  • Bertelli, N.; Jaeger, E. F.; Berry, L.
  • RADIOFREQUENCY POWER IN PLASMAS: Proceedings of the 20th Topical Conference, AIP Conference Proceedings
  • DOI: 10.1063/1.4864550

New techniques for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks
journal, September 1981


The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library
journal, June 2004

  • Pankin, Alexei; McCune, Douglas; Andre, Robert
  • Computer Physics Communications, Vol. 159, Issue 3
  • DOI: 10.1016/j.cpc.2003.11.002

Monte Carlo operators for orbit‐averaged Fokker–Planck equations
journal, February 1994

  • Eriksson, L. ‐G.; Helander, P.
  • Physics of Plasmas, Vol. 1, Issue 2
  • DOI: 10.1063/1.870832

Ion cyclotron emission from energetic fusion products in tokamak plasmas—A full‐wave calculation
journal, June 1989

  • Batchelor, D. B.; Jaeger, E. F.; Colestock, P. L.
  • Physics of Fluids B: Plasma Physics, Vol. 1, Issue 6
  • DOI: 10.1063/1.858994

Experimental measurements of ion cyclotron range of frequency minority-heated fast-ion distributions on Alcator C-Mod
journal, September 2012


Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment
journal, May 2004

  • Rosenberg, A. L.; Menard, J. E.; Wilson, J. R.
  • Physics of Plasmas, Vol. 11, Issue 5
  • DOI: 10.1063/1.1651099

Exploration of finite ion orbit effects in the ion cyclotron range of frequencies
journal, July 2009


Reconstruction in 3D of the fast wave fields in ITER, DIII-D, C-Mod and NSTX, including the coupling of full-wave and particle codes to resolve finite orbit effects
conference, January 2009

  • Green, D. L.; Jaeger, E. F.; Berry, L. A.
  • RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 18th Topical Conference, AIP Conference Proceedings
  • DOI: 10.1063/1.3273815

Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions
dataset, January 2017

  • Bertelli, N.; Valeo, E. J.; Green, D. L.
  • Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
  • DOI: 10.11578/1356364

Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions
dataset, January 2017

  • Bertelli, N.; Valeo, E. J.; Green, D. L.
  • Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
  • DOI: 10.11578/1367882

Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions
dataset, January 2017

  • Bertelli, N.; Valeo, E. J.; Green, D. L.
  • Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
  • DOI: 10.11578/1356364

Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions
dataset, January 2017

  • Bertelli, N.; Valeo, E. J.; Green, D. L.
  • Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
  • DOI: 10.11578/1367882

Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions
dataset, January 2017

  • Bertelli, N.; Valeo, E.; Green, D.
  • Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
  • DOI: 10.11578/1562085

Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions
dataset, January 2017

  • Bertelli, N.; Valeo, E.; Green, D.
  • Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
  • DOI: 10.11578/1562085

Works referencing / citing this record:

Integrated Tokamak modeling: When physics informs engineering and research planning
journal, May 2018


Similarity of the coupled equations for RF waves in a tokamak
journal, January 2019

  • Lee, Jungpyo; Smithe, David; Jaeger, Erwin F.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5066288

Survey of heating and current drive for K-DEMO
journal, January 2018


Simulation of neutron emission in neutral beam injection heated plasmas with the real-time code RABBIT
journal, June 2019


Effects of fast ions produced by ICRF heating on the pressure at EAST
journal, November 2019


Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions
dataset, January 2017

  • Bertelli, N.; Valeo, E. J.; Green, D. L.
  • Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
  • DOI: 10.11578/1367882

Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions
dataset, January 2017

  • Bertelli, N.; Valeo, E.; Green, D.
  • Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
  • DOI: 10.11578/1562085

Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions
dataset, January 2017

  • Bertelli, N.; Valeo, E. J.; Green, D. L.
  • Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
  • DOI: 10.11578/1356364