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Abstract

There is a great interest in generating high-power hard X-ray free electron laser

(FEL) in the terawatt (TW) level that can enable coherent diffraction imaging

of complex molecules like proteins and probe fundamental high-field physics.

A feasibility study of producing such X-ray pulses was carried out employing

a configuration beginning with a Self-Amplified Spontaneous Emission FEL,

followed by a “self-seeding” crystal monochromator generating a fully coher-

ent seed, and finishing with a long tapered undulator where the coherent seed

recombines with the electron bunch and is amplified to high power. The undu-

lator tapering profile, the phase advance in the undulator break sections, the

quadrupole focusing strength, etc. are parameters to be optimized. A genetic

algorithm (GA) is adopted for this multi-dimensional optimization. Concrete

examples are given for LINAC Coherent Light Source (LCLS) and LCLS-II-type
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systems. Analytical estimate is also developed to cross check the simulation and

optimization results as a quick and complimentary tool.

Keywords: Free-electron lasers, Synchrotron radiation, Numerical

optimization, Tapered undulator, Self-seeding, LCLS

1. Introduction

Single molecule imaging and in general the study of structures on the nanome-

ter or even finer level requires more than 1013 hard x-ray photon/second in a

pulse within femtosecond duration [1, 2, 3, 4]. This calls for a Free Electron

Laser (FEL) having high power of the order of terawatts (TW). A promising5

approach to reach TW powers is to increase the energy transfer from the elec-

trons to radiation by adjusting the undulator magnetic field to compensate for

the electron energy losses or tapering the undulator [5]. During the FEL pro-

cess, the electrons keep losing energy and eventually the electron bunch centroid

energy becomes so low that it no longer satisfies the resonant condition deter-10

mined by the initial electron bunch centroid energy. Hence, one has to gradually

reduce the undulator strength so that the resonant condition determined by the

initial electron bunch centroid energy is being maintained. However, a previous

study has shown that simply tapering the undulator for a FEL working in the

Self-Amplified Spontaneous Emission (SASE) mode is not sufficient to reach15

TW power [6]. A seeded FEL responds more efficiently to the tapered undu-

lator [7] and can potentially bring the FEL to TW level. A proof-of-concept

design for TW FEL based on self-seeding [8, 9] and tapering scheme has been

developed for European XFEL [10, 11], the future MAX IV FEL [12] as well

as for LINAC Coherent Light Source (LCLS)/LCLS-II [13, 14] with LCLS-type20

electron bunch [15] and LCLS-II-type variable gap undulator [16], or even super-

conducting undulator [17]. More general studies on tapered FELs are reported

[18, 19].

As is well known and experimentally verified, for an undulator with constant

strength K, high gain single pass FEL amplifiers reach saturation at a power25
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level of Psat. ∼ ρPbeam where Pbeam is the electron beam power and ρ is the

FEL efficiency parameter [20, 21], which is normally smaller than 0.1 % for

hard X-ray FEL. This behavior is true for both SASE and externally-seeded

configurations. This saturation arises from the growth of slice energy spread

and the rotation of the microbunched electrons in the ponderomotive poten-30

tial well, which is formed by the FEL radiation and the undulator magnetic

field. For electron beam parameters corresponding to the proposed LCLS-II

project at SLAC National Accelerator Laboratory, ρ ∼ 5 × 10−4, the nominal

saturation power is ∼ 30 gegawatts (GW), far below the TW level. However,

near and at exponential growth saturation point the microbunching fraction is35

large (bunching factor: b1 ∼ 0.5), suggesting that with proper tapering of the

undulator strength K, one can both trap and then decelerate a considerable

fraction of the electrons to extract much greater additional power [5]. For ex-

ample, currently LCLS doubles its output power to ∼ 70 GW using its very

limited available tapering range of ΔK/K ∼ 0.8%. While for the examples40

shown below, for a seeded tapered FEL, the extraction efficiency defined as

η ≡ PFEL/Pbeam, can go well above 1 %, so that the FEL power can go above 1

TW, making the single molecular imaging close to reality. Such high-field FEL

also opens the possibility to study physics at the Schwinger Limit. Without the

taper, the extraction efficiency η = ρ, the FEL efficiency parameter.45

The proposed LCLS-II undulators have fully tunable gaps and thus in prin-

ciple can taper K to zero. Moreover, there is currently a great interest in giving

LCLS-II a self-seeding option employing the crystal monochromator scheme [8].

Consequently, as shown in Fig. 1, a TW-level FEL starts with a SASE undula-

tor (the first part of the undulator system) having a sufficient length to generate50

GW-level radiation. This radiation then passes through a crystal monochroma-

tor that results in a megawatt (MW)-level, nearly monochromatic wake, which

will seed the electron bunch in the downstream undulator (the second part of

the undulator system). In the LCLS case, one utilizes the Bragg forward deflec-

tion part of the SASE FEL [8, 9]. During the time when the radiation passes55

through the monocrhomator, the electron bunch is deflected in a by-pass mag-
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Figure 1: Schematic of a TW FEL starting with a SASE FEL, followed by a “self-seeding”

crystal monochromator, and finishing with a tapered undulator.

netic device, called a chicane. The chicane is tuned so that the electron bunch is

time-delayed and rejoins the coherent seed (the monochromatic wake). The co-

herent seed and the electron bunch then enter the second part of the undulator

system in which the coherent seed first grows exponentially to saturation. Then,60

by tapering the undulator strength K to maintain the resonance condition de-

fined in the exponential growth process, a highly microbunched electron bunch

continually amplifies the radiation, which can strongly grow to TW power level

[13]. The growth of the radiation power in the tapered region is almost linear.

This linear growth will eventually stop due to electrons de-trapping from the65

ponderomotive potential well [14]. The de-trapping phenomenon happens due to

various reasons, such as the three-dimensional effect, the side-band instability,

the temporal non-uniformity, etc.

Properly setting the tapered undulator strength is crucial to maximizing

the FEL radiation power. Because the coherent emission is strongly dependent70

on the capturing ratio of the electrons by the ponderomotive buckets which in

turn depends on the history of the interaction between the electron bunch and

the radiation field, optimizing the tapering profile is a complicated problem that

needs to take into account both the longitudinal and transverse coupling between

the electrons and the radiation field. The main concern of this optimization75

problem is whether the global optimum can be found. In Ref. [14], an iterative

1-dimensional parameter scan method is used for this optimization problem

with a model of 8 variables. In this study we extend both the tapering model

and the transverse focusing model to higher orders and also experiment with

phase shifter variations, which makes the optimization problem more complex.80
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We adopt a new optimization method called multi-objective genetic algorithm

(MOGA) which has recently found applications in the accelerator and beam

physics field [22, 23, 24, 25, 26, 27, 28]. Application of the MOGA method to

optimizing a TW FEL is a novel approach in FEL studies. This method has

allowed us to explore the parameter space more thoroughly and given us better85

assurance to the optimal solution.

The paper is organized as follows. In Section 2, we extend the taper physics

model as compared to that in Ref. [13, 14] to include high-order terms. We also

study the role of phase shifters in the undulator break sections. The variables as

well as the objectives are explained. The Multi-Objective Genetic Algorithms90

(MOGA) is described in Section 3 with a brief review of grid-scan type op-

timization as in Ref. [14]. To illustrate some of the key physics behind this

complicated optimization, we present an analytical estimate of the taper profile

in Section 4 to reveal the scaling on various parameters as well as to cross check

the numerical results as far as possible. Results and Discussions are presented95

in Section 5. A brief conclusion is in Section 6.

2. LCLS-II Taper Models and Optimization

We have developed an approach [14] to empirically optimize K(z) tapers

together with the external-focusing strength superimposed on the undulator

sections to maximize the output power at a fixed total undulator length. In100

Refs. [13, 14], we proposed to formulate the taper as a mathematical function

K(z) = K0

[
1− a

(
z − z0
Lw − z0

)b
]
, (1)

where z is the position coordinate along the undulator system, K0 the initial

undulator strength, z0 the location where the undulator starts to be tapered,

Lw the undulator length, a the fractional tapering at the end of undulator, i.e.,

at z = Lw, and b the taper changing rate which is not necessarily an integer.105

As explained in Section 4, b is close to 2, i.e., a quadratic taper. We further
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explore the taper model by adding higher-order terms. The contribution from

the high-order terms is elaborated in Section 5.

The external-focusing strength optimization results in a z-dependent elec-

tron beam transverse size for better coupling to the radiation mode size. In110

our study, the external focusing is realized by an alternating strong-focusing

quadrupole lattice. We introduce a three-segment variation of the electron

bunch transverse size rb by changing the quadrupole field strength Kq(z) with

z,

Kq(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Kq0, 0 ≤ z ≤ z1

Kq(z1) [1− f(z − z1)
n] , for z1 < z ≤ z2

Kq(z2) [1− g(z − z2)
n] , z2 < z ≤ Lw

, (2)

where n = 1 or 2, z1 indicates the starting point ofKq-variation, which is usually115

around the end of the exponential growth regime; z2 indicates the starting point

of the third segment; f can be either positive or negative, while g is usually

negative. In Refs. [13, 14], we set n = 1, and gave a detailed description of the

physics behind it. As what will be explained later, due to the coherent emission,

the radiation power is higher for an electron bunch with smaller transverse size,120

but on the other hand, a smaller electron bunch leads to larger diffraction. A

strong focusing is normally favored in the simulation, hence a scaling stronger

than linear is studied in this paper with n = 2 as well.

As explained above, in Refs. [13, 14], the optimization was done in 8-

dimensional space with one objective with a grid-scan type of algorithm, i.e.,125

a, b, and z0 in Eq. (1), and Kq0, f , g, z1, and z2 in Eq. (2). However, using

a single objective function based on final radiation power may not be sufficient

in practical applications since other higher order transverse modes besides the

fundamental Gaussian mode can also contribute to the radiation power [29].

To evaluate the quality of radiation, we define another objective function, the130

radiation pseudo-emittance, as a measure of transverse coherence in this study.

The radiation pseudo-emittance is defined as, εγ ≡ σrσθ, where σr is the trans-

verse radiation size at the undulator end, and σθ is the rms divergence angle of

the radiation in the far field. Optimizing those two objective functions simul-
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taneously will help us to identify the working points with the best achievable135

radiation emittance and the highest radiation power.

To be explicit, and for the convenience of the discussion below, we name the

extended taper models as follows.

2.1. Cubic 9 variables

To study the contribution from higher order terms in a taper model, we140

introduce a taper model as

K(z) = K0

[
1− a1

(
z − z0
Lw

)
− a2

(
z − z0
Lw

)2

− a3

(
z − z0
Lw

)3
]
, (3)

where ai, i = 1, 2, and 3 are the parameters to characterize the taper strength.

Hence, we have a total of 9 optimization parameters: 4, i.e., a1, a2, a3, and z0

from the taper model as in Eq. (3) and 5, i.e., Kq0, f , g, z1, and z2 from the

focusing model as in Eq. (2) with n = 1, i.e., we still keep the linear variation145

for the focusing along the undulator system.

2.2. Quartic 8 variables

As the analytical estimate in Section 4 shows, the emission in the tapered

region has a scaling of z2; here, we introduce only even-order terms in the

extended taper model, i.e., we model the taper as150

K(z) = K0

[
1− b2

(
z − z0
Lw

)2

− b4

(
z − z0
Lw

)4
]
, (4)

where b2(,4) model the taper strength. As we are excluding the odd-order terms,

even for the linear term; we have a total of 8 parameters: 3, i.e., b2, b4, and z0

from the taper model as in Eq. (4) and 5, i.e., Kq0, f , g, z1, and z2 from the

focusing model as in Eq. (2) with n = 1, a linear focusing scheme.

2.3. Phase shifter155

In Refs. [13, 14], we guarantee that in the undulator breaks, the phase

advance of the light with respect to the electron beam is the minimum integer

number Nb of 2π with the designed break length. A short break minimizes
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the diffraction loss when the FEL passes through the phase shifter. Having an

integer number of 2π phase advance in the break will ensure the constructive160

interference between the FEL and the microbunching in the electron bunch.

To explore whether this is the ultimate optimized configuration, here we allow

the phase advance to deviate from an integer number of 2π, and include this

deviation as optimization parameters. Our study shows that the most sensitive

and effective phase advance are those acquired in the first few phase shifters165

right after the exponential growth. In the following, we will present results for

using those phase shifters.

3. Multi-objective Genetic Algorithms (MOGA)

A grid-scan type of optimization approach was adopted in Ref. [14]. The

optimization was carried out in 8-dimensional parameter space, namely, a, b, z0,170

Kq0, z1, z2, f , and g with the final radiation power as the sole objective func-

tion. To minimize computational expense, optimization was carried out with the

GENESIS code [30] in time-steady mode, followed by full time-dependent runs

optimizing the FEL frequency detuning parameter to get the maximum power.

For the examples studied in Ref. [13, 14], TW FEL is possible with LCLS-type175

electron bunches, and an LCLS-II-type variable gap undulator. In those stud-

ies, the phase between the electron bunch and the FEL pulse is matched to an

integer multiple of the radiation wavelength to ensure constructive interference.

Here, we increase the optimization dimension as well as using two objec-

tives. To deal with the expanded parameter space, and to further improve the180

optimization and to explore the parameter space more thoroughly, we adopt a

Multi-Objective Genetic Algorithm (MOGA) [31], which has recently been in-

troduced in accelerator and beam physics optimization [22, 23, 24, 25, 26, 27, 28].

As discussed in Section 2, the optimization of a seeded FEL involves 8 to 9

basic variables and potentially many more if the phase shifters are included in185

the model. The objective functions, the FEL power and the pseudo-emittance,

have strong nonlinear dependence over these variables. The underlying physical
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process that relates the variables and the objective functions is complicated. The

analytical descriptions of this process are usually built on many simplifications

and hence are correct only approximately. The most reliable way of evaluating190

the objective functions is through multi-particle tracking (e.g, GENESIS, [30])

which is inevitably affected by noises in the initial particle distribution, as is

true in an actual FEL. Therefore the objective functions are intrinsically multi-

variant, nonlinear, and non-smooth.

Global optimization of multi-variant nonlinear functions is a difficult prob-195

lem. Traditional methods can be classified into two categories: those that eval-

uate and use the gradient of the function and those that evaluate the function

value only. The biggest challenge for both categories is that the algorithms may

find only a local minimum. This is especially true for gradient-based methods

since the local minima naturally attract and trap the iterative solution that come200

to their vicinity. The non-gradient based methods are generally less-efficient and

do not work well for high-dimension problems. The lack of a smooth behav-

ior of the objective functions makes it very difficult and sometimes impossible

for traditional methods to work. For example, computation of gradients with

numerical difference would not work.205

As is explained earlier, it is desirable to minimize the pseudo-emittance in

addition to maximizing the FEL power. There are thus two objective functions,

which can potentially be conflicting. For multi-objective optimization, the gen-

eral goal is to uncover the so-called Pareto-optimal front in the objective space,

which is defined as the set of solutions that are not dominated by any solution210

[31]. Here one solution is dominated by another means that the latter has one

objective function that is better than the former and the rest of the objective

functions are at least equal to (if not better than) the former. Therefore the

Pareto-optimal front represents the set of best solutions. Knowing the Pareto

front facilitates the selection of the final solution to be used in practice. Tra-215

ditional optimization methods usually combine the objective functions into one

with a weighted sum and the weights are chosen according to the importance

of or the preferences over the objectives. This is not convenient if a complete
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Pareto front is desired before a trade-off between the objectives can be decided.

The multi-objective genetic algorithms (MOGA) provide a simple and straight-220

forward solution to the problems discussed above. In this study we employ a

widely used MOGA algorithm called Non-dominated Sorting Genetic Algorithm-

II (NSGA-II) [32]. Like MOGA in general, this algorithm is robust against noises

and nonlinearity. It naturally finds the Pareto front simultaneously in one run.

More importantly, it explores the parameter space more thoroughly and is thus225

more likely to find the global optimum.

In general, genetic algorithms (or evolutionary algorithms) manipulate a set

of solutions (a population) toward the Pareto front with operations that sim-

ulate biological evolution. Typical operators include (1) selection that applies

the evolution pressure; (2) crossover that creates new solutions (children) by230

combining existing solutions (parents); and (3) mutation that alters existing

solutions to create new ones. The NSGA-II algorithm that we use in this study

describes a solution with a vector of the optimization parameters. Crossover is

performed by generating two new solutions between the two parent solutions

and the relative distance of each parameter between a child and the parent235

is given by a random number drawn from a pre-determined random distribu-

tion. A new solution is created from mutation by adding random errors to the

parameters of an existing solution. For each iteration (called a generation), a

nearly equal number of children are created from the parent population through

crossover or mutation with a certain probability. The children and parents are240

then mixed and sorted with the non-dominated sorting technique [32]. The

sorting algorithm identifies the best solutions according to the objective func-

tions and passes them to the next generation as parents. Comparing with the

classical weighted sum for multi-objective function optimization method, the

population based multi-objective genetic algorithm has the advantage of finding245

the whole Pareto optimal solutions in a single run. In the NSGA-II algorithm,

non-domination rank based on non-dominated sorting and crowding distance

are used to order each solution during the selection process. This helps preserve

the elitism of the solutions and accelerate the convergence towards the optimal
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solutions. Because of the large population of solutions and the randomness in250

the crossover and mutation operations, this algorithm is robust against noises

and local minima. However the genetic algorithms are often not very efficient

since many of the children solutions do not enter the next generation and are

simply discarded.

We have made modifications to the NSGA-II algorithms to suit our needs255

in this study. A significant change is to make it take advantage of parallel

computing power. Because function evaluation is carried out with an external

simulation code (i.e., GENESIS), parallel computing is achieved by submitting

multiple simulation jobs to the cluster computer. File input/output (I/O) is

used to communicate between GENESIS and the control process (which runs in260

Matlab [33]). For time-steady simulation cases, where the individual evaluation

time is short, the speed of the algorithm is limited by the file I/O time. For

example, the average evaluation time is 4.5 seconds on up to 60 processors, while

an individual evaluation takes 20 seconds. A much larger speed gain is found

for time-dependent simulations. Modifications are also made to the algorithm265

to control the convergence behavior during the run. For example, the ratio

of crossover and mutation in generating the children population is adaptively

changed during the iterations, with more mutation earlier on to make a more

thorough search while the population is widely spread out in the parameter

space. We also experimented with the parameters that control the widths of270

the random number distributions for crossover and mutation.

It is worth noting that diversity in the population has a significant impact

over the behavior of the algorithm. We introduced the pseudo emittance as

the second objective function in this study in part because it helps maintain

diversity and improves the convergence to the global optimum.275

In the MOGA runs, we typically have a population of 600 solutions. The

algorithm is typically run for 100 generations or is terminated manually when

the run log indicates that it has converged. For time-steady simulations we

usually use up to 60 processors as the speed is limited by the file I/O, not the

FEL simulation. To assess the effect of the MOGA algorithm, we compared280
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Figure 2: Comparison of the MOGA results and that from the grid-type scan [14] for a

particular model (see text).

the best solution of MOGA to the best solution from the iterative grid-scan

algorithm described in Ref. [14] for a concrete case. The undulator is 200 meter

long without breaks, beam energy is 12 GeV, normalized slice emittances are 0.3

mm-mrad, peak current is 4 kA, rms slice energy spread is 1.3 MeV and photon

energy is 13 keV. The power of the MOGA solution is 23 % higher than the grid-285

scan solution, as is shown in Fig. 2, where the horizontal axis is the distance z

along the undulator. The vertical axis is either the FEL power in units of TW

(right side) used for the two dashed curves, or the undulator strength K (left

side) used for the two solid curves. As one can see, MOGA finds a solution with

a stronger taper, i.e., the blue solid curve bends down more than the red solid290

curve does. So, the FEL power is higher as shown by the dashed curves.

We have considered the possibility of applying the MOGA method to opti-

mize the taper profile of the undulator in real time using the measured photon

beam power as the objective. It does not look promising as thousands of evalu-

ations are required for the method to converge which would take tens of hours295

to complete as moving undulator gap is relatively slow. However, this method

may be used for online optimization in other applications in which the response

time of both the actuator and monitor are fast.
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4. Analytical Estimate and Comparison to Simulation

To pave the ground for the discussion of the simulation results, here we300

introduce an analytical estimate. To study the taper model analytically, we note

that for a pre-bunched electron bunch, the radiation is mostly coherent emission.

With three-dimensional GENESIS simulation, we find that the coherent emission

model matches well to the simulation results with an optimized taper model;

thus, we will assume coherent emission in the following and carry out analytical305

estimate. We then compare this simplified analytical model with the numerical

simulation.

4.1. Analytical Estimate

The coherent radiation power for a Gaussian electron beam is [34]:

Pcoh =
Z0K

2[JJ ]2

8
√
24πσ2

xγ
2

[∫ Lw

0

Ipk(z)b1(z)dz

]2

, (5)

where Z0 = 120π is the vacuum impedance, σx is the rms transverse beam size310

assuming a round beam, i.e. σx = σy, Ipk is the electron bunch peak current,

b1 is the bunching factor, and

[JJ ] = J0

[
a2w

2 (1 + a2w)

]
− J1

[
a2w

2 (1 + a2w)

]
(6)

with aw = K/
√
2 and J0, J1 being the zeroth-order and first-order Bessel func-

tion. To illustrate the physics, we assume that the peak current Ipk and the

bunching factor b1 are not z-dependent but constant, so that315

Pcoh(z) =
Z0K

2[JJ ]2I2pkb
2
1z

2

32
√
2πσ2

xγ
2

. (7)

Notice that, the power is growing quadratically with z, a characteristic of co-

herent emission.

According to the simulation results [13] more than 80 % of the radiation

power is in the fundamental Gaussian mode, so in the following, we will neglect

the high-order modes [29]. The power of a Gaussian beam is given by: P0 =320

πI0w
2
0/2, where w0 = w(0) = σr,E =

√
2σr,I is the Gaussian photon beam
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transverse size at the waist. Here, we have σr,E and σr,I , which are the rms

transverse size of the electric field and the intensity, respectively, at the waist

location. It is also known that for a Gaussian beam, the intensity distribution

is I(r, z) = |E(r, z)|2/(2Z0) and the electric field is325

E(r, z) = E0
w0

w(z)
exp

[ −r2
w(z)2

]
exp(−iψ), (8)

where E0 = |E(0, 0)|, w0 = w(0) is the waist size,

w(z) = w0

√
1 +

(
z

zR

)2

(9)

with zR = πw2
0/λ being the Rayleigh range, and

ψ = kz + k
r2

2R(z)
− ζ(z), (10)

with R(z) = z[1 + (zR/z)
2] being the radius of curvature of the photon beam’s

wavefronts, and ζ(z) = arctan(z/zR) the Gouy phase. Let us consider on-axis

electrons, i.e., for r = 0, we find I0 = |E0|2/(2Z0). Substituting into the expres-330

sion for power of a Gaussian beam reveals that E0 = 2
√
Z0P0/π/w0. As the

power grows, the electrons in the bunch lose energy due to energy conservation;

the change in electron energy can be described as

dγr
dz

= −AK
2z

γ2r
, (11)

where

A =
e[JJ ]2Z0Ipkb1
211/4mc2πw0σx

sin(ψr), (12)

and ψr is the synchronous phase of the electrons. Knowing how the electron en-335

ergy is changing, we can use the resonant condition to find the relation between

K and γ. From the resonant condition, we have

K2 =
4λrγ

2
r

λw
− 2. (13)

We further set B = (4λr)/λw to rewrite

dγr
dz

= −A (Bγ2r − 2)z

γ2r
, (14)
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and can derive the taper profile as

K(z) ≈ K0

[
1− AB2γr0

2K2
0

(z − z0)
2

]
, (15)

for z > z0 where γ2r0 = γr(z0)
2.340

4.2. Comparison With Simulation Results

Results from a MOGA run are compared to the analytical results for the

above model to validate the analysis and the optimization code. The taper

model we use is given by the following equation: K(z) = K0[1− a(z − z0)
b]. In

the analytical model we keep the peak current and the bunching factor constant345

as the first step. We use parameter values based on LCLS parameters to quantify

the coefficients for the quadratic term: Ipk = 4 kA, b1 = 0.45, K0 = 3.5,

γ0 = 2.67×104, JJ = 0.744, σx = 13 μm, w0 = 32.0 μm, λw = 0.03 m, λr = 1.5

Å, and the physics constants: e and m the charge and mass of an electron, c the

speed of light. The z2 coefficient, AB2γr0/(2K
2
0) ≈ 1.4× 10−5 for ψr ≈ 0.4 rad350

[35]. On the other hand, the MOGA optimization for K(z) = K0[1−a(z−z0)2]
finds that the highest power requires a = 1.2× 10−5. Notice that, according to

Eq. (15), a is just AB2γr0/(2K
2
0). Thus, for the coefficient of the z2 term, we

find that our analytical results match very closely to our simulation results, with

about 15 % difference from the simulation. The agreement is very reasonable.355

Given this simple analytical estimate, one can find the scaling of the taper on

various parameters.

5. Results and Discussion

Let us now present our results. The FEL resonant wavelength is λr = 1.5 Å,

the undulator rms strength before tapering is K0 = 3.5 with period of λw = 3360

cm and total length of Lw ≈ 113 meter. The undulator is composed of sections

with magnetic length of Lm = 3.4 m and break length of Lb = 60 cm. The

electron bunch centroid energy is E0 = 13.635 GeV with a slice rms energy

spread of σE = 1.3 MeV, and is compressed to have peak current of Ipk = 4 kA.

The normalized slice emittance is εn = 0.3 μm-rad in both x- and y-plane.365

15



As shown in Fig. 1, the undulator sections are grouped into two sessions

separated by a crystal monochromator for monochromatizing the SASE FEL

into a coherent seed. In our case, the SASE FEL in the first undulator session

is brought up to 1 GW peak power level. After passing through the monochro-

mator, a coherent seed with a peak power of 5 MW is generated with a rms370

relative bandwidth σω/ωr ∼ 10−5, where ωr is the FEL resonant frequency for

λr = 1.5 Å.

This 5 MW coherent seed is then amplified in the second undulator session

after recombining with the electron bunch bypassing the chicane. In about 5

undulator sections in the second undulator session, the coherent seed is already375

amplified to the exponential saturation point. The further down stream undu-

lator sections are then tapered according to various models detailed in Table 1

with various focusing schemes described in Table 1 as well.

Table 1: Description of the optimization cases.

Case taper focusing phase shifters # of variables

1 Eq. (1) linear none 8

2 Eq. (1) linear 7 15

3 Eq. (1) linear 7 15

4 Eq. (3) linear none 9

5 Eq. (3) linear 7 16

6 Eq. (4) linear none 8

7 Eq. (1) quadratic none 8

8 Eq. (4) quadratic none 8

Now let us explain the details case by case for the various model outlined in

Table 1.380

5.1. Case 1: Quasi-Quadratic 8 variable without phase shifter

This is Case 1 in Table 1 which describes various cases. As outlined in Table

1, the taper profile follows the functional form in Eq. (1) with three parameters:

a, b, and z0. The focusing scheme follows Eq. (2) for n = 1 with five parameters:

16



Kq0, z1, z2, f , and g. To set up the simulation, we give each of the 8 parameters385

a range as in Table 2: the low bound as the 2nd-column, and the up bound as

the 3rd-column. The results for these 8 parameters with the highest power are

shown as the 4th-column in Table 2. The generation-by-generation evolution of

the optimization is shown in Fig. 3, where the results converge at around 100

generations. The taper model is shown as in Eq. (1) and since it contains only390

one term, and b ∼ 2, in the following, we call it the quasi-quadratic model.

Table 2: Quasi-quadratic 8 variables without (Case 1) and with (Case 2) phase shifter opti-

mization

Parameter Low Up Case 1 Case 2

a 0.01 0.3 0.1043 0.114

z0 (m) 10 40 13.1 16.8

b 1.1 3.3 2.0359 2.072

Kq0 (T/m) 20 40 34.4 34.9

f -0.005 0.005 0.0018 0.0008

z1 (m) 25 85 80.0 74.3

g -0.01 0.01 0.0061 0.0022

z2 - z1 (m) 0 70 28.9 9.3

5.2. Case 2: Quasi-Quadratic 8 variable with 7 phase shifters

This is Case 2 in Table 1. As shown in Fig. 1 and explained above, for

a self-seeding FEL, the first undulator session is working in the SASE mode.

The SASE FEL passes through the monochromator and generate a coherent395

seed. The seed is amplified by recombining with the electron bunch which

passes through the chicane. In our simulation, the coherent seed has a 5 MW

peak power. The seed is quickly amplified to saturation in the first 5 undulator

sections in the second undulator session after the monochromator. According

to what we write above, we want to check whether integer number of 2π phase400

advance in the undulator breaks is the most optimal value, so we treat the

phase advances in the breaks after undulator sections 5 to 11 as variables which
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Figure 3: The generation-by-generation evolution of the optimization for the quasi-quadratic

8 variable case.

can deviate from integer number of 2π. Therefore, we have 15 parameters for

optimization. The 8 parameters for the taper profile (3 parameters) and the

focusing scheme (5 parameters) are the same as those in Case 1 described above405

in Sec. 5.1. These 8 parameters are also bounded with the same bounds as

for Case 1 and are given in Table 2. The other 7 parameters for the fractional

phase shifter are all bounded between 0 and 2π.

The results for those 8 parameters characterizing the taper profile and the

focusing scheme are shown as the 5th-column in Table 2. The results for the 7410

parameters for the fractional phase shifter in the 5 - 11 undulator breaks are

summarized in Fig. 4. The generation-by-generation evolution of the optimiza-

tion is similar to what is shown in Fig. 3. The results converge at around 100

generations.

As shown in Fig. 4, the phase shifter after the 5th-undulator gives a substan-415

tial fractional phase advance on the order of Δφ5 ∼ 0.3 radian. To understand

this, we have to look at the longitudinal dynamics of the trapped electrons in

the ponderomotive potential. Recall that the electrons microbunch around 0

degree in the ponderomotive potential. However, staying around 0 degree in

the ponderomotive potential, there are almost equal number of electrons losing420

energy to the FEL wave as the number of electrons giving energy to the FEL

wave. Hence, the efficiency for the electrons to give energy to the FEL wave is

low, i.e., for efficiency for a tapered FEL is low. Indeed, the best decelerating
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Figure 4: The optimized phase value in the phase shifters.

phase is substantially away from 0 degree [36, 6].

The comparison between Case 1 and Case 2 for the taper profile and the425

focusing scheme is detailed in Table 2. Even though the difference of the 8

parameters may look not large between the case without phase shifter opti-

mization and the case with phase shifter optimization, the delay (z0 has 3.7 m

difference) in starting the taper is noticeable and does reflect the phase shifter

contribution. Without the phase shifter, the system tends to use the detuned430

undulator to provide additional phase shifter. The difference for z2 − z1 is also

obvious which reflects the fact that with the phase shifter advancing the elec-

tron migration process, the final focusing for improving coherent radiation [14]

is also advanced.

5.3. Case 3: Quasi-Quadratic 8 variable with 7 phase shifters optimized after-435

wards

This is Case 3 in Table 1. To verify the phase shifter effect explained above

when comparing Case 1 and Case 2, we also study a case optimizing the phase

shifters after optimizing the taper profile and the focusing scheme. In this case,

we start with optimizing the quasi-quadratic 8 variable (3 parameters for the440

taper profile and 5 parameters for the focusing scheme) as in Case 1, running

to generation 47 with a FEL power reaching PFEL = 1.753 TW. With this set

of 8 variables fixed, we optimize the fractional phase shifter in the 7 undulator

break phase shifters. This is different from Case 2: Quasi-Quadratic 8 variable
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with 7 phase shifters, because in the Quasi-Quadratic 8 variable with 7 phase445

shifters, we optimize the 15 variables from the very beginning simultaneously.

The results for the fractional phase shifter is shown in Fig. 4. As expected,

the fractional phase shifter is small. As explained above, since we optimize the

taper profile and the focusing scheme first, the system uses detuned undulators

to migrate the electron microbunching from 0 degree in the ponderomotive po-450

tential to the best deceleration phase already, further optimizing the fractional

phase shifter in the 7 phase shifter does not generate substantial fractional phase

shifter.

5.4. Case 4: Cubic 9 variable without phase shifter

This is Case 4 in Table 1. The taper profile is described as in Eq. (3) with 4455

parameters: i.e., a1, a2, a3, and z0. For the focusing scheme, it is described in

Eq. (2) with 5 parameters: i.e., Kq0, f , g, z1, and z2 while setting n = 1, i.e., we

still keep the linear variation for the focusing along the undulator system. We do

not optimize the fractional phase shifter in the phase shifters and keep the phase

shifter being integer number of 2π. Without the phase shifter optimization, we460

have total of 9 variables.

5.5. Case 5: Cubic 9 variable with 7 phase shifters

This is Case 5 in Table 1. Same as those in Case 4, the taper profile is

described as in Eq. (3) with 4 parameters and the focusing scheme is described

in Eq. (2) with 5 parameters while setting n = 1. In this case, we again want465

to verify the phase shifter effect, so we optimize the fractional phase shifter in

the 7 phase shifters in the 5 to 11 undulator breaks. With 9 parameters for the

taper profile and the focusing scheme, and 7 parameters for the fractional phase

shifter, we have total of 16 variables for the optimization.

As expected, the first phase shifter gives again a substantial phase shifter470

Δφ5 ∼ 0.3, very similar to what we find in Case 2. The results for the 7 phase

shifters are shown in Fig. 4. Such a non-zero decelerating phase is needed for

achieving the best taper efficiency [36, 6].
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5.6. Case 6: Quartic 8 variable without phase shifter

This is Case 6 in Table 1. The taper profile is described as in Eq. (4) with 3475

parameters: i.e., b2, b4, and z0. The focusing scheme is described as in Eq. (2)

with 5 parameters: i.e., Kq0, f , g, z1, and z2 while setting n = 1. We do not

optimize the fractional phase shifter in the phase shifters and keep the phase

shifter being integer number of 2π. Without the phase shifter optimization, we

have total of 8 variables.480

5.7. Case 7: Quasi-Quadratic 8 variable with quadratic focusing scheme and

without phase shifter

This is Case 7 in Table 1. The taper profile follows the functional form in

Eq. (1) with three parameters: a, b, and z0. The focusing scheme follows Eq.

(2) for n = 2 with five parameters: Kq0, z1, z2, f , and g. Notice that we set485

n = 2 for the focusing scheme in contrast to Case 1 where n = 1. We do not

optimize the fractional phase shifter in the phase shifters and keep the phase

shifter being integer number of 2π. Without the phase shifter optimization, we

have total of 8 variables.

According to the analytical expression for coherent emission power in Eq.490

(7), Pcoh ∝ σ−2
x , hence a small electron transverse size is favorable for bringing

up the coherent radiation power. Of course, a small electron transverse size

can potentially increase the diffraction effect. These two effects compete with

each other and this is one of the reasons why in this paper, we has a second

objective function: the radiation pseudo-emittance, as compared to a single495

objective function in Ref. [14]. So results from this Case 7 with quadratic

focusing scheme (n = 2) should be compared to those from Case 1 where the

focusing scheme is linear (n = 1).

As the results summarized in Table 3, even though the difference is not

substantial; indeed, with a quadratical focusing (n = 2), the FEL peak power500

is slightly higher, yet the radiation pseudo-emittance is slightly larger. This,

to certain degree, agrees with our conjecture about the balance between the

stronger coherent emission and the stronger diffraction effect.
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5.8. Case 8: Quartic 8 variable with quadratic focusing scheme and without

phase shifter505

This is Case 8 in Table 1. The taper profile follows the functional form in

Eq. (4) with three parameters: b2, b4, and z0. The focusing scheme follows Eq.

(2) for n = 2 with five parameters: Kq0, z1, z2, f , and g. Notice that we set

n = 2 for the focusing scheme in contrast to Case 6 where n = 1. We do not

optimize the fractional phase shifter in the phase shifters and keep the phase510

shifter being integer number of 2π. Without the phase shifter optimization, we

have total of 8 variables.

The results of Case 8 as compared to those of Case 6 also confirm the con-

jecture about the balance between the strong coherent emission with a small

electron transverse size and the strong diffraction effect with a small electron515

transverse size. The results are summarized in Table 3, again, the FEL peak

power is slightly larger while the pseudo-emittance is slightly larger as well.

5.9. Summary of optimization cases

As detailed above, we study total of 8 cases with various combinations of

the different taper models, focusing schemes, and phase shifter variables. The520

cases we optimized for are shown in Table 1. For the first 6 cases, the focusing

scheme is linear, i.e., n = 1 as what is described in Eq. (2); but the taper model

is different with or without phase shifter optimization. For cases 7 and 8, the

focusing scheme is quadratic, i.e., n = 2 as in Eq. (2). In cases 2, 3, and 5,

the 7 phase shifter variables are the fractional phase shifter in the breaks after525

undulator sections 5 to 11.

The results are summarized in Table 3. The two objective functions: the

FEL peak power and the FEL pseudo-emittance are shown as column 2 and

3. In additional to these two objective functions, the taper ratio: ΔK/K0 ≡
[K0 − K(z = Lw)]/K0 is listed in column 4; and in column 5, the capture530

ratio which is defined as the ratio between the number of electrons which are

still captured in the ponderomotive potential at z = Lw and the total electron

initially in the bunch.
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Table 3: The FEL peak power and the pseudo-emittance for the 8 cases with various taper

model, focusing scheme, and with or without phase shifter optimization.

Case PFEL εγ Taper Ratio Capture Ratio

(TW) (pm-rad) % %

1 1.760 75.3 7.50 43.0

2 1.830 79.0 8.16 41.1

3 1.805 75.1 7.62 43.4

4 1.743 70.2 7.22 44.3

5 1.842 79.4 8.04 42.0

6 1.799 75.7 7.83 42.1

7 1.832 81.2 7.92 49.6

8 1.811 78.0 8.15 47.7

5.10. Discussion

In above when we give detailed description of the various cases, we also535

discuss the optimization results. Mostly, we have the following three findings:

5.10.1. Phase shifter can help to migrate the electron microbunching

As the comparison between Case 2 and Case 1, as well as Case 5 and Case 4,

the first phase shifter provides substantial fractional phase advance: Δφ5 ∼ 0.3

radian. This reflects the fact that the microbunching is around 0 degree in540

the ponderomotive potential during the exponential growth; while in the post-

saturation tapered regime, the best decelerating phase is substantially away

from 0 degree to ensure the best taper efficiency. Since the phase shifter helps

this migration, the final peak power is higher with phase shifter optimization as

one can compare the peak power of Case 2 (PFEL = 1.830 TW) to that of Case545

1 (PFEL = 1.760 TW), as well as the peak power of Case 5 (PFEL = 1.842 TW)

to that of Case 4 (PFEL = 1.743 TW).
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5.10.2. Strong transverse focusing in the last region of the post-saturation taper

session

Due to the scaling of the coherent radiation power Pcoh ∝ σ−2
x , a strong550

transverse focusing on the electron beam is favorable for high coherent radia-

tion power; however a small electron transverse beam size can lead to strong

diffraction effect. To study these two competing effects, results of Case 7 are

compared to those of Case 1. Indeed, a slightly stronger FEL peak power is

found in Case 7 than that from Case 1; however, the FEL pseudo-emittance of555

Case 7 is slightly larger that that of Case 1. Similar results are found when

comparing Case 8 to Case 6. These two group comparisons confirm the balance

between the strong coherent radiation power and the strong diffraction effect.

5.10.3. High-order terms in taper profile

Based on the analytical estimate as in Sec. 4, the taper profile should be560

quadratic to the lowest order estimate. Adding higher order terms in the taper

profile: cubic term as in Eq. (3) and quartic term as in Eq. (4), is not necessary

very helpful in increasing the FEL peak power.

As seen in Table 3, with the quartic term in the taper profile as in Eq.

(4), the FEL peak power (PFEL = 1.799 TW) of Case 7 is slightly higher as565

compared to that of Case 1 (PFEL = 1.760 TW) with the quasi-quadratic taper

profile in Eq. (1). However, the FEL peak power of Case 8 (PFEL = 1.811 TW)

with the quartic term in the taper profile as in Eq. (4) is slightly lower than

that of Case 7 (PFEL = 1.832 TW) with the quasi-quadratic taper profile as in

Eq. (1).570

With the cubic term in the taper profile as in Eqs. (3), the FEL peak power

in Case 4 (PFEL = 1.743 TW) is slightly lower than that of Case 1 (PFEL = 1.760

TW) with the quasi-quadratic taper profile in Eq. (1). However, the FEL peak

power of Case 5 (PFEL = 1.842 TW) with the cubic term in the taper profile as

in Eq. (3) is slightly higher than that of Case 2 (PFEL = 1.830 TW) with the575

quasi-quadratic taper profile as in Eq. (1).
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6. Conclusion

In conclusion we have introduced a multi-objective genetic algorithm (MOGA)

to the optimization of the undulator taper profile and focusing scheme of a

seeded FEL using parameters of the LCLS. In addition to radiation power, a580

second optimization objective is introduced to emphasize the preference over

a pure radiation mode. The second objective also helps maintain diversity in

the MOGA population of solutions. We explore new taper models that extend

to higher order terms. The results indicate that the optimal undulator taper

profile is mostly quadratic with respect to the longitudinal position z. We study585

the effect of the fractional phase shift in the undulator breaks. Fractional phase

shift in undulator breaks right after the exponential growth region is important

in migrating the electron microbunching from about 0 degree in the pondero-

motive potential to about 0.3 radian, substantially away from 0 degree. The

phase shifter appears to be helpful to increase the FEL peak power by migrating590

the electrons to the best decelerating phase. The optimization results confirm

that one has to consider the diffraction effect when trying to increase the FEL

coherent radiation power by decreasing the electron bunch transverse size with

strong focusing.
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wavelength free-electron laser, Nature Photonics 4 (2010) 641.

doi:10.1038/NPHOTON.2010.176.

[16] C. Emma, J. Wu, K. Fang, S. Chen, S. Serkez, C. Pellegrini, Terawatt x-ray645

free-electron-laser optimization by transverse electron distribution shaping,

Physical Review Special Topics-Accelerators and Beams 17 (2014) 110701.

doi:10.1103/PhysRevSTAB.17.110701.

[17] C. Emma, K. Fang, J. Wu, C. Pellegrini, High efficiency, multiterawatt x-

ray free electron lasers, Physical Review Accelerators and Beams 19 (2016)650

020705. doi:10.1103/PhysRevAccelBeams.19.020705.

[18] H. T. Li, Q. K. Jia, Optimization of single-step tapering amplitude and

energy detuning for high-gain fels, Chinese Physics C 39 (2015) 018101.

doi:10.1088/1674-1137/39/1/018101.

[19] J. Duris, A. Murokh, P. Musumeci, Tapering enhanced stimu-655

lated superradiant amplification, New J. Phys. 17 (2015) 063036.

doi:10.1088/1367-2630/17/6/063036.

27



[20] R. Bonifacio, C. Pellegrini, L. M. Narducci, Collective instabilities and

high-gain regime in a free electron laser, Opt. Commun. 50 (1984) 373.

doi:10.1016/0030-4018(84)90105-6.660

[21] C. Pellegrini, A. Marinelli, S. Reiche, The physics of x-ray free-

electron lasers, Reviews of Modern Physics 88 (2016) 015006.

doi:10.1103/RevModPhys.88.015006.

[22] L. Yang, D. Robin, F. Sannibale, C. Steier, W. Wan, Global optimiza-

tion of an accelerator lattice using multiobjective genetical gorithms, Nu-665

clear Instruments and Methods in Physics Research A 609 (2009) 50.

doi:10.1016/j.nima.2009.08.027.

[23] M. Borland, V. Sajaev, L. Emery, A. Xiao, Multi-objective direct opti-

mization of dynamic acceptance and lifetime for potential upgrades of the

advanced photon source, argonne National Laboratory, Advanced Photon670

Source Report No. ANL/APS/LS-319 (2010).

[24] W. Gao, L. Wang, W. Li, Simultaneous optimization of beam emittance

and dynamic aperture for electron storage ring using genetic algorithm,

Physical Review Special Topics-Accelerators and Beams 14 (2011) 094001.

doi:10.1103/PhysRevSTAB.14.094001.675

[25] R. Bartolini, M. Apollonio, I. P. S. Martin, Multiobjective genetic algorithm

optimization of the beam dynamics in linac drivers for free electron lasers,

Physical Review Special Topics-Accelerators and Beams 15 (2012) 030701.

doi:10.1103/PhysRevSTAB.15.030701.

[26] X. Huang, J. Safranek, Nonlinear dynamics optimization with parti-680

cle swarm and genetic algorithms for spear3 emittance upgrade, Nu-

clear Instruments and Methods in Physics Research A 757 (2014) 48.

doi:10.1016/j.nima.2014.04.078.

[27] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, A. Xiao, Lattice

28



design challenges for fourth-generation storage-ring light sources, Journal of685

Synchrotron Radiation 21 (2014) 912. doi:10.1107/S1600577514015203.

[28] Y. Jiao, Improving nonlinear performance of the heps baseline de-

sign with a genetic algorithm, Chinese Physics C 40 (2016) 077002.

doi:10.1088/1674-1137/40/7/077002.

[29] J. Wu, L. H. Yu, Eigenmodes and mode competition in a high-690

gain free-electron laser including alternating-gradient focusing, Nu-

clear Instruments and Methods in Physics Research A 475 (2001) 79.

doi:10.1016/S0168-9002(01)01526-1.

[30] S. Reiche, Genesis 1.3: a fully 3d time-dependent fel simulation code, Nu-

clear Instruments and Methods in Physics Research A 429 (1999) 243.695

doi:10.1016/S0168-9002(99)00114-X.

[31] J. D. Schaffer, Some experiments in machine learning using vector evaluated

genetic algorithms, doctoral Dissertation, Vanderbilt University, Nashville,

Tennessee. (1984).

[32] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-700

objective genetic algorithm: Nsga-ii, IEEE Transactions On Evolutionary

Computation 6 (2002) 182. doi:10.1109/4235.996017.

[33] Matlab Software, http://www.mathworks.com/.

[34] L. H. Yu, J. Wu, Theory of high gain harmonic generation: an analytical

estimate, Nuclear Instruments and Methods in Physics Research A 483705

(2002) 493. doi:10.1016/S0168-9002(02)00368-6.

[35] C. A. Brau, R. K. Cooper, Variable wiggler optimization, Phys. Quantum

Electron. 7 (1980) 647.

[36] S. Y. Lee, Accelerator Physics, 3rd Edition, World Scientific Publishing Co

Pte Ltd, 5 Toh Tuck Link, Singapore 596224, 2011.710

29


