DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spin transport through the metallic antiferromagnet FeMn

Abstract

Here, we investigate spin transport through metallic antiferromagnets using measurements based on spin pumping combined with inverse spin Hall effects in Ni80Fe20/FeMn/W trilayers. The relatively large magnitude and opposite sign of spin Hall effects in W compared to FeMn enable an unambiguous detection of spin currents transmitted through the entire FeMn layer thickness. By using this approach we can detect two distinctively different spin transport regimes, which we associate with electronic and magnonic spin currents, respectively. Furthermore, the latter can extend to relatively large distances (approximate to 9 nm) and is enhanced when the antiferromagnetic ordering temperature is close to the measurement temperature.

Authors:
 [1];  [2];  [3];  [4];  [3];  [5];  [3]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Physics
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Oakland Univ., Rochester, MI (United States). Dept. of Physics
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Northwestern Univ., Evanston, IL (United States). Dept. of Physics and Astronomy
  5. Oakland Univ., Rochester, MI (United States). Dept. of Physics
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1352642
Alternate Identifier(s):
OSTI ID: 1329341
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 94; Journal Issue: 14; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Saglam, H., Zhang, W., Jungfleisch, M. B., Sklenar, J., Pearson, J. E., Ketterson, J. B., and Hoffmann, A. Spin transport through the metallic antiferromagnet FeMn. United States: N. p., 2016. Web. doi:10.1103/PhysRevB.94.140412.
Saglam, H., Zhang, W., Jungfleisch, M. B., Sklenar, J., Pearson, J. E., Ketterson, J. B., & Hoffmann, A. Spin transport through the metallic antiferromagnet FeMn. United States. https://doi.org/10.1103/PhysRevB.94.140412
Saglam, H., Zhang, W., Jungfleisch, M. B., Sklenar, J., Pearson, J. E., Ketterson, J. B., and Hoffmann, A. Wed . "Spin transport through the metallic antiferromagnet FeMn". United States. https://doi.org/10.1103/PhysRevB.94.140412. https://www.osti.gov/servlets/purl/1352642.
@article{osti_1352642,
title = {Spin transport through the metallic antiferromagnet FeMn},
author = {Saglam, H. and Zhang, W. and Jungfleisch, M. B. and Sklenar, J. and Pearson, J. E. and Ketterson, J. B. and Hoffmann, A.},
abstractNote = {Here, we investigate spin transport through metallic antiferromagnets using measurements based on spin pumping combined with inverse spin Hall effects in Ni80Fe20/FeMn/W trilayers. The relatively large magnitude and opposite sign of spin Hall effects in W compared to FeMn enable an unambiguous detection of spin currents transmitted through the entire FeMn layer thickness. By using this approach we can detect two distinctively different spin transport regimes, which we associate with electronic and magnonic spin currents, respectively. Furthermore, the latter can extend to relatively large distances (approximate to 9 nm) and is enhanced when the antiferromagnetic ordering temperature is close to the measurement temperature.},
doi = {10.1103/PhysRevB.94.140412},
journal = {Physical Review B},
number = 14,
volume = 94,
place = {United States},
year = {Wed Oct 19 00:00:00 EDT 2016},
month = {Wed Oct 19 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system
journal, February 2016

  • Fukami, Shunsuke; Zhang, Chaoliang; DuttaGupta, Samik
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4566

Direct electronic measurement of the spin Hall effect
journal, July 2006


Spin Hall Effects in Metallic Antiferromagnets
journal, November 2014


Spin-current probe for phase transition in an insulator
journal, August 2016

  • Qiu, Zhiyong; Li, Jia; Hou, Dazhi
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12670

Spin Hall Effects in Metals
journal, October 2013


Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature
journal, October 2015

  • Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya
  • Nature, Vol. 527, Issue 7577
  • DOI: 10.1038/nature15723

Opportunities at the Frontiers of Spintronics
journal, October 2015


New Pathways Towards Efficient Metallic Spin Hall Spintronics
journal, September 2015


Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)
journal, May 2015

  • Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun
  • Journal of Applied Physics, Vol. 117, Issue 17
  • DOI: 10.1063/1.4913887

All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects
journal, October 2015


Thermal Generation of Spin Current in an Antiferromagnet
journal, December 2015


Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals
journal, October 1985


Enhanced Spin Pumping Efficiency in Antiferromagnetic IrMn Thin Films around the Magnetic Phase Transition
journal, February 2016


Spin Hall effects in metallic antiferromagnets – perspectives for future spin-orbitronics
journal, May 2016

  • Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.
  • AIP Advances, Vol. 6, Issue 5
  • DOI: 10.1063/1.4943758

Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange
journal, March 1989


Exchange bias in nanostructures
journal, December 2005


Exchange coupling in Fe50Mn50/Ni81Fe19 bilayer: Dependence on antiferromagnetic layer thickness
journal, April 1999

  • Sang, H.; Du, Y. W.; Chien, C. L.
  • Journal of Applied Physics, Vol. 85, Issue 8
  • DOI: 10.1063/1.369146

Enhanced dc spin pumping into a fluctuating ferromagnet near T C
journal, May 2014


Conduction of spin currents through insulating antiferromagnetic oxides
journal, December 2014

  • Hahn, Christian; de Loubens, Grégoire; Naletov, Vladimir V.
  • EPL (Europhysics Letters), Vol. 108, Issue 5
  • DOI: 10.1209/0295-5075/108/57005

Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers
journal, December 2010


Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices
journal, November 1988


Anti-damping spin transfer torque through epitaxial nickel oxide
journal, April 2015

  • Moriyama, Takahiro; Takei, So; Nagata, Masaki
  • Applied Physics Letters, Vol. 106, Issue 16
  • DOI: 10.1063/1.4918990

Quantifying Spin Hall Angles from Spin Pumping: Experiments and Theory
journal, January 2010


Dependence of spin-pumping spin Hall effect measurements on layer thicknesses and stacking order
journal, August 2013


Fieldlike spin-orbit torque in ultrathin polycrystalline FeMn films
journal, March 2016


Orbital Ferromagnetism and Anomalous Hall Effect in Antiferromagnets on the Distorted fcc Lattice
journal, August 2001


Finite-Size Effects and Uncompensated Magnetization in Thin Antiferromagnetic CoO Layers
journal, March 1996


Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve
journal, March 2001

  • Jedema, F. J.; Filip, A. T.; van Wees, B. J.
  • Nature, Vol. 410, Issue 6826
  • DOI: 10.1038/35066533

Electrical switching of an antiferromagnet
journal, January 2016


Spin transfer torque devices utilizing the giant spin Hall effect of tungsten
journal, September 2012

  • Pai, Chi-Feng; Liu, Luqiao; Li, Y.
  • Applied Physics Letters, Vol. 101, Issue 12
  • DOI: 10.1063/1.4753947

Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect
journal, May 2006

  • Saitoh, E.; Ueda, M.; Miyajima, H.
  • Applied Physics Letters, Vol. 88, Issue 18
  • DOI: 10.1063/1.2199473

Antiferromagnetic spintronics
journal, March 2016

  • Jungwirth, T.; Marti, X.; Wadley, P.
  • Nature Nanotechnology, Vol. 11, Issue 3
  • DOI: 10.1038/nnano.2016.18

Magnon spintronics
journal, June 2015

  • Chumak, A. V.; Vasyuchka, V. I.; Serga, A. A.
  • Nature Physics, Vol. 11, Issue 6
  • DOI: 10.1038/nphys3347

Observation of longitudinal spin-Seebeck effect in magnetic insulators
journal, October 2010

  • Uchida, Ken-ichi; Adachi, Hiroto; Ota, Takeru
  • Applied Physics Letters, Vol. 97, Issue 17
  • DOI: 10.1063/1.3507386

Transformation of spin current by antiferromagnetic insulators
journal, June 2016


Epitaxial exchange-bias systems: From fundamentals to future spin-orbitronics
journal, July 2016


Ferromagnetic resonance studies of exchange-biased Permalloy thin films
journal, October 1988


Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature
journal, June 2016


Orbital Ferromagnetism and Anomalous Hall Effect in Antiferromagnets on the Distorted fcc Lattice
text, January 2001


Quantifying spin Hall angles from spin pumping: Experiments and Theory
text, January 2009


Spin transfer torque devices utilizing the giant spin Hall effect of tungsten
text, January 2012


Dependence of spin pumping spin Hall effect measurements on layer thicknesses and stacking order
text, January 2013


Magnetization switching by spin-orbit torque in an antiferromagnet/ferromagnet bilayer system
text, January 2015


Antiferromagnetic spin Seebeck Effect
text, January 2015


Transformation of spin current by antiferromagnetic insulators
text, January 2015


New pathways towards efficient metallic spin Hall spintronics
text, January 2015


Field-like spin orbit torque in ultra-thin polycrystalline FeMn films
text, January 2016


Direct electronic measurement of the spin Hall effect
text, January 2006


Room Temperature Reversible Spin Hall Effect
text, January 2006


Works referencing / citing this record:

Spin pumping during the antiferromagnetic–ferromagnetic phase transition of iron–rhodium
journal, January 2020


Antiferromagnetic spin textures and dynamics
journal, March 2018


Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures
journal, March 2018

  • Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.
  • Journal of Applied Physics, Vol. 123, Issue 12
  • DOI: 10.1063/1.5023459

Electrical detection of multiple ferromagnetic resonance modes in interlayer exchange coupled Fe 20 Ni 80 /Ru/Fe 20 Ni 80 multilayers
journal, December 2018

  • Chaudhuri, Ushnish; Xiong, Lulu; Mahendiran, Ramanathan
  • Applied Physics Letters, Vol. 113, Issue 26
  • DOI: 10.1063/1.5054358

Spin transport across antiferromagnets induced by the spin Seebeck effect
journal, March 2018

  • Cramer, Joel; Ritzmann, Ulrike; Dong, Bo-Wen
  • Journal of Physics D: Applied Physics, Vol. 51, Issue 14
  • DOI: 10.1088/1361-6463/aab223

Competition between Electronic and Magnonic Spin Currents in Metallic Antiferromagnets
journal, November 2019


Spin Pumping and Thermal Effects in Single-Crystalline Fe / Pt Bilayers at the Nonresonant Condition
journal, July 2017


Spin pumping into superconductors: A new probe of spin dynamics in a superconducting thin film
journal, July 2017


Spin transport across antiferromagnets induced by the spin Seebeck effect
text, January 2018


Spin transport across antiferromagnets induced by the spin Seebeck effect
text, January 2018