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Abstract

Quantum computers are by their nature many particle quantum systems.
Both the many-particle arrangement and being quantum are necessary for the
existence of the entangled states, which are responsible for the parallelism of
the quantum computers. Second quantization is a very important approximate
method of describing such systems. This lecture will present the general idea
of the second quantization, and discuss shortly some of the most important
formulations of second quantization.
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1 Motivation

Quantum computing is a relatively new paradigm for computing, with basis in quantum
mechanics [1]. Second quantization is a very important technique within quantum mechan-
ics [2] (and even more important in quantum field theory). The question I will attempt
to answer is are there any applications of second quantization in quantum computing. I
present a very brief account of some aspects of both second quantization and quantum
computing, reflecting my own interests. I also discuss potential and actual points of con-
tact between second quantization and quantum computing. There are interesting and not
fully understood relationships between second quantization and topology, which I stress
on the way, because the large part of the readers are topologists.

The direct motivation for the work can be defined by general (birds-eye) view and
more detailed (frogs-eye) view.

Birds-eye view: Multi-particle quantum mechanics and quantum field theory require
more involved approach than one-particle quantum mechanics; the second quantization
provides a multiparticle model. Talking about second quantization one should keep in
mind that this notion means many different things. I will discuss this ambiguity later.

Frogs-eye view: Natural parallelism of calculations is the most important advantage of
a quantum computer over a classical one. The parallelism is possible due to the entangled
states. The entangled states are general elements of the tensor product of one-particle
Hilbert spaces.



2 Omne-particle, nonrelativistic quantum
mechanics

I summarize here briefly the standard approach, like e.g. [3], to one-particle nonrela-
tivistic quantum mechanics.

The state of a quantum one-particle system is described by a vector in a complex
Hilbert space, H, often taken as the space

H = L*(X) (2.1)

where X is (a subset of) R”, where D < 3. The state evolves in time

(t, @) = "0, 3) (22)
where: H: H — H is a self-adjoint operator in H, often taken as
N h?
H=——A+V (& 2.
TA+ V(@) (23)

which corresponds to the classical one-body Hamiltonian
7
H = V(Z 2.4
2m + V(@) (2:4)

where the position becomes the operator of multiplication by the position vector,
=7 (2.5)
and the momentum operator becomes the differential operator

p= %v (2.6)

which leads to commutation relations
[a:i,pj] = zh(S” (27)

responsible for celebrated uncertainty relations.
Remarks:
e This is the standard theory. Different levels of deviation from the standard exist.

e Using “wave functions” with values in C we neglect internal degrees of freedom like
spin, description of which requires consideration of multicomponent Hilbert spaces.

e Nonrelativistic particles with spin are described by a two-component wave function,
or a wave function with values in C?

3 Second quantization as a special basis in one-
particle theory

There are various “second quantizations”: “second quantization” as building multi-
particle quantum theory from one-particle theory; “second quantization” as introducing
a special basis in the one-particle theory. In this section I discuss the second of these



alternatives. Let me remind the fundamental example, which is the quantum harmonic
oscillator. Let
H = L*(R) (3.1)

, since for simplicity I consider the 1D case, but it is easy to generalize to higher dimensions.
Let the Hamiltonian be quadratic in momentum operator and has the potential energy
quadratic in position operator. Such choice is called the “harmonic oscillator”.

P

I:I = % =+ QWUJQIEQ (32)

Introducing a complex-linear combination of operators & and p,

a= ey 1 5 (3.3)
2h vV 2mhw '
leads to
AR Lo ¥ SRR S N b PO N (3.4)
2h V2mhw 2h V2mhw '
since
=2 and pr=p (3.5)
Then
mw 7 mw 7
0*a = () omd 5) (1) e p) = 3.6
aa ( 20 Qmmp)( on t Tt 2mhwp) (3.6)
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The above relationship can be rewritten as follows
= hw(&*& T %1) (3.7)

In a particular basis in the Hilbert space H = L2(X), numbered by integers, |[n >, n =
0,1,---, chosen as follows:

an>=valn—1> (3.8)
i*lIn>=vVn+1lln+1> (3.9)

the action of appropriate operators reads
a“aln >=n|n > (3.10)
A 1
Hln >= (n + 5)hw (3.11)

The operators @ and & are called the annihilation and creation operators, respectively,
due to above properties. Since in many cases the potentials of interactions can be approx-
imated by quadratic formulas, a simple generalization of the above procedure works in
these cases. However, when the quadratic approximation is not sufficient and should be
corrected by higher order terms, the basis can still be applied to develop a perturbative
calculus.

Feynman diagrams is a technique that provides a graphical way to represent compli-
cated analytical expressions in such cases.



Another possibility for introducing second quantization is when the Hamiltonian of the
system enjoys a symmetry. Then the Hilbert space of the system is built from the spaces
of representations of the group (or, in generalized case, e.g. a quantum group). Then the
intertwiners of the representations play a role analogous to the creation and annihilation
operators of the kind discussed above.

Remark: The latter approach allowed for studying the problem of decoherence and
prevention of decoherence in quantum computers with so called dynamical symmetry, see
i, 5]

4 Second quantization as multiparticle quantum

theory

The extension of one-particle quantum mechanics to systems of many particles requires
revision of the above scheme. When there are a number of particles, and the number can
be changing, the Hilbert space appropriate for the description of such system is the direct
sum of (square-integrable) functions of time and all N positions of particles, over the
(changing) number N, [6]

F=rrx") (4.1)
N>0
where X C RP, D >3, XV = X x X x --- x X. The Hilbert space introduced above, or
its generalization
F(H)= P~ (4.2)
N>0
is called the Fock space.
For any f € H one can define creation and annihilation operators on F(#), a*(f),

a(f) by

a( ) =0, (4.3)
a (Hw'” =1
and
d(f)(fl@f?@"'@fN):\/N(f7fl)f2®"'®fN (4.4)

d*(f)(f1®f2®"~®f1v)IMf®f2®...®fN

Quantum particles are not distinguishable, therefore they are described by subspaces
of the Fock space, which are unitary representations of the respective permutation groups.
As a result there are two kinds of particles, bosons and fermions, described by functions
symmetric or antisymmetric with respect to permutations of particles. The above con-
structions of the Fock space and of the creation and annihilation operators split as follows

Fi(H) =P+ F(H) (4.5)

where Py are projections to Fi(#H), given by extensions of

P+(f1®f2®---®fN)=%me®fm®---®fw (4.6)
Pf(f1®f2®"'®fN):%ZEWfTrl@fﬂg@"'@fﬂN (47)



where €, is the sign of the permutation of N element 7.
Introduction of the subspaces of the Fock space implies introduction of creation and
annihilation operators acting in the respective subspaces as follows:

a+(f) = PraPs (4.8)
ay(f) = Pra" Py (4.9)

where f € H.
In the case when H = L?(X), there could be defined the creation and annihilation
operators depending on position, as follows:

It is clear that in fermionic case repeted application of the same creation operator leads
to zero, since due to signs in the definition all terms in the resulting sum will meet the
identical counterparts with opposite sign.

Digression

The latter formulas (for fermions) share too much with certain formulas for chain complexes
that, in my opinion, it would be a mere coincidence. Namely, in an abstract simplicial
complex consisting of a set of vertices V, a set of simplexes P C 2V, n vertices defines, in
general case, an n — 1-dimensional simplex. Then a chain complex is defined as:

Cno1= (4.12)
= span{(vl,vg,...,vn) EV™Mr <wva <...<n,{v1,02,...,0n} € P}

On-1:Cpho1 — Cra (4.13)
On—1(v1,v2,...,0n) = Z(_Ui‘l(m,...,@,-,...,un) (4.14)

i=1

Remark: Second quantization and quantum field theory Second quantization is of
extreme importance in quantum field theory. Although quantum field theory is beyond
the scope of this short review, it is difficult not to mention it. As a matter of fact,
relativistic version of quantum mechanics suffers so many interpretation difficulties that
it is a general consensus that quantum field theory has to be used in its place. Second
quantization is sort of built-in in the relativistic quantum field theory. It is particularly
successful in describing quantum theory of electrodynamic field, see e.g. [7], [8].

Quantum field theory and thus second quantization language is indispensable in mod-
ern quantum chromodynamics as well as in all unified field theories. The path integral
approach turned out to be a basis for this development, which allows quite intuitive per-
turbative approaches in the nonlinear theories, see e.g. [9]. We should mention also the
technique of Feynman diagrams developed as a graph theoretic means of doing calculations
in the perturbative approach to quantum field theory

Second quantization can be also developed in nonrelativistic quantum field theory,
where it is applicable in condensed matter physics contexts, [10].



5 Which second quantization is related to
quantum computing?

I reminded two different notions of second quantization. Which of them, if any, is then
related to quantum computing? The answer to this question is not as straightforward as
one might think. There is no place here for thorough discussion, I will only make some
points.

First, let me remind briefly certain facts about quantum computing. In quantum
computing the position degrees of freedom as a rule do not play a role, but rather the
internal degrees of freedom (e.g. spin) are employed, so that the many-particle quantum
theory of computing deals with tensor products of the space C2. The elements of the two-
dimensional space are called qubits (there are more general schemes, with higher- but finite-
dimensional complex spaces, defining qutrits, and their higher-dimensional counterparts,
e.g. ) Quantum computing deals with entangled states of the qubits (general elements of
the tensor product space).

Although above scheme looks like following the standard construction in the sec-
ond quantization, it is not exactly so. Namely, qubits do not satisfy either bosonic or
fermionic commutation rules. As is elegantly shown in [?, ?] they are rather described by
a parafermionic statistics, in which the creation and annihilation operators for different
locations (or different modes) commute, while the operators “at the same location” (or
of the same mode) satisfy fermionic anticommutation rules. A generalization of the qubit
case exist, and leads to generalized parafermions, with which one can perform quantum
computation [?, ?]. The problems with connecting the parafermions (or qudits) with the
standard second quantization is visible in the paper [13], where certain problems with
constructing exchange gates are treated in qudit case and in standard second quantization
case, and these are different problems, requiring different treatment.

There is another approach, using a connection between a fermionic Fock space and
spaces of representation of the Spin groups, where Spin groups are considered as subsets
of Clifford algebras. Orbits of the Spin groups classify spinors. Particular orbits are con-
nected with the notion of pure spinors, for which the isotropic spaces of vectors killing the
distinguished spinor has maximal dimension. Other orbits describe spinors with different
levels of generalized purity, depending on the dimension, see e.g. [14].
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