DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

Abstract

Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.

Authors:
 [1];  [2];  [3];  [1];  [4];  [1];  [1];  [3];  [5]
  1. Univ. of Southern California, Los Angeles, CA (United States). Mork Family Dept. of Chemical Engineering and Materials Science
  2. Univ. of Southern California, Los Angeles, CA (United States). Mork Family Dept. of Chemical Engineering and Materials Science; Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
  4. Univ. of Southern California, Los Angeles, CA (United States). Ming Hsieh Dept. of Electrical Engineering
  5. Univ. of Southern California, Los Angeles, CA (United States). Mork Family Dept. of Chemical Engineering and Materials Science; Univ. of Southern California, Los Angeles, CA (United States). Ming Hsieh Dept. of Electrical Engineering
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1351726
Report Number(s):
BNL-113705-2017-JA
Journal ID: ISSN 2045-2322
Grant/Contract Number:  
SC0012704; AC02-05CH11231; 6951379
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; Batteries; Nanoparticles; Transmission electron microscopy

Citation Formats

Shen, Chenfei, Ge, Mingyuan, Luo, Langli, Fang, Xin, Liu, Yihang, Zhang, Anyi, Rong, Jiepeng, Wang, Chongmin, and Zhou, Chongwu. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures. United States: N. p., 2016. Web. doi:10.1038/srep31334.
Shen, Chenfei, Ge, Mingyuan, Luo, Langli, Fang, Xin, Liu, Yihang, Zhang, Anyi, Rong, Jiepeng, Wang, Chongmin, & Zhou, Chongwu. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures. United States. https://doi.org/10.1038/srep31334
Shen, Chenfei, Ge, Mingyuan, Luo, Langli, Fang, Xin, Liu, Yihang, Zhang, Anyi, Rong, Jiepeng, Wang, Chongmin, and Zhou, Chongwu. Tue . "In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures". United States. https://doi.org/10.1038/srep31334. https://www.osti.gov/servlets/purl/1351726.
@article{osti_1351726,
title = {In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures},
author = {Shen, Chenfei and Ge, Mingyuan and Luo, Langli and Fang, Xin and Liu, Yihang and Zhang, Anyi and Rong, Jiepeng and Wang, Chongmin and Zhou, Chongwu},
abstractNote = {Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.},
doi = {10.1038/srep31334},
journal = {Scientific Reports},
number = 1,
volume = 6,
place = {United States},
year = {Tue Aug 30 00:00:00 EDT 2016},
month = {Tue Aug 30 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

All-Solid Lithium Electrodes with Mixed-Conductor Matrix
journal, January 1981

  • Boukamp, B. A.
  • Journal of The Electrochemical Society, Vol. 128, Issue 4
  • DOI: 10.1149/1.2127495

Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries
journal, January 2007

  • Larcher, Dominique; Beattie, Shane; Morcrette, Mathieu
  • Journal of Materials Chemistry, Vol. 17, Issue 36
  • DOI: 10.1039/b705421c

Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation
journal, July 2011

  • Lee, Seok Woo; McDowell, Matthew T.; Choi, Jang Wook
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl201787r

Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
journal, August 2011

  • Liu, Xiao Hua; Zheng, He; Zhong, Li
  • Nano Letters, Vol. 11, Issue 8, p. 3312-3318
  • DOI: 10.1021/nl201684d

Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes
journal, January 2009

  • Cui, Li-Feng; Ruffo, Riccardo; Chan, Candace K.
  • Nano Letters, Vol. 9, Issue 1, p. 491-495
  • DOI: 10.1021/nl8036323

Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries
journal, May 2010

  • Song, Taeseup; Xia, Jianliang; Lee, Jin-Hyon
  • Nano Letters, Vol. 10, Issue 5, p. 1710-1716
  • DOI: 10.1021/nl100086e

Deformations in Si−Li Anodes Upon Electrochemical Alloying in Nano-Confined Space
journal, June 2010

  • Hertzberg, Benjamin; Alexeev, Alexander; Yushin, Gleb
  • Journal of the American Chemical Society, Vol. 132, Issue 25, p. 8548-8549
  • DOI: 10.1021/ja1031997

Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life
journal, July 2011

  • Yao, Yan; McDowell, Matthew T.; Ryu, Ill
  • Nano Letters, Vol. 11, Issue 7, p. 2949-2954
  • DOI: 10.1021/nl201470j

A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
journal, May 2012

  • Liu, Nian; Wu, Hui; McDowell, Matthew T.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl3014814

Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life
journal, April 2012

  • Ge, Mingyuan; Rong, Jiepeng; Fang, Xin
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300206e

Review of porous silicon preparation and its application for lithium-ion battery anodes
journal, September 2013


Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes
journal, July 2014

  • Li, Xiaolin; Gu, Meng; Hu, Shenyang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5105

Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon
journal, December 2013

  • Ge, Mingyuan; Lu, Yunhao; Ercius, Peter
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl403923s

Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes
journal, February 2015

  • Lu, Zhenda; Liu, Nian; Lee, Hyun-Wook
  • ACS Nano, Vol. 9, Issue 3
  • DOI: 10.1021/nn505410q

Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes
journal, June 2011

  • Liu, Xiao Hua; Zhang, Li Qiang; Zhong, Li
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl200412p

In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix
journal, August 2012


Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy
journal, September 2012

  • McDowell, Matthew T.; Ryu, Ill; Lee, Seok Woo
  • Advanced Materials, Vol. 24, Issue 45
  • DOI: 10.1002/adma.201202744

The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation
journal, May 2012


Electronic Origin for the Phase Transition from Amorphous Li x Si to Crystalline Li 15 Si 4
journal, June 2013

  • Gu, Meng; Wang, Zhiguo; Connell, Justin G.
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn402349j

In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres
journal, January 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Harris, Justin T.
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl3044508

Dynamics of Electrochemical Lithiation/Delithiation of Graphene-Encapsulated Silicon Nanoparticles Studied by In-situ TEM
journal, January 2014

  • Luo, Langli; Wu, Jinsong; Luo, Jiayan
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03863

In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

Silicon-Carbon Nanotube Coaxial Sponge as Li-Ion Anodes with High Areal Capacity
journal, July 2011


Stepwise Nanopore Evolution in One-Dimensional Nanostructures
journal, April 2010

  • Choi, Jang Wook; McDonough, James; Jeong, Sangmoo
  • Nano Letters, Vol. 10, Issue 4
  • DOI: 10.1021/nl100258p

Size-dependent fracture of Si nanowire battery anodes
journal, September 2011

  • Ryu, Ill; Choi, Jang Wook; Cui, Yi
  • Journal of the Mechanics and Physics of Solids, Vol. 59, Issue 9
  • DOI: 10.1016/j.jmps.2011.06.003

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
journal, September 1992


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


A second nearest-neighbor embedded atom method interatomic potential for Li–Si alloys
journal, June 2012


Structural and electrochemical study of the reaction of lithium with silicon nanowires
journal, April 2009


Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy
journal, September 2012

  • McDowell, Matthew T.; Ryu, Ill; Lee, Seok Woo
  • Advanced Materials, Vol. 24, Issue 45
  • DOI: 10.1002/adma.201202744

Deformations in Si−Li Anodes Upon Electrochemical Alloying in Nano-Confined Space
journal, June 2010

  • Hertzberg, Benjamin; Alexeev, Alexander; Yushin, Gleb
  • Journal of the American Chemical Society, Vol. 132, Issue 25, p. 8548-8549
  • DOI: 10.1021/ja1031997

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries
journal, May 2010

  • Song, Taeseup; Xia, Jianliang; Lee, Jin-Hyon
  • Nano Letters, Vol. 10, Issue 5, p. 1710-1716
  • DOI: 10.1021/nl100086e

Stepwise Nanopore Evolution in One-Dimensional Nanostructures
journal, April 2010

  • Choi, Jang Wook; McDonough, James; Jeong, Sangmoo
  • Nano Letters, Vol. 10, Issue 4
  • DOI: 10.1021/nl100258p

Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life
journal, July 2011

  • Yao, Yan; McDowell, Matthew T.; Ryu, Ill
  • Nano Letters, Vol. 11, Issue 7, p. 2949-2954
  • DOI: 10.1021/nl201470j

Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
journal, August 2011

  • Liu, Xiao Hua; Zheng, He; Zhong, Li
  • Nano Letters, Vol. 11, Issue 8, p. 3312-3318
  • DOI: 10.1021/nl201684d

Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life
journal, April 2012

  • Ge, Mingyuan; Rong, Jiepeng; Fang, Xin
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300206e

A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
journal, May 2012

  • Liu, Nian; Wu, Hui; McDowell, Matthew T.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl3014814

In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres
journal, January 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Harris, Justin T.
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl3044508

Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix
journal, August 2012


Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes
journal, February 2015

  • Lu, Zhenda; Liu, Nian; Lee, Hyun-Wook
  • ACS Nano, Vol. 9, Issue 3
  • DOI: 10.1021/nn505410q

Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes
journal, July 2014

  • Li, Xiaolin; Gu, Meng; Hu, Shenyang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5105

In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

Dynamics of Electrochemical Lithiation/Delithiation of Graphene-Encapsulated Silicon Nanoparticles Studied by In-situ TEM
journal, January 2014

  • Luo, Langli; Wu, Jinsong; Luo, Jiayan
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03863

Review of porous silicon preparation and its application for lithium-ion battery anodes
journal, September 2013


Works referencing / citing this record:

Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries
journal, July 2017


Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries
journal, May 2018


A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond
journal, January 2018

  • Entwistle, Jake; Rennie, Anthony; Patwardhan, Siddharth
  • Journal of Materials Chemistry A, Vol. 6, Issue 38
  • DOI: 10.1039/c8ta06370b

Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries
journal, January 2019

  • Tang, Jingjing; Yin, Qifang; Wang, Qian
  • Nanoscale, Vol. 11, Issue 22
  • DOI: 10.1039/c9nr01440c

Real-time monitoring of stress development during electrochemical cycling of electrode materials for Li-ion batteries: overview and perspectives
journal, January 2019

  • Jangid, Manoj K.; Mukhopadhyay, Amartya
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/c9ta06474e

Silicon: toward eco-friendly reduction techniques for lithium-ion battery applications
journal, January 2019

  • Zhu, Guanjia; Luo, Wei; Wang, Lianjun
  • Journal of Materials Chemistry A, Vol. 7, Issue 43
  • DOI: 10.1039/c9ta08554h