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Abstract

Cytosolic recognition of viral RNA is important for host innate immune responses. Differential 

recognition of self vs non-self RNA is a considerable challenge as the inability to differentiate may 

trigger aberrant immune responses. Recent work identified the composition of the RNA 5′, 

including the 5′ cap and its methylation state, as an important determinant of recognition by the 

host. Recent studies have advanced our understanding of the modified 5′ RNA recognition and 

viral antagonism of RNA receptors. Here, we will discuss RIG-I and IFIT proteins as examples of 

host proteins that detect dsRNA and ssRNA, respectively.
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Introduction

The innate immune system serves as a first line of defense against viral infections. Germline 

encoded pattern recognition receptors (PRRs) detect pathogens and promote innate immune 

responses, including activation of type I interferons (IFNs) and stimulation of antiviral genes 

by recognizing a variety of pathogen associated molecular patterns (PAMPs) such as viral 

RNA (Figure 1). In addition to limiting infections, innate immunity is required to activate 

humoral responses and to develop long-term protection via adaptive immune responses [1]. 

Dysregulation of IFN signaling is detrimental to the host, resulting in events such as 

cytokine storms during infections [2] or autoimmune disorders [3,4]. Recent studies, 

discussed below, highlight the need for self/non-self-recognition of the RNA 5′ 
modifications to discriminate among the viral RNAs that are present within the cytosol 

during infection.

Retinoic acid inducible gene-I (RIG-I) like receptors (RLRs), which include RIG-I, 

melanoma differentiation associated factor gene 5 (MDA-5), and laboratory of genetics and 

physiology 2 (LGP2), are PRRs that contain super family 2 (SF2) RNA helicase domains 

[5,6]. RLRs contain an DEX/DH box ATPase core formed by helicase domain 1 (Hel1) and 

2 (Hel2), a helicase insertion domain (Heli) and an RNA binding domain known as the C-
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terminal domain (CTD, also called repressor domain (RD)) [7] (Figure 2). The tandem 

caspase activation and recruitment domains (CARDs) are present at the N-terminus of RIG-I 

and MDA-5, which LGP2 lacks. The N-terminal CARD domains engage in protein-protein 

interactions with other CARD domain containing proteins, most notably with mitochondrial 

associated antiviral signaling molecule (MAVS, also known as IPS-1, VISA, CARDIF) and 

therefore is an important signaling component [8]. Unlike in RIG-I, the CARDs do not 

interact with the Hel2i or other domains within MDA-5 [9,10]. Therefore, despite high 

sequence conservation and similar domain organization, there are number of differences in 

MDA-5 and RIG-I regulation.

In the context of RLR signaling, MDA-5 and RIG-I can activate effector molecule MAVS 

[10]. CARD-CARD interactions between RLRs and MAVS lead to activation of interferon 

kinases, such as Tank binding kinase-1 (TBK-1) and interferon kB kinase ε (IKKε), that can 

phosphorylate interferon regulator factors 3 (IRF3) and 7 (IRF7) [1]. Phosphorylation and 

nuclear localization of IRF3/7, as well as nuclear factor κB (NFκB), result in type I 

interferon (IFN) production (Figure 1) [1]. IFN-α/β produced as a result of these signaling 

events can function in an autocrine and paracrine manner, leading to the induction of a large 

number of antiviral molecules [1,6,11] (Figure 1). Signaling initiated by type I IFNs result in 

the production of IFN stimulated genes (ISGs), which include numerous host factors that 

limit virus replication. Among the ISGs, IFIT (Interferon Induced proteins with 

tetratricopeptide repeats (TPR)) family proteins have been identified as important 

contributors to antiviral activity through a single-stranded RNA (ssRNA)-dependent 

mechanism that is incompletely understood at present [12,13]. IFIT proteins can be 

expressed in IFN independent and dependent manner. While all IFIT proteins share the TPR 

motifs, different isoforms have varied tissue specific and temporal expression profiles 

[12,13]. Moreover, IFIT can multimerize and the different multimerization patterns are 

likely to have different functional outcomes. Here we will review recent advances in our 

understanding based on structural and biochemical studies of RIG-I-RNA with 5′ modified 

RNA and discuss how dsRNA and ssRNA recognition are different using studies of IFIT 

protein. Additionally, we will discuss how viruses may target such recognition as well as 

remaining gaps in our understanding of this important early immune response to viral 

infection.

RIG-I and MDA-5 are multidomain autoinhibited proteins

A series of structures of autoinhibited RIG-I as well as dsRNA-bound forms of RIG-I 

provided key snap shots, which provide insight into RIG-I regulation, including RNA 

dependent structural rearrangements and signaling [14–17] (Figure 2). In the autoinhibited 

form, the two N-terminal CARD domains of RIG-I form a head to tail interaction, where the 

N-terminus of the CARD2 head interacts directly with the C-terminal region of CARD1 and 

also interact with Heli domain [17]. These CARD-helicase interactions may also prevent 

access to MAVS directly or by blocking ubiquitination by TRIM25 [18] and interactions 

with unanchored polyubiquitin chains [19], which are important for persistent downstream 

signaling.
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RNA recognition and signaling in RLRs require multiple domains

In RIG-I, interaction with dsRNA involves multiple domains. The CTD, which can directly 

bind to dsRNA [20,21] and the ATPase core are both required for dsRNA recognition and 

signaling [22,23]. In addition, the pincer motif (also called the bridging domain or 

regulatory element) is critical for RIG-I activation as its interactions with the ATPase core 

functions as an allosteric coupler that facilitates RNA recognition and signaling [24]. 

Consistent with these findings that multiple domains within the RLR architecture is 

important for signaling, the helicase domain alone binds dsRNA with low affinity, and the 

addition of the CTD markedly improves dsRNA binding [25,26].

Many characteristics of RNA important for RLR activation. Double strandedness [7,27–29] 

as well as the “blunt” ends of dsRNA as important characteristics of RNA recognition by 

RLRs and are required to activate RLRs [5,30]. However, selection of self RNA from non-

self RNA and therefore persistent signaling require additional characteristics. These 

characteristics of dsRNA included 5′ triphosphate (5′ppp) [21,31–33], 5′ diphosphate 

[34,35], and the panhandle structure formed by the 5′ and 3′ untranslated regions (UTRs) 

[35,36]. Yoneyama et al. [7]., suggested that dsRNA binding and ATPase activity are both 

required for RLR signaling and this proposal was recently demonstrated in two independent 

studies, where ATP binding, but not ATP hydrolysis was shown to be important for signaling 

[22,26,37,38]. Based on these studies a model emerges where critical interactions of dsRNA 

with the CTD and subsequently with the helicase result in the reorientation of the pincer 

domain leading to ATP hydrolysis and release of the N-terminal CARDs for signal 

transduction. Recent reports also point to ATP hydrolysis as a potential mechanism to 

discriminate among some RNA lacking PAMP-like characteristics where signaling is 

aborted. If PAMP characteristics in the bound RNA is observed, then RLRs can engage in 

more sustained signaling, potentially leading to higher burst activity and limited viral 

infections. RIG-I and MDA-5 can bind short and long dsRNA, with shorter dsRNA acting as 

better activators for RIG-I [22,39] and longer RNA are better activators of MDA-5 [9,40–

42]. Additional studies point to the stability of the dsRNA stem region suggesting stable 

double stranded RNA is necessary for persistent signaling during viral infections [43,44], 

but not sufficient as a dumbbell RNA lacking blunt ends can bind RIG-I yet display 

attenuated signaling [22]. A recent study used mass spectrometry to access how RIG-I 

domains change conformation upon RNA ligand and ATP binding[45]. This study, which 

used RNA ligands from the Rawling et al study [22], revealed that differences in hydrogen-

deuterium exchange (HDX) patterns were consistent with not only major conformational 

changes upon RNA and ATP binding, but also with end recognition vs binding to the dsRNA 

double stranded stem regions. These studies collectively show that the multiple interactions 

between the RLRs and multiple properties of RNA are important to confer specificity in 

order to discriminate between self vs non-self RNA.

RLRs can discriminate among the 5′ cap structures?

During viral infections, a major source of the cytosolic RNA appears to be from replicating 

viruses. While data is limited in terms of sequence and structural compositions of these 

RNAs, emerging studies point to the 5′ cap structure as a major element that hosts uses to 
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discriminate between self vs non-self patterns. Eukaryotic cap structure contains a 

triphosphorylated linked 5′-5′ with a N7 methylated guanosine (Figure 1B). Methylation 

status of this structure, including N7 and 2′O positions result in various permutations of the 

cap, cap0, cap1, and cap2 designations (see Figure 1B). While the potential role of the cap 

structure in RLR recognition has been previous speculated, the first evidence of the 

specificity of recognition was recently defined by Schuberth-Wagner et al., where the 

authors assessed the significance of the synthetic modified ppp-RNA and their influence on 

innate immune signaling. These studies revealed that various 5′ modifications can drive 

specificity of binding to RIG-I [46]. For example, the cap (no methylations) like 5′ppp is a 

strong activator of IFN signaling whereas cap0 is able to partially stimulate IFNs, consistent 

with its lower than 5′ppp binding affinity for RIG-I [46]. Previous studies of RIG-I bound to 

dsRNA that included either 5′ppp or 5′pp suggested that the binding pocket may be able to 

accommodate the cap structure [21,33], but studies with cap0 revealed lower binding than 

that observed for 5′ppp. Additional modifications at the 2′O position of +1 or +2 

nucleotides in the presence or absence of N7 methylation resulted in suboptimal or 

completely abolished signaling. Of note, the ability of RIG-I to bind RNA is consistent with 

IFN signaling in cell-based studies [22,23,34,38]; however, there are some deviations that 

suggest the potential for additional layers of regulation.

The structural basis for 5′ cap recognition was recently provided by Davarkar et al. [26], 

where chemically synthesized RNA was used to assess the conformational tolerance to the 

various 5′ RNA ends (Figure 2B–D) [26]. In the cap0 bound to RIG-I, in comparison to 5′ 
OH and 5′ PPP bound to RIG-I, the G nucleotide base is located within the binding site, but 

pointing away from the basic patch within RIG-I CTD. The disordering of motif IVa 

accommodates the positioning and prevents additional steric hindrance [26]. This 

orientation, which was previously predicted, is the most favorable since addition of the m7G 

moiety may also provide electrostatic repulsion with respect to the basic charge within the 

binding pockets. Thus, a combination of steric and electrostatic forces are likely controlling 

the interactions within the binding pocket.

Previous studies of the RIG-I bound to 5′ppp RNA [14,21,25,33,39] as well as recent 

studies [26,46] identified a specific contact between the 2′O and the sidechain of H830, 

which is a highly conserved residue. Interestingly, both studies revealed that cap1 structures 

neither bound RIG-I with significant affinity nor stimulated signaling and IFN induction. 

However, a H830A mutation, which relieves the steric hindrance, allowed the positioning of 

the 2′O methyl group within the tight binding site.

Collectively, these studies suggests that the m7G cap, which is important for mRNA stability 

and protein translation, is also a significant determinant of self vs non-self tolerance. Of 

note, these studies have been performed with RIG-I. Whether MDA-5 also has similar 

specificity is yet to be determined. Importantly, since MDA-5 is thought to recognize long 

dsRNA and rely less of the specific nature of the 5′ RNA ends, the impact of the 5′ 
composition remains an open question.
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IFIT proteins differentiate 5′ of ssRNA RNA

Unlike the RLRs which recognize dsRNA, the IFIT family of proteins target ssRNA and 

discriminate RNA on the basis of the 5′ modification [12,13,47]. IFIT proteins, which are 

produced in large amounts in response to IFNs, have been shown to have antiviral functions. 

Tetratricopeptide repeats (TPRs) are helix turn helix motifs present in proteins that engage in 

protein-protein interactions. All IFIT proteins contain between 8 and 12 TPR motifs with 

additional intervening alpha helices. The relative orientation of the TPRs can facilitate 

conformational changes, which are important for IFIT function. IFITs are part of IFN 

induced response element signaling, which promotes the production of a large number of 

antiviral genes, such as protein kinase R (PKR) that inhibits cellular protein production 

[12,13]. IFIT proteins are among the most highly expressed in response to IFNs. In humans, 

IFIT1, IFIT2, IFIT3, and IFIT5 as well as IFIT1B and IFIT1P1, a pseudogene, are 

expressed, while mouse expresses Ifit1, Ifit2, and Ifit3 along with Ifit1b, Ifit1c and Ifit3b, 

with the latter three genes largely uncharacterized [13]. Structures of a truncated form of 

IFIT1 [48], full length IFIT2 [49,50], IFIT5 [48,51], and IFIT5 bound to 5′ppp RNA [48] 

have been solved (Figure 3), which highlight some of the key properties that allow IFIT 

proteins to engage ssRNA in a 5′ end dependent manner [48,50]. Unlike RLRs, where the 

RNA recognition is carried out by multiple domains, different TPRs in IFIT proteins form 

the binding pocket. Importantly, all IFIT structures to date show a significant basic patch 

(Figure 3B–C), which can accommodate the ssRNA. Specificity of the 5′ ssRNA has been 

explored biochemically, which support the notion that 2′O methylation is an important 

property for binding, recognition, and signaling by IFIT family of proteins [36,52]. 

Biochemical studies on the basis of the available structural date and molecular modeling 

lead to the dissection of the RNA binding site [52] and identified nucleotide preferences for 

some IFIT family proteins such as the AU preference for IFIT2 [49].

Multiple viral mechanisms to evade 5′ end recognition

Viral immune evasion mechanisms to inhibit innate immune responses are observed for 

nearly all RNA viruses. In particular, many RNA viruses are detected by PRRs, such as 

RIG-I and MDA-5. For example, Rhabdoviruses (Vesicular Stomatitis virus and Rabies 

virus), Paramyxoviruses (Sendai virus, Respiratory syncytial virus, and Newcastle disease 

virus), Orthomyxoviruses (influenza A and B), and Filoviruses (Ebola virus (EBOV) and 

Marburg virus (MARV)) are primarily detected by RIG-I, whereas for Picornaviruses 

(EMCV, Coronavirus, and murine hepatitis virus, and murine norovirus-1 type I), MDA-5 

likely is the primary PRR [53,54]. RIG-I and MDA-5 are thought to be important for 

detection of positive sense RNA viruses, such as Flaviviruses (Dengue virus and West Nile 

viruses) as well as double stranded RNA viruses from the Reovirus family (Rotavirus)[53–

57]. Whether or not these differences are due to specific recognition by RLRs remains to be 

defined.

Among the mechanisms that antagonize RLRs, filoviruses (EBOVs and MARVs) as well as 

influenza virus utilize specific virally encoded antagonists that target RNA PAMPs and these 

viral antagonists do not directly bind RLRs. Therefore, it is important to discuss the 

potential implications for the role of 5′ RNA moieties in the context of RLRs or more 
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specifically RIG-I activation. Previous structural studies have shown that influenza A virus 

(IAV) non-structural protein 1 (NS1) and EBOV/MARV viral protein 35 (VP35) IFN 

inhibitory domain (IID) can directly bind to short [58–60] and long double stranded RNA 

(Figure 4A) [61,62]. Specific contacts between the dsRNA and the viral proteins are 

consistent with a model where the viral proteins “hide” RNA PAMPs. Despite structural 

similarities, EBOV and MARV VP35 proteins show significant differences in their ability to 

recognize blunt ends of RNA. EBOV VP35 IID shows significant interactions with the blunt 

ends [58], whereas MARV VP35 does not associate with RNA blunt ends and 

correspondingly loses its ability to antagonize RIG-I when activated by short dsRNA.

Similar to RLRs, viruses also antagonize ssRNA recognition by IFIT proteins, with the most 

predominant mechanism being the acquisition of the 2′O methylated cap structure (5′ cap1 

or 5′ cap2) by a viral specific methyltransferase or by stealing the cap structure from 

cellular RNA [63]. In West Nile virus (WNV) [64] or Japanese encephalitis virus (JEV) 

[46,65], viruses generated with mutations within the methyltransferase domain results in 

IFIT sensitivity, where the mutant viruses, but not wildtype viruses were subjected to 

restriction by Ifit1. Encephalomyocarditis virus (EMCV) is a picornavirus, which uses a 5′ 
viral peptide to evade detection, while members of the Togaviridae family uses a highly 

stable 5′ RNA secondary structure [66] (Figure 4B). In each situation, the absence of the 

2′O methylation is compensated in order to avoid detection by IFIT. High resolution 

structural information for each of these systems will likely provide additional insights into 

the specific molecular mechanisms that underlie these immune evasion mechanisms.

Concluding remarks

Modification of the 5′ RNA cap allows safe passage into the cytosol for protein translation 

by providing increased stability and protection from 5′ exonucleases. Additionally, the 5′ 
cap structure of RNA is thought synergistically enhance protein translation. Recent studies 

indicate that in addition to facilitating protein translation, the 5′ cap structures promote self 

vs non-self-discrimination. Given the ability to detect and respond to viral infections due to 

the immune responses triggered by 5′ RNA recognition, it is not surprising that viruses have 

developed mechanisms to antagonize proteins that detect cap structures. We have seen 

remarkable progress in our understanding of host recognition of viral RNA. Future work to 

address how RNA cap recognition leads to sustained downstream immune signaling will 

enhance our understanding of this rapidly developing area at a key host-pathogen interface. 

Such studies are also expected to provide new opportunities to develop therapeutics by 

targeting cap-dependent signaling.
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Figure 1. Signaling pathways that respond to 5′ modified RNA
A. RLRs and IFIT family proteins recognize 5′ modified dsRNA and ssRNA, respectively. 

Chemical structure of 5′ modifications B. 5′OH, C.5′ppp, D. 5′ cap0, E. 5′ cap1, and F. 
5′ cap2.
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Figure 2. dsRNA recognition mechanism for RLRs
A. Domain architecture of RIG-I and model for structural rearrangements upon dsRNA 

recognition. CARD1 (cyan), CARD2 (blue), helicase HEL1 (green), helicase insertion 

domain HEL2i (yellow), helicase HEL2 (purple), the regulatory pincer motif P (red), and C-

terminal domain CTD (orange). LGP2 lacks the N-terminal CARDs. In the autoinhibited 

conformation, the N-terminal CARDs are sequestered from signaling and the pincer 

maintains RIG-I in an autoinhibited state (PDB: 4A2W). Binding of dsRNA and ATP to the 

CTD brings HEL2i in contact with dsRNA (PDB: 2YKG). The change in conformation 

upon dsRNA and ATP binding presumably releases the CARD domains for signaling. B. 
Specificity of 5′ recognition revealed through the recent structures with 5′OH (left, PDB: 

5F9F), 5′ppp (center, PDB:5F9H), and 5′m7Gppp (right, PDB: 5F98). Figures generated by 

PyMOL [67].
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Figure 3. Recognition of 5′ modified ssRNA by IFIT family of proteins
A. Structure of human IFIT5 bound to 5′ppp ssRNA model (oligo A; PDB: 4HOT [48]; 

left). Cartoon representation of IFIT5 and the location of 5′ modified ssRNA binding 

(right). Electrostatic potential shown on the surface of B. IFIT2 (PDB: 4G1T [50])and C. 
IFIT5 (PDB: 4HOQ [48]). Surface potential is indicated by red, white, and blue colors 

represent negative, neutral, and positive electrostatic potential, respectively (−5 to +5 kBT 

e−1). Figures generated by PyMOL [67] with the Adaptive Poisson-Boltzmann Solver 

(APBS) Plugin implemented within PyMOL.
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Figure 4. Viruses use a variety of mechanisms to “hide” RNA, including 5′ RNA recognition by 
RLRs and IFIT proteins
A. Examples of dsRNA “hiding” by coating dsRNA by Ebola and Marburg viral VP35 

proteins, influenza NS1, and flock house virus B2. Of these proteins, Ebola virus VP35 is 

also known to bind 5′ dsRNA blunt ends. B. 5′ ssRNA detection by IFIT proteins is evaded 

by many viruses through 2′O methylation by viral/host methyltransferases or by utilizing a 

highly stable RNA secondary structure.
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