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Abstract

Cytosolic recognition of viral RNA is important for host innate immune responses. Differential
recognition of self vs non-self RNA is a considerable challenge as the inability to differentiate may
trigger aberrant immune responses. Recent work identified the composition of the RNA 5,
including the 5" cap and its methylation state, as an important determinant of recognition by the
host. Recent studies have advanced our understanding of the modified 5° RNA recognition and
viral antagonism of RNA receptors. Here, we will discuss RIG-1 and IFIT proteins as examples of
host proteins that detect dSRNA and ssRNA, respectively.
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Introduction

The innate immune system serves as a first line of defense against viral infections. Germline
encoded pattern recognition receptors (PRRs) detect pathogens and promote innate immune
responses, including activation of type | interferons (IFNs) and stimulation of antiviral genes
by recognizing a variety of pathogen associated molecular patterns (PAMPS) such as viral
RNA (Figure 1). In addition to limiting infections, innate immunity is required to activate
humoral responses and to develop long-term protection via adaptive immune responses [1].
Dysregulation of IFN signaling is detrimental to the host, resulting in events such as
cytokine storms during infections [2] or autoimmune disorders [3,4]. Recent studies,
discussed below, highlight the need for self/non-self-recognition of the RNA 5
modifications to discriminate among the viral RNAs that are present within the cytosol
during infection.

Retinoic acid inducible gene-1 (RIG-I) like receptors (RLRs), which include RIG-I,
melanoma differentiation associated factor gene 5 (MDA-5), and laboratory of genetics and
physiology 2 (LGP2), are PRRs that contain super family 2 (SF2) RNA helicase domains
[5,6]. RLRs contain an DEX/DH box ATPase core formed by helicase domain 1 (Hell) and
2 (Hel2), a helicase insertion domain (Heli) and an RNA binding domain known as the C-
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terminal domain (CTD, also called repressor domain (RD)) [7] (Figure 2). The tandem
caspase activation and recruitment domains (CARDs) are present at the N-terminus of RIG-I
and MDA-5, which LGP2 lacks. The N-terminal CARD domains engage in protein-protein
interactions with other CARD domain containing proteins, most notably with mitochondrial
associated antiviral signaling molecule (MAVS, also known as IPS-1, VISA, CARDIF) and
therefore is an important signaling component [8]. Unlike in RIG-I, the CARDs do not
interact with the Hel2i or other domains within MDA-5 [9,10]. Therefore, despite high
sequence conservation and similar domain organization, there are number of differences in
MDA-5 and RIG-I regulation.

In the context of RLR signaling, MDA-5 and RIG-I can activate effector molecule MAVS
[10]. CARD-CARD interactions between RLRs and MAVS lead to activation of interferon
kinases, such as Tank binding kinase-1 (TBK-1) and interferon kB kinase e (IKKe), that can
phosphorylate interferon regulator factors 3 (IRF3) and 7 (IRF7) [1]. Phosphorylation and
nuclear localization of IRF3/7, as well as nuclear factor kB (NFxB), result in type |
interferon (IFN) production (Figure 1) [1]. IFN-a/p produced as a result of these signaling
events can function in an autocrine and paracrine manner, leading to the induction of a large
number of antiviral molecules [1,6,11] (Figure 1). Signaling initiated by type I IFNs result in
the production of IFN stimulated genes (ISGs), which include numerous host factors that
limit virus replication. Among the ISGs, IFIT (Interferon Induced proteins with
tetratricopeptide repeats (TPR)) family proteins have been identified as important
contributors to antiviral activity through a single-stranded RNA (ssRNA)-dependent
mechanism that is incompletely understood at present [12,13]. IFIT proteins can be
expressed in IFN independent and dependent manner. While all IFIT proteins share the TPR
motifs, different isoforms have varied tissue specific and temporal expression profiles
[12,13]. Moreover, IFIT can multimerize and the different multimerization patterns are
likely to have different functional outcomes. Here we will review recent advances in our
understanding based on structural and biochemical studies of RIG-I-RNA with 5" modified
RNA and discuss how dsRNA and ssRNA recognition are different using studies of IFIT
protein. Additionally, we will discuss how viruses may target such recognition as well as
remaining gaps in our understanding of this important early immune response to viral
infection.

RIG-I and MDA-5 are multidomain autoinhibited proteins

A series of structures of autoinhibited RIG-1 as well as dSRNA-bound forms of RIG-I
provided key snap shots, which provide insight into RIG-I regulation, including RNA
dependent structural rearrangements and signaling [14-17] (Figure 2). In the autoinhibited
form, the two N-terminal CARD domains of RIG-1 form a head to tail interaction, where the
N-terminus of the CARD2 head interacts directly with the C-terminal region of CARD1 and
also interact with Heli domain [17]. These CARD-helicase interactions may also prevent
access to MAVS directly or by blocking ubiquitination by TRIM25 [18] and interactions
with unanchored polyubiquitin chains [19], which are important for persistent downstream
signaling.
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RNA recognition and signaling in RLRs require multiple domains

In RIG-I, interaction with dsSRNA involves multiple domains. The CTD, which can directly
bind to dsRNA [20,21] and the ATPase core are both required for dsSRNA recognition and
signaling [22,23]. In addition, the pincer motif (also called the bridging domain or
regulatory element) is critical for RIG-I activation as its interactions with the ATPase core
functions as an allosteric coupler that facilitates RNA recognition and signaling [24].
Consistent with these findings that multiple domains within the RLR architecture is
important for signaling, the helicase domain alone binds dsRNA with low affinity, and the
addition of the CTD markedly improves dsRNA binding [25,26].

Many characteristics of RNA important for RLR activation. Double strandedness [7,27-29]
as well as the “blunt” ends of dsSRNA as important characteristics of RNA recognition by
RLRs and are required to activate RLRs [5,30]. However, selection of self RNA from non-
self RNA and therefore persistent signaling require additional characteristics. These
characteristics of dsRNA included 5" triphosphate (5" ppp) [21,31-33], 5" diphosphate
[34,35], and the panhandle structure formed by the 5° and 3" untranslated regions (UTRS)
[35,36]. Yoneyama et al. [7]., suggested that dSRNA binding and ATPase activity are both
required for RLR signaling and this proposal was recently demonstrated in two independent
studies, where ATP binding, but not ATP hydrolysis was shown to be important for signaling
[22,26,37,38]. Based on these studies a model emerges where critical interactions of dsSRNA
with the CTD and subsequently with the helicase result in the reorientation of the pincer
domain leading to ATP hydrolysis and release of the N-terminal CARDs for signal
transduction. Recent reports also point to ATP hydrolysis as a potential mechanism to
discriminate among some RNA lacking PAMP-like characteristics where signaling is
aborted. If PAMP characteristics in the bound RNA is observed, then RLRs can engage in
more sustained signaling, potentially leading to higher burst activity and limited viral
infections. RIG-1 and MDA-5 can bind short and long dsRNA, with shorter dSRNA acting as
better activators for RIG-I [22,39] and longer RNA are better activators of MDA-5 [9,40-
42]. Additional studies point to the stability of the dsRNA stem region suggesting stable
double stranded RNA is necessary for persistent signaling during viral infections [43,44],
but not sufficient as a dumbbell RNA lacking blunt ends can bind RIG-I yet display
attenuated signaling [22]. A recent study used mass spectrometry to access how RIG-I
domains change conformation upon RNA ligand and ATP binding[45]. This study, which
used RNA ligands from the Rawling et al study [22], revealed that differences in hydrogen-
deuterium exchange (HDX) patterns were consistent with not only major conformational
changes upon RNA and ATP binding, but also with end recognition vs binding to the dSRNA
double stranded stem regions. These studies collectively show that the multiple interactions
between the RLRs and multiple properties of RNA are important to confer specificity in
order to discriminate between self vs non-self RNA.

RLRs can discriminate among the 5" cap structures?

During viral infections, a major source of the cytosolic RNA appears to be from replicating
viruses. While data is limited in terms of sequence and structural compositions of these
RNAs, emerging studies point to the 5” cap structure as a major element that hosts uses to
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discriminate between self vs non-self patterns. Eukaryotic cap structure contains a
triphosphorylated linked 5'-5” with a N7 methylated guanosine (Figure 1B). Methylation
status of this structure, including N7 and 2" O positions result in various permutations of the
cap, cap0, capl, and cap2 designations (see Figure 1B). While the potential role of the cap
structure in RLR recognition has been previous speculated, the first evidence of the
specificity of recognition was recently defined by Schuberth-Wagner et al., where the
authors assessed the significance of the synthetic modified ppp-RNA and their influence on
innate immune signaling. These studies revealed that various 5° modifications can drive
specificity of binding to RIG-I [46]. For example, the cap (no methylations) like 5"ppp is a
strong activator of IFN signaling whereas cap0 is able to partially stimulate IFNs, consistent
with its lower than 5" ppp binding affinity for RIG-I [46]. Previous studies of RIG-I bound to
dsRNA that included either 5"ppp or 5"pp suggested that the binding pocket may be able to
accommodate the cap structure [21,33], but studies with capO0 revealed lower binding than
that observed for 5’ ppp. Additional modifications at the 2O position of +1 or +2
nucleotides in the presence or absence of N7 methylation resulted in suboptimal or
completely abolished signaling. Of note, the ability of RIG-I to bind RNA is consistent with
IFN signaling in cell-based studies [22,23,34,38]; however, there are some deviations that
suggest the potential for additional layers of regulation.

The structural basis for 5" cap recognition was recently provided by Davarkar et al. [26],
where chemically synthesized RNA was used to assess the conformational tolerance to the
various 5° RNA ends (Figure 2B-D) [26]. In the cap0 bound to RIG-I, in comparison to 5’
OH and 5" PPP bound to RIG-1, the G nucleotide base is located within the binding site, but
pointing away from the basic patch within RIG-1 CTD. The disordering of motif IVa
accommodates the positioning and prevents additional steric hindrance [26]. This
orientation, which was previously predicted, is the most favorable since addition of the m7G
moiety may also provide electrostatic repulsion with respect to the basic charge within the
binding pockets. Thus, a combination of steric and electrostatic forces are likely controlling
the interactions within the binding pocket.

Previous studies of the RIG-1 bound to 5" ppp RNA [14,21,25,33,39] as well as recent
studies [26,46] identified a specific contact between the 2”0 and the sidechain of H830,
which is a highly conserved residue. Interestingly, both studies revealed that capl structures
neither bound RIG-I with significant affinity nor stimulated signaling and IFN induction.
However, a H830A mutation, which relieves the steric hindrance, allowed the positioning of
the 2”0 methyl group within the tight binding site.

Collectively, these studies suggests that the m7G cap, which is important for mRNA stability
and protein translation, is also a significant determinant of self vs non-self tolerance. Of
note, these studies have been performed with RIG-1. Whether MDA-5 also has similar
specificity is yet to be determined. Importantly, since MDA-5 is thought to recognize long
dsRNA and rely less of the specific nature of the 5° RNA ends, the impact of the 5’
composition remains an open question.
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IFIT proteins differentiate 5 of SSRNA RNA

Unlike the RLRs which recognize dsRNA, the IFIT family of proteins target ssSRNA and
discriminate RNA on the basis of the 5 modification [12,13,47]. IFIT proteins, which are
produced in large amounts in response to IFNs, have been shown to have antiviral functions.
Tetratricopeptide repeats (TPRs) are helix turn helix motifs present in proteins that engage in
protein-protein interactions. All IFIT proteins contain between 8 and 12 TPR motifs with
additional intervening alpha helices. The relative orientation of the TPRs can facilitate
conformational changes, which are important for IFIT function. IFITs are part of IFN
induced response element signaling, which promotes the production of a large number of
antiviral genes, such as protein kinase R (PKR) that inhibits cellular protein production
[12,13]. IFIT proteins are among the most highly expressed in response to IFNs. In humans,
IFITL, IFIT2, IFIT3, and IFIT5 as well as IFIT1B and IFIT1P1, a pseudogene, are
expressed, while mouse expresses Ifitl, Ifit2, and Ifit3 along with Ifitlb, Ifitlc and Ifit3b,
with the latter three genes largely uncharacterized [13]. Structures of a truncated form of
IFIT1 [48], full length IFIT2 [49,50], IFIT5 [48,51], and IFIT5 bound to 5" ppp RNA [48]
have been solved (Figure 3), which highlight some of the key properties that allow IFIT
proteins to engage ssRNA in a5’ end dependent manner [48,50]. Unlike RLRs, where the
RNA recognition is carried out by multiple domains, different TPRs in IFIT proteins form
the binding pocket. Importantly, all IFIT structures to date show a significant basic patch
(Figure 3B-C), which can accommodate the ssRNA. Specificity of the 5° ssSRNA has been
explored biochemically, which support the notion that 2’0 methylation is an important
property for binding, recognition, and signaling by IFIT family of proteins [36,52].
Biochemical studies on the basis of the available structural date and molecular modeling
lead to the dissection of the RNA binding site [52] and identified nucleotide preferences for
some IFIT family proteins such as the AU preference for IFIT2 [49].

Multiple viral mechanisms to evade 5’ end recognition

Viral immune evasion mechanisms to inhibit innate immune responses are observed for
nearly all RNA viruses. In particular, many RNA viruses are detected by PRRs, such as
RIG-1 and MDA-5. For example, Rhabdoviruses (Vesicular Stomatitis virus and Rabies
virus), Paramyxoviruses (Sendai virus, Respiratory syncytial virus, and Newcastle disease
virus), Orthomyxoviruses (influenza A and B), and Filoviruses (Ebola virus (EBOV) and
Marburg virus (MARV)) are primarily detected by RIG-1, whereas for Picornaviruses
(EMCYV, Coronavirus, and murine hepatitis virus, and murine norovirus-1 type 1), MDA-5
likely is the primary PRR [53,54]. RIG-I and MDA-5 are thought to be important for
detection of positive sense RNA viruses, such as Flaviviruses (Dengue virus and West Nile
viruses) as well as double stranded RNA viruses from the Reovirus family (Rotavirus)[53—
57]. Whether or not these differences are due to specific recognition by RLRs remains to be
defined.

Among the mechanisms that antagonize RLRs, filoviruses (EBOVs and MARVSs) as well as
influenza virus utilize specific virally encoded antagonists that target RNA PAMPs and these
viral antagonists do not directly bind RLRs. Therefore, it is important to discuss the
potential implications for the role of 5° RNA moieties in the context of RLRs or more
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specifically RIG-1 activation. Previous structural studies have shown that influenza A virus
(IAV) non-structural protein 1 (NS1) and EBOV/MARYV viral protein 35 (VP35) IFN
inhibitory domain (11D) can directly bind to short [58-60] and long double stranded RNA
(Figure 4A) [61,62]. Specific contacts between the dSRNA and the viral proteins are
consistent with a model where the viral proteins “hide” RNA PAMPs. Despite structural
similarities, EBOV and MARV VP35 proteins show significant differences in their ability to
recognize blunt ends of RNA. EBOV VP35 IID shows significant interactions with the blunt
ends [58], whereas MARV VP35 does not associate with RNA blunt ends and
correspondingly loses its ability to antagonize RIG-1 when activated by short dsSRNA.

Similar to RLRs, viruses also antagonize ssSRNA recognition by IFIT proteins, with the most
predominant mechanism being the acquisition of the 2”0 methylated cap structure (5" capl
or 5’ cap?2) by a viral specific methyltransferase or by stealing the cap structure from
cellular RNA [63]. In West Nile virus (WNV) [64] or Japanese encephalitis virus (JEV)
[46,65], viruses generated with mutations within the methyltransferase domain results in
IFIT sensitivity, where the mutant viruses, but not wildtype viruses were subjected to
restriction by Ifit1. Encephalomyocarditis virus (EMCV) is a picornavirus, which uses a 5’
viral peptide to evade detection, while members of the 7ogaviridae family uses a highly
stable 5° RNA secondary structure [66] (Figure 4B). In each situation, the absence of the
2’0 methylation is compensated in order to avoid detection by IFIT. High resolution
structural information for each of these systems will likely provide additional insights into
the specific molecular mechanisms that underlie these immune evasion mechanisms.

Concluding remarks

Modification of the 5° RNA cap allows safe passage into the cytosol for protein translation
by providing increased stability and protection from 5" exonucleases. Additionally, the 5’
cap structure of RNA is thought synergistically enhance protein translation. Recent studies
indicate that in addition to facilitating protein translation, the 5" cap structures promote self
vs non-self-discrimination. Given the ability to detect and respond to viral infections due to
the immune responses triggered by 5° RNA recognition, it is not surprising that viruses have
developed mechanisms to antagonize proteins that detect cap structures. We have seen
remarkable progress in our understanding of host recognition of viral RNA. Future work to
address how RNA cap recognition leads to sustained downstream immune signaling will
enhance our understanding of this rapidly developing area at a key host-pathogen interface.
Such studies are also expected to provide new opportunities to develop therapeutics by
targeting cap-dependent signaling.
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5" cap2.
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A

autoinhibited RIG-I activated RIG-I

ATP + dsRNA

Figure 2. dsRNA recognition mechanism for RLRs
A. Domain architecture of RIG-1 and model for structural rearrangements upon dsRNA

recognition. CARDL1 (cyan), CARD2 (blue), helicase HEL1 (green), helicase insertion
domain HELZ2i (yellow), helicase HEL2 (purple), the regulatory pincer motif P (red), and C-
terminal domain CTD (orange). LGP2 lacks the N-terminal CARDs. In the autoinhibited
conformation, the N-terminal CARDs are sequestered from signaling and the pincer
maintains RIG-1 in an autoinhibited state (PDB: 4A2W). Binding of dsSRNA and ATP to the
CTD brings HELZ2i in contact with dsSRNA (PDB: 2YKG). The change in conformation
upon dsRNA and ATP binding presumably releases the CARD domains for signaling. B.
Specificity of 5 recognition revealed through the recent structures with 5’OH (left, PDB:
5F9F), 5'ppp (center, PDB:5F9H), and 5’ m7Gppp (right, PDB: 5F98). Figures generated by
PyMOL [67].
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Figure 3. Recognition of 5" modified ssRNA by IFIT family of proteins
A. Structure of human IFIT5 bound to 5" ppp ssRNA model (oligo A; PDB: 4HOT [48];

left). Cartoon representation of IFIT5 and the location of 5” modified ssRNA binding
(right). Electrostatic potential shown on the surface of B. IFIT2 (PDB: 4G1T [50])and C.
IFIT5 (PDB: 4HOQ [48]). Surface potential is indicated by red, white, and blue colors
represent negative, neutral, and positive electrostatic potential, respectively (=5 to +5 kgT
e~1). Figures generated by PyMOL [67] with the Adaptive Poisson-Boltzmann Solver
(APBS) Plugin implemented within PyMOL.
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Figure 4. Viruses use a variety of mechanisms to “hide” RNA, including 5" RNA recognition by
RLRs and IFIT proteins

A. Examples of dsRNA “hiding” by coating dsRNA by Ebola and Marburg viral VP35
proteins, influenza NS1, and flock house virus B2. Of these proteins, Ebola virus VP35 is
also known to bind 5 dsRNA blunt ends. B. 5" ssRNA detection by IFIT proteins is evaded
by many viruses through 2”0 methylation by viral/host methyltransferases or by utilizing a
highly stable RNA secondary structure.
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