DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases

Abstract

Carbapenems are the last resort antibiotics for treatment of life-threatening infections. The GES β-lactamases are important contributors to carbapenem resistance in clinical bacterial pathogens. A single amino acid difference at position 170 of the GES-1, GES-2, and GES-5 enzymes is responsible for the expansion of their substrate profile to include carbapenem antibiotics. This highlights the increasing need to understand the mechanisms by which the GES β-lactamases function to aid in development of novel therapeutics. We demonstrate that the catalytic efficiency of the enzymes with carbapenems meropenem, ertapenem, and doripenem progressively increases (100-fold) from GES-1 to -5, mainly due to an increase in the rate of acylation. The data reveal that while acylation is rate limiting for GES-1 and GES-2 for all three carbapenems, acylation and deacylation are indistinguishable for GES-5. The ertapenem–GES-2 crystal structure shows that only the core structure of the antibiotic interacts with the active site of the GES-2 β-lactamase. The identical core structures of ertapenem, doripenem, and meropenem are likely responsible for the observed similarities in the kinetics with these carbapenems. The lack of a methyl group in the core structure of imipenem may provide a structural rationale for the increase in turnover of this carbapenem bymore » the GES β-lactamases. As a result, our data also show that in GES-2 an extensive hydrogen-bonding network between the acyl-enzyme complex and the active site water attenuates activation of this water molecule, which results in poor deacylation by this enzyme.« less

Authors:
 [1];  [2];  [1];  [3];  [1]
  1. Univ. of Notre Dame, Notre Dame, IN (United States)
  2. Stanford Univ., Menlo Park, CA (United States)
  3. Bio-Logic USA, Knoxville, TN (United States)
Publication Date:
Research Org.:
University of Notre Dame, IN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Biological and Environmental Research (BER); National Inst. of Health (NIH) (United States)
OSTI Identifier:
1347218
Grant/Contract Number:  
AI089726; P41 RR001209
Resource Type:
Accepted Manuscript
Journal Name:
Biochemistry
Additional Journal Information:
Journal Volume: 54; Journal Issue: 2; Journal ID: ISSN 0006-2960
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES

Citation Formats

Stewart, Nichole K., Smith, Clyde A., Frase, Hilary, Black, D. J., and Vakulenko, Sergei B. Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases. United States: N. p., 2014. Web. doi:10.1021/bi501052t.
Stewart, Nichole K., Smith, Clyde A., Frase, Hilary, Black, D. J., & Vakulenko, Sergei B. Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases. United States. https://doi.org/10.1021/bi501052t
Stewart, Nichole K., Smith, Clyde A., Frase, Hilary, Black, D. J., and Vakulenko, Sergei B. Mon . "Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases". United States. https://doi.org/10.1021/bi501052t. https://www.osti.gov/servlets/purl/1347218.
@article{osti_1347218,
title = {Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases},
author = {Stewart, Nichole K. and Smith, Clyde A. and Frase, Hilary and Black, D. J. and Vakulenko, Sergei B.},
abstractNote = {Carbapenems are the last resort antibiotics for treatment of life-threatening infections. The GES β-lactamases are important contributors to carbapenem resistance in clinical bacterial pathogens. A single amino acid difference at position 170 of the GES-1, GES-2, and GES-5 enzymes is responsible for the expansion of their substrate profile to include carbapenem antibiotics. This highlights the increasing need to understand the mechanisms by which the GES β-lactamases function to aid in development of novel therapeutics. We demonstrate that the catalytic efficiency of the enzymes with carbapenems meropenem, ertapenem, and doripenem progressively increases (100-fold) from GES-1 to -5, mainly due to an increase in the rate of acylation. The data reveal that while acylation is rate limiting for GES-1 and GES-2 for all three carbapenems, acylation and deacylation are indistinguishable for GES-5. The ertapenem–GES-2 crystal structure shows that only the core structure of the antibiotic interacts with the active site of the GES-2 β-lactamase. The identical core structures of ertapenem, doripenem, and meropenem are likely responsible for the observed similarities in the kinetics with these carbapenems. The lack of a methyl group in the core structure of imipenem may provide a structural rationale for the increase in turnover of this carbapenem by the GES β-lactamases. As a result, our data also show that in GES-2 an extensive hydrogen-bonding network between the acyl-enzyme complex and the active site water attenuates activation of this water molecule, which results in poor deacylation by this enzyme.},
doi = {10.1021/bi501052t},
journal = {Biochemistry},
number = 2,
volume = 54,
place = {United States},
year = {Mon Dec 08 00:00:00 EST 2014},
month = {Mon Dec 08 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Updated Functional Classification of  -Lactamases
journal, December 2009

  • Bush, K.; Jacoby, G. A.
  • Antimicrobial Agents and Chemotherapy, Vol. 54, Issue 3
  • DOI: 10.1128/AAC.01009-09

Proliferation and significance of clinically relevant β-lactamases: β-lactamase overview
journal, January 2013

  • Bush, Karen
  • Annals of the New York Academy of Sciences, Vol. 1277, Issue 1
  • DOI: 10.1111/nyas.12023

Epidemiological Expansion, Structural Studies, and Clinical Challenges of New β-Lactamases from Gram-Negative Bacteria
journal, October 2011


Bacterial Resistance to β-Lactam Antibiotics:  Compelling Opportunism, Compelling Opportunity
journal, February 2005

  • Fisher, Jed F.; Meroueh, Samy O.; Mobashery, Shahriar
  • Chemical Reviews, Vol. 105, Issue 2
  • DOI: 10.1021/cr030102i

Class A carbapenemases
journal, June 2007

  • Walther-Rasmussen, Jan; Høiby, Niels
  • Journal of Antimicrobial Chemotherapy, Vol. 60, Issue 3
  • DOI: 10.1093/jac/dkm226

A standard numbering scheme for the class A β-lactamases
journal, May 1991

  • Ambler, R. P.; Coulson, A. F. W.; Frère, J. M.
  • Biochemical Journal, Vol. 276, Issue 1
  • DOI: 10.1042/bj2760269

Three Decades of the Class A β-Lactamase Acyl-Enzyme
journal, October 2009


Genetic and biochemical characterization of GES-5, an extended-spectrum class A β-lactamase from Klebsiella pneumoniae
journal, August 2007


GES-5 among the β -lactamases detected in ubiquitous bacteria isolated from aquatic environment samples
journal, December 2013

  • Manageiro, Vera; Ferreira, Eugénia; Caniça, Manuela
  • FEMS Microbiology Letters, Vol. 351, Issue 1
  • DOI: 10.1111/1574-6968.12340

Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods
journal, July 2012

  • Poirel, Laurent; Bonnin, Rémy A.; Nordmann, Patrice
  • Infection, Genetics and Evolution, Vol. 12, Issue 5
  • DOI: 10.1016/j.meegid.2012.02.008

Wide Dissemination of GES-Type Carbapenemases in Acinetobacter baumannii Isolates in Kuwait
journal, October 2012

  • Bonnin, Rémy A.; Rotimi, Vincent O.; Al Hubail, Mona
  • Antimicrobial Agents and Chemotherapy, Vol. 57, Issue 1
  • DOI: 10.1128/AAC.01384-12

Detection of bla GES-5 in Carbapenem-Resistant Kluyvera intermedia Isolates Recovered from the Hospital Environment
journal, November 2013

  • Ribeiro, Vanessa B.; Zavascki, Alexandre P.; Rozales, Franciéli P.
  • Antimicrobial Agents and Chemotherapy, Vol. 58, Issue 1
  • DOI: 10.1128/AAC.02271-13

An automated system to mount cryo-cooled protein crystals on a synchrotron beamline, using compact sample cassettes and a small-scale robot
journal, November 2002

  • Cohen, Aina E.; Ellis, Paul J.; Miller, Mitchell D.
  • Journal of Applied Crystallography, Vol. 35, Issue 6
  • DOI: 10.1107/S0021889802016709

Solvent content of protein crystals
journal, April 1968


MOLREP an Automated Program for Molecular Replacement
journal, December 1997


Refinement of Macromolecular Structures by the Maximum-Likelihood Method
journal, May 1997

  • Murshudov, G. N.; Vagin, A. A.; Dodson, E. J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 53, Issue 3
  • DOI: 10.1107/S0907444996012255

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Structural Basis for Progression toward the Carbapenemase Activity in the GES Family of β-Lactamases
journal, November 2012

  • Smith, Clyde A.; Frase, Hilary; Toth, Marta
  • Journal of the American Chemical Society, Vol. 134, Issue 48
  • DOI: 10.1021/ja308197j

Structure of GES-1 at atomic resolution: insights into the evolution of carbapenamase activity in the class A extended-spectrum β-lactamases
journal, August 2007

  • Smith, Clyde A.; Caccamo, Marisa; Kantardjieff, Katherine A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 63, Issue 9
  • DOI: 10.1107/S0907444907036955

GES-18, a New Carbapenem-Hydrolyzing GES-Type β-Lactamase from Pseudomonas aeruginosa That Contains Ile80 and Ser170 Residues
journal, October 2012

  • Bebrone, Carine; Bogaerts, Pierre; Delbrück, Heinrich
  • Antimicrobial Agents and Chemotherapy, Vol. 57, Issue 1
  • DOI: 10.1128/AAC.01784-12

Kinetic and Crystallographic Studies of Extended-Spectrum GES-11, GES-12, and GES-14 β-Lactamases
journal, August 2012

  • Delbrück, Heinrich; Bogaerts, Pierre; Kupper, Michaël B.
  • Antimicrobial Agents and Chemotherapy, Vol. 56, Issue 11
  • DOI: 10.1128/AAC.01272-12

The analysis of enzyme progress curves by numerical differentiation, including competitive product inhibition and enzyme reactivation
journal, August 1987


Solvent content of protein crystals
journal, April 1968


Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods
journal, July 2012

  • Poirel, Laurent; Bonnin, Rémy A.; Nordmann, Patrice
  • Infection, Genetics and Evolution, Vol. 12, Issue 5
  • DOI: 10.1016/j.meegid.2012.02.008

Bacterial Resistance to β-Lactam Antibiotics:  Compelling Opportunism, Compelling Opportunity
journal, February 2005

  • Fisher, Jed F.; Meroueh, Samy O.; Mobashery, Shahriar
  • Chemical Reviews, Vol. 105, Issue 2
  • DOI: 10.1021/cr030102i

Structural Basis for Progression toward the Carbapenemase Activity in the GES Family of β-Lactamases
journal, November 2012

  • Smith, Clyde A.; Frase, Hilary; Toth, Marta
  • Journal of the American Chemical Society, Vol. 134, Issue 48
  • DOI: 10.1021/ja308197j

Mechanistic Basis for the Emergence of Catalytic Competence against Carbapenem Antibiotics by the GES Family of β-Lactamases
journal, October 2009

  • Frase, Hilary; Shi, Qicun; Testero, Sebastian A.
  • Journal of Biological Chemistry, Vol. 284, Issue 43
  • DOI: 10.1074/jbc.m109.011262

Identification of Products of Inhibition of GES-2 β-Lactamase by Tazobactam by X-ray Crystallography and Spectrometry
journal, April 2011

  • Frase, Hilary; Smith, Clyde A.; Toth, Marta
  • Journal of Biological Chemistry, Vol. 286, Issue 16
  • DOI: 10.1074/jbc.m110.208744

Class A carbapenemases
journal, June 2007

  • Walther-Rasmussen, Jan; Høiby, Niels
  • Journal of Antimicrobial Chemotherapy, Vol. 60, Issue 3
  • DOI: 10.1093/jac/dkm226

Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/s0907444904019158

Scaling and assessment of data quality
journal, December 2005

  • Evans, Philip
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 1, p. 72-82
  • DOI: 10.1107/s0907444905036693

XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/s0907444909047337

GES-5 among the β -lactamases detected in ubiquitous bacteria isolated from aquatic environment samples
journal, December 2013

  • Manageiro, Vera; Ferreira, Eugénia; Caniça, Manuela
  • FEMS Microbiology Letters, Vol. 351, Issue 1
  • DOI: 10.1111/1574-6968.12340

Biochemical Sequence Analyses of GES-1, a Novel Class A Extended-Spectrum β-Lactamase, and the Class 1 Integron In52 from Klebsiella pneumoniae
journal, March 2000


Amino Acid Sequence Requirements at Residues 69 and 238 for the SME-1 β-Lactamase To Confer Resistance to β-Lactam Antibiotics
journal, March 2003


First Outbreak of Klebsiella pneumoniae Clinical Isolates Producing GES-5 and SHV-12 Extended-Spectrum β-Lactamases in Korea
journal, November 2005


PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

Works referencing / citing this record:

Prevalence and Fate of Carbapenemase Genes in a Wastewater Treatment Plant in Northern China
journal, May 2016


First virtual screening and experimental validation of inhibitors targeting GES-5 carbapenemase
journal, January 2019

  • Spyrakis, Francesca; Bellio, Pierangelo; Quotadamo, Antonio
  • Journal of Computer-Aided Molecular Design, Vol. 33, Issue 2
  • DOI: 10.1007/s10822-018-0182-2

Molecular Basis of Class A β-Lactamase Inhibition by Relebactam
journal, August 2019

  • Tooke, Catherine L.; Hinchliffe, Philip; Lang, Pauline A.
  • Antimicrobial Agents and Chemotherapy, Vol. 63, Issue 10
  • DOI: 10.1128/aac.00564-19

Influence of substrates and inhibitors on the structure of Klebsiella pneumoniae carbapenemase-2
journal, June 2019


Class D β-lactamases do exist in Gram-positive bacteria
journal, November 2015

  • Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K.
  • Nature Chemical Biology, Vol. 12, Issue 1
  • DOI: 10.1038/nchembio.1950

Molecular Basis of Class A β-Lactamase Inhibition by Relebactam
journal, August 2019

  • Tooke, Catherine L.; Hinchliffe, Philip; Lang, Pauline A.
  • Antimicrobial Agents and Chemotherapy, Vol. 63, Issue 10
  • DOI: 10.1128/aac.00564-19

Structural and Functional Aspects of Class A Carbapenemases
journal, May 2016


Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments
journal, January 2018

  • González-Plaza, Juan J.; Šimatović, Ana; Milaković, Milena
  • Frontiers in Microbiology, Vol. 8
  • DOI: 10.3389/fmicb.2017.02675

Targeting the Class A Carbapenemase GES-5 via Virtual Screening
journal, February 2020

  • Klein, Raphael; Cendron, Laura; Montanari, Martina
  • Biomolecules, Vol. 10, Issue 2
  • DOI: 10.3390/biom10020304

Structural Basis for Carbapenem-Hydrolyzing Mechanisms of Carbapenemases Conferring Antibiotic Resistance
journal, April 2015

  • Jeon, Jeong; Lee, Jung; Lee, Jae
  • International Journal of Molecular Sciences, Vol. 16, Issue 12
  • DOI: 10.3390/ijms16059654