DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rapid and continuous magnetic separation in droplet microfluidic devices

Abstract

Here, we present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics andmore » proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.« less

Authors:
 [1];  [1];  [1];  [1]
  1. Stony Brook Univ., Stony Brook, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1346969
Grant/Contract Number:  
AC02-98CH10886
Resource Type:
Accepted Manuscript
Journal Name:
Lab on a chip (Print)
Additional Journal Information:
Journal Name: Lab on a chip (Print); Journal Volume: 15; Journal Issue: 3; Journal ID: ISSN 1473-0197
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 60 APPLIED LIFE SCIENCES

Citation Formats

Brouzes, Eric, Kruse, Travis, Kimmerling, Robert, and Strey, Helmut H. Rapid and continuous magnetic separation in droplet microfluidic devices. United States: N. p., 2014. Web. doi:10.1039/c4lc01327a.
Brouzes, Eric, Kruse, Travis, Kimmerling, Robert, & Strey, Helmut H. Rapid and continuous magnetic separation in droplet microfluidic devices. United States. https://doi.org/10.1039/c4lc01327a
Brouzes, Eric, Kruse, Travis, Kimmerling, Robert, and Strey, Helmut H. Wed . "Rapid and continuous magnetic separation in droplet microfluidic devices". United States. https://doi.org/10.1039/c4lc01327a. https://www.osti.gov/servlets/purl/1346969.
@article{osti_1346969,
title = {Rapid and continuous magnetic separation in droplet microfluidic devices},
author = {Brouzes, Eric and Kruse, Travis and Kimmerling, Robert and Strey, Helmut H.},
abstractNote = {Here, we present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.},
doi = {10.1039/c4lc01327a},
journal = {Lab on a chip (Print)},
number = 3,
volume = 15,
place = {United States},
year = {Wed Dec 03 00:00:00 EST 2014},
month = {Wed Dec 03 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 65 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets
journal, December 2008

  • Kiss, Margaret Macris; Ortoleva-Donnelly, Lori; Beer, N. Reginald
  • Analytical Chemistry, Vol. 80, Issue 23, p. 8975-8981
  • DOI: 10.1021/ac801276c

Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets
journal, January 2009

  • Schaerli, Yolanda; Wootton, Robert C.; Robinson, Tom
  • Analytical Chemistry, Vol. 81, Issue 1, p. 302-306
  • DOI: 10.1021/ac802038c

Integrated microfluidic bioprocessor for single-cell gene expression analysis
journal, December 2008

  • Toriello, N. M.; Douglas, E. S.; Thaitrong, N.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 51, p. 20173-20178
  • DOI: 10.1073/pnas.0806355106

Microdroplet-based PCR enrichment for large-scale targeted sequencing
journal, November 2009

  • Tewhey, Ryan; Warner, Jason B.; Nakano, Masakazu
  • Nature Biotechnology, Vol. 27, Issue 11, p. 1025-1031
  • DOI: 10.1038/nbt.1583

Droplet-Based Microfluidic Systems for High-Throughput Single DNA Molecule Isothermal Amplification and Analysis
journal, June 2009

  • Mazutis, Linas; Araghi, Ali Fallah; Miller, Oliver J.
  • Analytical Chemistry, Vol. 81, Issue 12
  • DOI: 10.1021/ac900403z

Reactions in Droplets in Microfluidic Channels
journal, November 2006

  • Song, Helen; Chen, Delai L.; Ismagilov, Rustem F.
  • Angewandte Chemie International Edition, Vol. 45, Issue 44, p. 7336-7356
  • DOI: 10.1002/anie.200601554

Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology
journal, June 2010

  • Theberge, Ashleigh B.; Courtois, Fabienne; Schaerli, Yolanda
  • Angewandte Chemie International Edition, Vol. 49, Issue 34, p. 5846-5868
  • DOI: 10.1002/anie.200906653

Ultrahigh-throughput screening in drop-based microfluidics for directed evolution
journal, February 2010

  • Agresti, J. J.; Antipov, E.; Abate, A. R.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 9, p. 4004-4009
  • DOI: 10.1073/pnas.0910781107

High-throughput screening for industrial enzyme production hosts by droplet microfluidics
journal, January 2014

  • Sjostrom, Staffan L.; Bai, Yunpeng; Huang, Mingtao
  • Lab Chip, Vol. 14, Issue 4
  • DOI: 10.1039/C3LC51202A

High-resolution dose-response screening using droplet-based microfluidics
journal, December 2011

  • Miller, O. J.; Harrak, A. E.; Mangeat, T.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 2
  • DOI: 10.1073/pnas.1113324109

Quantitative and sensitive detection of rare mutations using droplet-based microfluidics
journal, January 2011

  • Pekin, Deniz; Skhiri, Yousr; Baret, Jean-Christophe
  • Lab on a Chip, Vol. 11, Issue 13
  • DOI: 10.1039/c1lc20128j

Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms
journal, May 2008

  • Clausell-Tormos, Jenifer; Lieber, Diana; Baret, Jean-Christophe
  • Chemistry & Biology, Vol. 15, Issue 5, p. 427-437
  • DOI: 10.1016/j.chembiol.2008.04.004

Drop-based microfluidic devices for encapsulation of single cells
journal, January 2008

  • Köster, Sarah; Angilè, Francesco E.; Duan, Honey
  • Lab on a Chip, Vol. 8, Issue 7
  • DOI: 10.1039/b802941e

Droplet microfluidic technology for single-cell high-throughput screening
journal, July 2009

  • Brouzes, E.; Medkova, M.; Savenelli, N.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 34
  • DOI: 10.1073/pnas.0903542106

High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays
journal, April 2010

  • Zeng, Yong; Novak, Richard; Shuga, Joe
  • Analytical Chemistry, Vol. 82, Issue 8
  • DOI: 10.1021/ac902683t

Single-Cell Forensic Short Tandem Repeat Typing within Microfluidic Droplets
journal, November 2013

  • Geng, Tao; Novak, Richard; Mathies, Richard A.
  • Analytical Chemistry, Vol. 86, Issue 1
  • DOI: 10.1021/ac403137h

Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device
journal, April 2001


Formation of dispersions using “flow focusing” in microchannels
journal, January 2003

  • Anna, Shelley L.; Bontoux, Nathalie; Stone, Howard A.
  • Applied Physics Letters, Vol. 82, Issue 3
  • DOI: 10.1063/1.1537519

Microfluidic Production of Droplet Pairs
journal, October 2008

  • Frenz, Lucas; Blouwolff, Joshua; Griffiths, Andrew D.
  • Langmuir, Vol. 24, Issue 20
  • DOI: 10.1021/la801954w

Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels
journal, June 2006

  • Ahn, Keunho; Agresti, Jeremy; Chong, Henry
  • Applied Physics Letters, Vol. 88, Issue 26
  • DOI: 10.1063/1.2218058

Selective droplet coalescence using microfluidic systems
journal, January 2012

  • Mazutis, Linas; Griffiths, Andrew D.
  • Lab on a Chip, Vol. 12, Issue 10
  • DOI: 10.1039/c2lc40121e

High-throughput injection with microfluidics using picoinjectors
journal, October 2010

  • Abate, A. R.; Hung, T.; Mary, P.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 45
  • DOI: 10.1073/pnas.1006888107

Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels
journal, December 2003

  • Song, Helen; Bringer, Michelle R.; Tice, Joshua D.
  • Applied Physics Letters, Vol. 83, Issue 22
  • DOI: 10.1063/1.1630378

Reliable microfluidic on-chip incubation of droplets in delay-lines
journal, January 2009

  • Frenz, Lucas; Blank, Kerstin; Brouzes, Eric
  • Lab Chip, Vol. 9, Issue 10
  • DOI: 10.1039/B816049J

Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices
journal, January 2006

  • Ahn, Keunho; Kerbage, Charles; Hunt, Tom P.
  • Applied Physics Letters, Vol. 88, Issue 2
  • DOI: 10.1063/1.2164911

Geometrically Mediated Breakup of Drops in Microfluidic Devices
journal, February 2004


Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting
journal, January 2004

  • Tan, Yung-Chieh; Fisher, Jeffrey S.; Lee, Alan I.
  • Lab on a Chip, Vol. 4, Issue 4
  • DOI: 10.1039/b403280m

Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices
journal, January 2006

  • Adamson, David N.; Mustafi, Debarshi; Zhang, John X. J.
  • Lab on a Chip, Vol. 6, Issue 9
  • DOI: 10.1039/b604993a

Coalescence and splitting of confined droplets at microfluidic junctions
journal, January 2009

  • Christopher, G. F.; Bergstein, J.; End, N. B.
  • Lab on a Chip, Vol. 9, Issue 8, p. 1102-1109
  • DOI: 10.1039/b813062k

Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows
journal, August 2009


Droplet breakup in microfluidic T-junctions at small capillary numbers
journal, July 2009

  • Jullien, M. -C.; Tsang Mui Ching, M. -J.; Cohen, C.
  • Physics of Fluids, Vol. 21, Issue 7
  • DOI: 10.1063/1.3170983

Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations
journal, December 2010


Obstructed Breakup of Slender Drops in a Microfluidic T Junction
journal, June 2012


Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models
journal, January 2013

  • Salkin, Louis; Schmit, Alexandre; Courbin, Laurent
  • Lab on a Chip, Vol. 13, Issue 15
  • DOI: 10.1039/c3lc00040k

Mutant of Moloney murine leukemia virus reverse transcriptase exhibits higher resistance to common RT-qPCR inhibitors
journal, May 2010

  • Arezi, Bahram; McCarthy, Melissa; Hogrefe, Holly
  • Analytical Biochemistry, Vol. 400, Issue 2
  • DOI: 10.1016/j.ab.2010.01.024

Overcoming Inhibition in Real-Time Diagnostic PCR
book, September 2012


High-throughput microfluidic single-cell RT-qPCR
journal, August 2011

  • White, A. K.; VanInsberghe, M.; Petriv, O. I.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 34
  • DOI: 10.1073/pnas.1019446108

Ultrahigh-Throughput Mammalian Single-Cell Reverse-Transcriptase Polymerase Chain Reaction in Microfluidic Drops
journal, August 2013

  • Eastburn, Dennis J.; Sciambi, Adam; Abate, Adam R.
  • Analytical Chemistry, Vol. 85, Issue 16
  • DOI: 10.1021/ac402057q

Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology
journal, June 2011

  • Mary, Pascaline; Dauphinot, Luce; Bois, Nadège
  • Biomicrofluidics, Vol. 5, Issue 2
  • DOI: 10.1063/1.3596394

Droplet microfluidics with magnetic beads: a new tool to investigate drug–protein interactions
journal, October 2010

  • Lombardi, Dario; Dittrich, Petra S.
  • Analytical and Bioanalytical Chemistry, Vol. 399, Issue 1
  • DOI: 10.1007/s00216-010-4302-7

Continuous-flow in-droplet magnetic particle separation in a droplet-based microfluidic platform
journal, April 2012


High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire
journal, January 2013

  • DeKosky, Brandon J.; Ippolito, Gregory C.; Deschner, Ryan P.
  • Nature Biotechnology, Vol. 31, Issue 2
  • DOI: 10.1038/nbt.2492

The promise and challenge of high-throughput sequencing of the antibody repertoire
journal, January 2014

  • Georgiou, George; Ippolito, Gregory C.; Beausang, John
  • Nature Biotechnology, Vol. 32, Issue 2
  • DOI: 10.1038/nbt.2782

Efficient in-droplet separation of magnetic particles for digital microfluidics
journal, September 2007

  • Wang, Yizhong; Zhao, Yuejun; Cho, Sung Kwon
  • Journal of Micromechanics and Microengineering, Vol. 17, Issue 10
  • DOI: 10.1088/0960-1317/17/10/029

Meniscus-Assisted High-Efficiency Magnetic Collection and Separation for EWOD Droplet Microfluidics
journal, April 2009


Magnetism and microfluidics
journal, January 2006


Microfluidic Applications of Magnetic Particles for Biological Analysis and Catalysis
journal, March 2010

  • Gijs, Martin A. M.; Lacharme, Frédéric; Lehmann, Ulrike
  • Chemical Reviews, Vol. 110, Issue 3
  • DOI: 10.1021/cr9001929

Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy
journal, May 2005

  • Fonnum, Geir; Johansson, Christer; Molteberg, Astrid
  • Journal of Magnetism and Magnetic Materials, Vol. 293, Issue 1
  • DOI: 10.1016/j.jmmm.2005.01.041

The force acting on a superparamagnetic bead due to an applied magnetic field
journal, January 2007

  • Shevkoplyas, Sergey S.; Siegel, Adam C.; Westervelt, Robert M.
  • Lab on a Chip, Vol. 7, Issue 10
  • DOI: 10.1039/b705045c

Dynamics of microfluidic droplets
journal, January 2010

  • Baroud, Charles N.; Gallaire, Francois; Dangla, Rémi
  • Lab on a Chip, Vol. 10, Issue 16
  • DOI: 10.1039/c001191f

Imaging and quantifying mixing in a model droplet micromixer
journal, June 2005

  • Stone, Z. B.; Stone, H. A.
  • Physics of Fluids, Vol. 17, Issue 6
  • DOI: 10.1063/1.1929547

Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV
journal, January 2007

  • Kinoshita, Haruyuki; Kaneda, Shohei; Fujii, Teruo
  • Lab Chip, Vol. 7, Issue 3
  • DOI: 10.1039/B617391H

On the flow topology inside droplets moving in rectangular microchannels
journal, January 2014

  • Ma, Shaohua; Sherwood, Joseph M.; Huck, Wilhelm T. S.
  • Lab Chip, Vol. 14, Issue 18
  • DOI: 10.1039/C4LC00671B

Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results
journal, February 2002

  • Melle, Sonia; Calderón, Oscar G.; Rubio, Miguel A.
  • Journal of Non-Newtonian Fluid Mechanics, Vol. 102, Issue 2
  • DOI: 10.1016/S0377-0257(01)00174-4

Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells
journal, March 2008

  • Chabert, M.; Viovy, J. -L.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 9
  • DOI: 10.1073/pnas.0708321105

Controlled encapsulation of single-cells into monodisperse picolitre drops
journal, January 2008

  • Edd, Jon F.; Di Carlo, Dino; Humphry, Katherine J.
  • Lab on a Chip, Vol. 8, Issue 8, p. 1262-1264
  • DOI: 10.1039/b805456h

Locally enhanced concentration and detection of oligonucleotides in a plug-based microfluidic device
journal, January 2012

  • Fang, Wei-Feng; Ting, Shang-Chieh; Hsu, Ching-Wen
  • Lab on a Chip, Vol. 12, Issue 5
  • DOI: 10.1039/c2lc20917a

Field-free particle focusing in microfluidic plugs
journal, June 2012

  • Kurup, G. K.; Basu, Amar S.
  • Biomicrofluidics, Vol. 6, Issue 2
  • DOI: 10.1063/1.3700120

A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets
journal, January 2013

  • Teste, Bruno; Ali-Cherif, Anaïs; Viovy, Jean Louis
  • Lab on a Chip, Vol. 13, Issue 12
  • DOI: 10.1039/c3lc50353d

Breakup of microdroplets in asymmetric T junctions
journal, May 2013


Droplet breakup in an asymmetric microfluidic T junction
journal, August 2011


Active transport: a new chemical separation method?
journal, January 2006

  • Eijkel, Jan C. T.; van den Berg, Albert
  • Lab on a Chip, Vol. 6, Issue 5
  • DOI: 10.1039/b605305j

Simple, robust storage of drops and fluids in a microfluidic device
journal, January 2009

  • Boukellal, Hakim; Selimović, Šeila; Jia, Yanwei
  • Lab on a Chip, Vol. 9, Issue 2, p. 331-338
  • DOI: 10.1039/B808579J

Droplet breakup in microfluidic junctions of arbitrary angles
journal, September 2006


Trapping Microfluidic Drops in Wells of Surface Energy
journal, September 2011


Precise pooling and dispensing of microfluidic droplets towards micro- to macro-world interfacing
journal, January 2014

  • Brouzes, Eric; Carniol, April; Bakowski, Tomasz
  • RSC Adv., Vol. 4, Issue 73
  • DOI: 10.1039/C4RA07110G

Works referencing / citing this record:

Nano and Microtechnologies for the Study of Magnetotactic Bacteria
journal, July 2019

  • Tay, Andy; McCausland, Hayley; Komeili, Arash
  • Advanced Functional Materials, Vol. 29, Issue 38
  • DOI: 10.1002/adfm.201904178

Continuous magnetic droplets and microfluidics: generation, manipulation, synthesis and detection
journal, January 2019


Passive sorting of emulsion droplets with different interfacial properties using laser-patterned surfaces
journal, April 2019

  • Rashid, Zeeshan; Erten, Ahmet; Morova, Berna
  • Microfluidics and Nanofluidics, Vol. 23, Issue 5
  • DOI: 10.1007/s10404-019-2236-8

Plasmon Enhanced Faraday Rotation in Fe3O4/Ag Ferrofluids for Magneto Optical Sensing Applications
journal, May 2017


A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches
journal, January 2019

  • Dalili, Arash; Samiei, Ehsan; Hoorfar, Mina
  • The Analyst, Vol. 144, Issue 1
  • DOI: 10.1039/c8an01061g

Droplet microfluidics in thermoplastics: device fabrication, droplet generation, and content manipulation using integrated electric and magnetic fields
journal, January 2018

  • Sahore, Vishal; Doonan, Steven R.; Bailey, Ryan C.
  • Analytical Methods, Vol. 10, Issue 35
  • DOI: 10.1039/c8ay01474d

In-droplet microparticle washing and enrichment using surface acoustic wave-driven acoustic radiation force
journal, January 2018

  • Park, Jinsoo; Destgeer, Ghulam; Kim, Hyoungsoo
  • Lab on a Chip, Vol. 18, Issue 19
  • DOI: 10.1039/c8lc00733k

Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform
journal, January 2018

  • Navi, Maryam; Abbasi, Niki; Jeyhani, Morteza
  • Lab on a Chip, Vol. 18, Issue 22
  • DOI: 10.1039/c8lc00867a

Migration of ferrofluid droplets in shear flow under a uniform magnetic field
journal, January 2019

  • Zhang, Jie; Hassan, Md. Rifat; Rallabandi, Bhargav
  • Soft Matter, Vol. 15, Issue 11
  • DOI: 10.1039/c8sm02522c

Droplet CAR-Wash: continuous picoliter-scale immunocapture and washing
journal, January 2019

  • Doonan, Steven R.; Lin, Melissa; Bailey, Ryan C.
  • Lab on a Chip, Vol. 19, Issue 9
  • DOI: 10.1039/c9lc00125e

An intra-droplet particle switch for droplet microfluidics using bulk acoustic waves
journal, May 2017

  • Fornell, Anna; Ohlin, Mathias; Garofalo, Fabio
  • Biomicrofluidics, Vol. 11, Issue 3
  • DOI: 10.1063/1.4984131

An intra-droplet particle switch for droplet microfluidics using bulk acoustic waves
journal, May 2017

  • Fornell, Anna; Ohlin, Mathias; Garofalo, Fabio
  • Biomicrofluidics, Vol. 11, Issue 3
  • DOI: 10.1063/1.4984131

Bead mediated separation of microparticles in droplets
journal, March 2017


Microfluidic-Based Droplet and Cell Manipulations Using Artificial Bacterial Flagella
journal, February 2016

  • Ding, Yun; Qiu, Famin; Casadevall i. Solvas, Xavier
  • Micromachines, Vol. 7, Issue 2
  • DOI: 10.3390/mi7020025