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Abstract

ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the
jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air
jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities
are obtained as functions of axial position. The time and length scales of the jet are varied through control
of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter
(7mm), particle diameters (60 and 90 pm), and Reynolds numbers (10000 to 30000) are analyzed to obtain
the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental
measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction
of the dispersive transport of particles in a round jet. In this paper, three particle-eddy interaction models
(Type-1, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction
in jet flow.
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1. Introduction

Particle and droplet dispersion in turbulent jet flows is an essential part of many important industrial
processes. Typical examples include the dispersion of liquid fuel droplets in gas combustors and the mixing
of coal particles by the injection jets of coal-fired power plants. The dispersion of the particles largely
determines the efficiency and the stability of these processes.

Many computational studies on gas-particle turbulent jets have been performed. Direct numerical simu-
lations (DNS) have been used to study gas-particle jets at relatively low Reynolds numbers [5, 20]. However,

DNS for a high Reynolds number flow is not computationally efficient. Therefore, simulation approaches are
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required that do not resolve all flow scales in three dimensions. Many gas-particle flows have been studied
in which the subgrid-scale turbulence is modeled using large eddy simulation (LES) [39, 1]. LES provides
good means to capture unsteady physical features in the turbulence. The accuracy and the reliability of LES
predictions depend on several factors, such as the accurate modeling of the subgrid-scale phase interactions.

A promising alternative approach is the one-dimensional turbulence (ODT) model, which is able to resolve
a full range of length scales on a one-dimensional domain that is evolved at the finest time scales [16, 18].
ODT has been applied to many different homogeneous and shear-dominating reacting [8, 12, 13, 26, 25, 21]
and nonreacting [16, 18, 2, 34] flows including homogeneous turbulence, channel flow, jets, mixing layers,
buoyant plumes, and wall fires.

Schmidt et al. [31] extended the ODT model to the prediction of particle-velocity statistics in turbulent
channel flow. Punati [25], and Goshayeshi and Sutherland [10, 9] studied coal combustion and particle laden
jets using ODT (using a version of the Type-C model noted below). In our previous study, one version of the
ODT multiphase interaction model using an instantaneous (referred to as Type-I) particle-eddy interaction
(PEI) model was presented to investigate particle transport and crossing-trajectory effects in homogeneous
turbulence [34]. Here, we extend this previous ODT study to shear flows and present two new PEI models to
analyze the behavior of individual particles in jets at high Reynolds numbers (Re). One of the models applies
continuous PEI (referred to as Type-C) and the other combines instantaneous and continuous interaction
features (referred to as Type-IC).

The remainder of this paper is organized as follow: first, a summary description of ODT is presented,
with details of of the PEI models given. This is followed by a presentation and discussion of the results of
the Type-I, -C and -IC models, including comparisons to experimental results. Sensitivity of results to the

single particle model parameter is discussed, and summary and concluding remarks are given.

2. Numerical description
2.1. ODT model

One-dimensional turbulence (ODT) is a numerical method to generate realizations of turbulent flows
using a stochastic model of the turbulent cascade on a one-dimensional domain [16]. The one-dimensional
domain is formulated in the direction of primary velocity gradients and on which the governing equations for,
e.g., mass, momentum, energy, and species conservation are solved. Most ODT applications, including that
presented here, use Cartesian coordinates in which the y, x and z coordinates are the ODT domain-aligned,
streamwise (direction for flow evolution), and spanwise directions, respectively.

The ODT model consists of two main mechanisms: diffusive advancement, and advective eddy events.
The diffusive evolution on the 1D domain is governed by transport equations (described below) that omit the
nonlinear advective terms, which are modeled by the eddy events. These diffusive equations dissipate velocity
fluctuations and kinetic energy, though this process is only significant at diffusive scales, and the eddy events

2



43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

model the cascade of fluctuations to the dissipative scales. In general flows, nonlinear advection describes a
vortex-stretching process that acts in three dimensions to transfer fluctuations to higher wave numbers and is
costly to predict. In order to describe these nonlinear advective terms, ODT introduces the concept of the so-
called “triplet map” that transfers fluctuations to higher wave numbers during eddy events. The triplet maps
that make up the eddy events in ODT occur instantaneously. The rate of occurrence of this transfer by ODT
eddy events is determined through a stochastic sampling of the evolving velocity field through a measure of
the shear energy that is a function of the location on the domain and the eddy length scale (wavenumber).
There are two approaches to evolve the ODT domain: (i) temporal evolution where each ODT realization is
parameterized by (y,t) and represents a (possibly Lagrangian) time history, and (ii) spatial evolution, where
each ODT realization is parameterized by (y,z). Even in predicting spatially developing flows like the jet
in this case, most ODT simulations have been conducted using temporal evolution assuming a Lagrangian

evolution of the flow domain to map results to the spatial evolution [12].

2.1.1. Diffusive advancement

In the Lagrangian frame of reference, choosing (y,t) as independent variables, the governing equations
are derived from the Reynolds transport theorem and advanced in time along the ODT line [21]. Since there
is no mass source term, no non-convection mass flux, and uniform properties inside the grid control volumes

in one dimension, the finite-volume equation applied on the grid cells for the continuity equation is
p/A\y = constant, (1)

where the density p is constant for the nonreacting flow considered here. The diffusive advancement evolves
scalar equations of momentum (per mass) component U; using a conservative finite volume method written
here for a given cell:

du; 1

dt = _E (Ui,e - Ui,w) ) (2)

where o; ; is the viscous stress. The subscripts e and w represent east and west faces of the control volume.

The viscous stresses for the three velocity components are represented as

dU;
Oj = —H[ dy ) (3)

where p is viscosity. The spatial derivative appearing in this equation is evaluated at cell faces using a finite

difference approximation between the two neighboring cells.

2.1.2. Eddy events

Turbulence is characterized by a three-dimensional vortex stretching process that is modeled in ODT
through a representative sequence of eddy events as introduced at the beginning of this section. This model
has two key components, the triplet-map representation of the length-scale cascade and the model for the

rate of triplet maps. Turbulent eddies are sampled randomly on the domain as a function of the eddy
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location, represented by their left bound, yg, and by their size, I, with the triplet map occurring over the
region [yo,yo + (] for the given sample. The triplet map spatially compresses the fluid property profiles
within [yo, yo + ] by a factor of three. The original profiles are replaced with three copies of the compressed

profiles, with the middle copy spatially inverted. This mapping is described by

3(y — o) if yo <y <wyo+1/3l,

20-3(y —yo) ifyo+1/3l <y <yo+2/3L,

fy) =yo+ (4)
3(y—wo) =20 ify+2/3l <y<wyo+l,

Y — Yo otherwise.

where f (y) and y are the original fluid location and the post-triplet-map location, respectively. The fluid
outside [yo,yo + {] is unaffected. The triplet map is measure preserving and all integral properties (e.g.,
mass, momentum, and energy) or moments thereof are constant during a triplet map. Specifically, the kinetic
energy is conserved, which is a desirable property because eddy events physically model the inviscid advection
process. Immediately after the triplet map, kernel transformations are introduced that redistribute energy
among the velocity components [37]. The transformations are meant to model the velocity randomization
and so-called return to isotropy effect in turbulent flows. The kernel can be considered as a wave function
that adds or subtracts energy from the eddy based on the amplitude of the wave. An eddy event maps the

velocity component i as follows:

Ui(y) — Ui (f () + i K (y), (5)

where the kernel K (y) = y — f (y) is the displacement induced by the triplet map and integrates to zero
over the eddy interval. ¢; is the kernel coefficient of K (y) and is specified to ensure conservation of energy
among momentum components. This form is written for constant density flows, as studied here. A variable
density formulation is also available [2].

The procedure to sample and accept an eddy follows that described in [21], and a summary description
is provided here. The eddy rate density for an eddy occurrence at location yy and length [ is denoted as
Ae(Y0,1,t) and is dimensionally 7, 11=2

at a given time is A(t) = [[ Ae(yo, 1, t)dyodl, and the eddy PDF is defined as P(yo,l,t) = A(yo, 1, t)/A(t). (In

where 7, is an eddy time scale given in Eq. 10. The rate of all eddies

the following, the yo, I, and ¢ functional dependecies will be presumed.) Ideally, eddies would be sampled
from this PDF, with occurrence times sampled with Poisson statistics with mean rate A. However, this
is inconvenient and computationally expensive since the two dimensional eddy distribution would have to
be constructed at each timestep, with a correspondingly complex sampling procedure involving numerical
inversion. Instead, we use a thinning method [19] coupled with the rejection method [24]. In a thinning
process, we can sample in time as a Poisson process with mean rate aA where a > 1, and then accept eddies

with probability P, = A/aA. In the rejection method, rather than sample from the unknown P, we sample
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eddies from a presumed distribution P, and accept with probability P, = P/ BP, where 3 is some constant

(or in general, some function) so that P, < 1 (i.e., 8 > 1). Together, these give

AP
P=——. (6)
alA gp
Now, take Aty = 1/aA, insert AP = X\ = 1/7.1?, and absorb 1/ into At so that At,/8 = At (since a > 1

and 8 > 1 are arbitrary), to give
At

= —. 7
TA2P @

Note that 1/7.1% in Eq. 7 gives the actual eddy rate determined from the sampled instantaneous velocity

a

field as given below in Eq. 10. choice of P may affect the efficiency, but not the accuracy. We use

Po(yo, 1) = g(yo) f(1). (8)

The eddy location distribution, g(yo), is taken to be uniform over the domain while the eddy size distribution,

f(1), is assumed to be [21]
F() = Arexp(=21/1), (9)

where [ is the most probable eddy size (typically 0.015 times the domain length) and A; is the PDF nor-
malization constant. Eddy occurrence times are sampled as a Poisson process with mean rate Atg, with the
eddy size and location sampled from f(I) and g(yo). Each candidate eddy is accepted with probability P,
given above. At, is adjusted during the simulation to ensure that the average P, is of order 0.02.

The eddy time scale 7, is obtained using a measure of the available energy at wavelength [. In the present
constant density work (without buoyant or other forms of energy), 7. is computed using scaling arguments

to relate to the available kinetic energy, which is given by Ey;, = p (Ux + VE + WE) [16],

1 2

To obtain FEy;, the velocities are integrated across the kernel function K (y) as
1 Yo+1
U= [ UGG)IKG, ()
Yo

In Eq. 10, E,), is included as a viscous penalty to restrict unphysically small eddies,
E,p, = pv/l, (12)

where v is the kinematic viscosity of the fluid.

Beyond the basic elements of Eq. 11 as a measure of velocity fluctuations, the form of Eq. 11 is not
fixed, and other forms have been used [16]. In Eq. 10, C' is a constant model parameter relating the kinetic
energy formed from Eq. 11 to the eddy time scale in Eq. 10. C directly scales the probability of an eddy
occuring as per Eq. 7. Similarly, a constant, Z, is introduced for the viscous energy dissipation, E,,. C
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plays an important role in the rate for the turbulent cascade and the flow evolution is sensitive to it, as
the rate of evolution of the flow is directly proportional to C'. Z is provided more as a numerical expedient
to reduce the occurrence of sub-Kolmogorov scale eddies; these small eddies affect transport less than the
viscous evolution. A maximum value of Z will exist above which there will be an unphysical buildup of
fluctuations above the Kolmogorov scale that is visible in spectra (not shown here).

In unbounded systems, like jets, eddy events may result in the occurrence of unphysically large eddies
that adversely affect the overall mixing, and a mechanism for suppressing such eddies is required. This is
not normally needed for bounded systems (such as channel flows), or other cases (such as stratification)
that otherwise limit the mixing. There are several mechanisms of large eddy suppression that have been
developed [12, 13, 18, 2]. The method favored for jet flows is an elapsed time method in which the eddy time
scale 7. can be compared with the simulation elapsed time ¢; eddy events are allowed only when ¢ > Sjes7e,
where fjs is a model parameter. f;.s has a similar (but inverse) effect of C [12]: larger values of Sjs
suppress larger eddies, and delay the flow evolution.

In summary, there are three ODT parameters C, Z, and (s that control the evolution of the jet. C' is
the eddy rate parameter and scales the time evolution of the jet. Z suppresses unphysically small eddies and
the overall flow is insensitive to this parameter. [§j.s suppresses large eddies and has a similar, but inverse,
effect as C. In the next section, we discuss the Lagrangian particle model, where an additional parameter

Bp is introduced.

2.2. Lagrangian particle model

The velocity and trajectory of particles are described by a Lagrangian approach in this study. Like the
ODT treatment of the continuous fluid phase, the action of turbulent eddies is handled in a special manner,
referred to here as the particle-eddy interaction (PEI), as compared with diffusive processes characterized
by the standard approaches described in Sec. 2.2.1. The triplet map is implemented as an instantaneous
process, and the action of the triplet map on the particle can be treated either as an instantaneous or
continuous process as observed in the flow evolution coordinate. The motion of the particles is traced
as they interact with a random succession of turbulent eddy motions, each of which represents a Type-I
(referred to as instantaneous), Type-C (referred to as continuous), or Type-IC (referred to as instantaneous
and continuous) interaction between a particle and a triplet map. In the Type-I model, the PEI is represented
as an instantaneous change of the particle position and velocity in the same manner that the triplet-map
itself is an instantaneous event. In the Type-C model, the PEI occurs during the flow evolution by mapping
the equivalent triplet-map space-time influence to the flow evolution. In the Type-IC model, the particles
undergo the Type-I PEI when they are in the eddy region at the time of the eddy occurrence, and experience
the Type-C PEI if they are initially outside the eddy, but move into the eddy region during the flow evolution.

Dispersive transport property statistics of particles are obtained by computing a statistically significant
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ensemble of flow realizations and particle trajectories. Schmidt [28] proposed several particle models that
are similar in nature to the ones here, and implemented the Type-I model to study particle behavior in a
different context [31, 30]. A version of the Type-C model was used by Punati [25] and by Goshayeshi and
Sutherland [10, 9]. In this section, we summarize the implementation of the models, and more importantly,
discuss and compare different types of particle-eddy interactions.

A particle-eddy interaction occurs when both the particle and the triplet map occupy the same space-
time. To predict the interaction, a finite temporal interval and spatially cubic region, consistent with
turbulence isotropy, is assumed for each eddy based on the eddy time and length scale, 7. and [. This
spatial-temporal region is referred to as the eddy box. Within the eddy box, the particle evolves in the z, y,
and z dimensions as described in the following subsections, and the PEI ends when the particle leaves the

idealized eddy box or when the eddy lifetime has passed. The eddy lifetime,

te = ﬁp're (ya l; t) ) (13)

is related to the eddy time scale, 7¢(y,[;t), but these quantities should not be expected to be equal; the
proportionality between these times is represented by the parameter j3,.

In many flows, the particles typically leave the box at the end of the eddy lifetime, t., but if there is
significant relative motion between particles and eddies, the particles will depart spatially. This latter spatial
crossing of the eddy boundary is referred to in the literature as the crossing-trajectory effect [7]. This use
of an eddy length and lifetime to predict the eddy influence on the particles is common to the stochastic
approaches. In the ODT model, the fluid evolution results in a full spectrum of dynamic and flow-dependent
eddy scales, as opposed to only predicting integral scale eddies (or scales sampled from some static eddy
distribution). The selection of the eddy lifetime in the ODT formulation is equivalent to the selection in
other modeling approaches of t., and a proportionality appears there between the integral turbulent time
scale evaluated from, for example, the turbulent kinetic energy and its dissipation rate. In approaches we
will refer to as discontinuous random walk, an eddy-velocity fluctuation is selected to act for an eddy lifetime
[40, 11, 33]. Another class of models referred to as continuous random walk approaches sample fluctuating

velocity increments [4, 41, 23].

2.2.1. Particle evolution equations

For the simulation of particles, two assumptions about the behavior of particles are made: (i) all particles
are rigid spheres with identical diameter d,, and density pp; (ii) only the drag and gravity forces of particles
are considered because the ratio of the particle-to-fluid material density is high.

Under the above conditions, the momentum equation of a single particle at position r with velocity u at
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time t can be described using Newton’s second law:

d’l“i
L =U,,, 14
dt P, ( )
AU, ; Upi— U,
i_ _Up : . 15
i e (15)

where the subscripts p and g represent particle and gas, respectively. The equation shows that the rate of
momentum change is equal to the sum of external forces on the particle. The first and second terms on the
right-hand side are the drag force between the particle and surrounding fluid and the gravitational force on
the particle, respectively. The response time 7, of a particle with mass m,, in the fluid of viscosity u, based
on Stokes flow, is given by

my,Ce

= — 1
Tp 37rdp/1/ ( 6)

Clift et al. [6] suggested that for a particle slip-velocity Reynolds number Re, < 200, which is true for most

practical dilute flow systems, the nonlinear correction factor f needs to be added,
f=1+0.15Rel57, (17)
where Re, = (pg|0, — ¥y|dp)/ 1. Also the Cunningham slip factor C, with mean free path of fluid X is
A Tp
Co=1+2[1.257 + 0.4exp (_1_17)}’ (18)
Tp A
where 7, is the particle diameter.
All three components of the particle momentum are computed using the above equations, but the particles

are constrained to the line. The off-line velocity components are used in the PEI models discussed below.

Constraining the particles to the line is a limitation of the ODT model.

2.2.2. Type-I particle model

During the ODT diffusive advancement, Eq. (15) is solved for the three components of the particle
velocity using the local components of the ODT gas velocity in the x and z directions, and zero for the
ODT line-directed (y) gas velocity (since y motions are governed by eddy events). That is, dispersion in
directions other than the ODT-line direction naturally occur during the diffusive advancement described in
Sec. 2.1.1.

The interaction between a particle and an ODT eddy event is defined as both the particle and the triplet
map occupying the same space-time. For the Type-I PEI, the particle-eddy interaction is instantaneous
in the simulation advancement time t. However, to capture the interaction, a finite temporal interval and
cubic spatial region of each eddy (of side-length ) is assumed based on its own time and length scale. The
interaction between particles and an eddy evolves in three directions governed by the x, y and z components
of the above modified Stokes’ law. The interaction is chosen to have the same length scale in all three
directions, though other modeling choices could be appropriate. The particle-eddy interaction ends when

8
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Figure 1: Schematic diagram of the particle-eddy interactions in the interaction and real time coordinates. The figure also
illustrates the need to treat the so-called double counting effect. Dashed lines represent the trajectory of a ballistic particle.
The rectangular box (left) and vertical line (right) represent eddy events. (Adapted from Schmidt et al. [31])

the particle leaves the idealized eddy or when the eddy lifetime has passed, whichever comes first. The ODT
eddy events affect only the line-directed particle velocity and position. However, the particle drag law is
solved in all three directions in order to determine the interaction time of a particle with an eddy. A new
temporal coordinate is needed which is called the interaction time coordinate, 6, which describes how long
the particle interacts with the eddy. Simply speaking, the particle-eddy interaction is instantaneous in real
time coordinate ¢ while it exists for finite time in interaction time coordinate 6. Figure 1 shows (among
other things) the eddy effect in the interaction time coordinate (left) and real time coordinate (right) in the
y direction. When 6;,,, > t., the interaction ceases even if the particles are still in the eddy box, where 6;,,
is interaction time between the particles and eddy. When 6;,,, < t., the particles may exit the eddy box by
reaching the boundaries of the box.

Eddy velocities in the z, y, and z directions are defined to describe the drag force between the particle

and the eddy so that particle y positions and velocities after the interaction may be determined,

Ue = Uy, (19)
AY;

Vre = ﬂ? (20)
le

W, = W,. (21)

Eddy velocities U, and W, are the respective  and z ODT velocity components at the particle location.

The eddy velocity V. in the y direction is the turnover velocity of a fluid parcel containing the particles
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Figure 2: Illustration of the triplet map implementation. Jagged lines indicate eddy edges; solid lines are cell boundaries.

during the triplet map. AYr), is the displacement of a notional Lagrangian fluid particle by the triplet map
at the particle location, as described in the following paragraphs.

As shown in Fig. 2 of the triplet mapping operation, there are three distinct displacements of a given
fluid element that correspond to its three subdivisions. Unlike the fluid elements, the particles cannot be
subdivided, which requires the determination of which of the three distinct fluid displacements to use in
Eq. 20. There are two ways to make this determination. One is to use the discrete implementation of the
triplet map (as has been done in some previous ODT implementations) to assign a unique displacement of
the fluid that contains the particles. (The present ODT uses a continuous implementation of the triplet
map on an adaptive computational grid.) A disadvantage of this discrete approach is that the first and last
fluid cells of the eddy subdivisions are not moved and AY7,, = 0 in Eq. 20. Neglecting small displacement
near eddy endpoints has a disproportionate impact near walls, where these small displacements can be the
dominant mechanism [28]. This undesired affect could be minimized by using high spatial resolution, but
that significantly increases computational costs.

Another more cost-effective approach is a random selection procedure. In the infinitely high-resolution
case, all the flow properties including particle distribution are statistically uniform at the fine scale. Any
location class of particles is equally distributed among the eddy fluid cells that correspond to three distinct
field subdivisions of given fluid element. This indicates that a given particle can be statistically localized to
any of the three pre-mapped subdivisions with equal probabilities. Therefore, a random selection of one of
the three fluid parcels for the particle environment is used in this work. The procedure is illustrated in Fig. 2
by the open and filled circles that denote notional Lagrangian fluid elements. The notional fluid elements
are positioned on the triplet map on the region of the discretized ODT domain. The letters a, b, and ¢
represent the values of fluid profiles in the given cells and serve to identify the cells. After the triplet map,
the original profile (a, b, ¢) becomes (a, b, ¢; ¢, b, a;a, b, c). The original scalar profile is compressed spatially
by a factor of three, and a copy is placed on the first and last third of the eddy domain, whereas the profile

is spatially inverted for the middle third. The notional Lagrangian fluid element in a cell with a given fluid
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property (e.g., a, b, or ¢) will be mapped to a random one of the three post-mapped locations with the same
fluid property. This is shown in the figure as the open circle in the cell b is moved to the cell by (though it
could have been cell by or b3), whereas the filled circle in cell ¢ is mapped to cell ¢ (though it could have
been cell ¢; or c3).

With eddy velocities specified as in Eqs. (19-21), the drag law is integrated to determine the particle-
eddy interation time. The particle is initially located in the center of the eddy box in the off-line directions,
and the eddy box is advected with the x and z eddy-velocity components.

Schmidt et al. [31] found that since the particle transport is implemented instantaneously, but the
momentum equation of particles is integrated for the interaction time, the concurrent diffusive advancement
would result in a double integration effect. To elaborate this effect, consider a particle that has infinitely
large inertia. The particle will not be affected by the eddy. However, as Fig. 1 shows, the double integration
effect will produce the shift of the particle velocity and position, which violates physical behavior. To avoid

this, the particle velocity V;*** and position y,“" resulting from the particle-eddy interaction are computed

p

by taking the difference of the integration solution of the momentum equation with and without the eddy

velocity. This is illustrated schematically in Fig. 3. That is,

Vpnew — AV}, — ‘/; (eun) _ V;Dn (emn) , (22)
vp = ypt 4 Dyp = 4 + 4 Oran) = (Bian) (23)

where superscript ¢ and n indicate with and without the effect of the eddy, respectively. The result is a
particle-eddy interaction with the expected behavior in both the tracer particle limit (particles stay with the
fluid) and in the ballistic limit (particles are no displaced by eddy events) avoiding the potential of artificial
dispersion suggested in Fig. 1.
2.2.3. Type-C particle model

The Type-I PEI model described above leads to an instantaneous displacement and velocity change of
the particles at the moment of the occurrence of the triplet map. The Type-C' PEI model differs from the
Type-I model in that the PEI occurs continuously during the continuous diffusive process. While the eddies
occur instantaneously, the effect of the eddies on the particles is implemented over a finite duration during
the ODT diffusive advancement. As in the Type-I interaction, each eddy is modeled with a cubical eddy
box that exists spatially over the domain [yg,yo + {] and temporally over the eddy lifetime ¢,. Unlike the
Type-I eddy, the interaction is not implemented instantaneously, but rather the eddy velocity is mapped to
a spatial-temporal eddy box that starts at and continues after the eddy event. Each eddy box is advected
in the off-line directions, and the advection velocity is taken as the average local fluid velocity in the box.
The crossing-trajectory effect is captured as the particles move relative to the eddy.

The line-directed eddy velocity is taken as £(21/+/27)/8,T. based on the root mean square displacement
of fluid particles in an eddy due to a triplet map [2], and the sign is randomized. In the eddy space-time
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Figure 3: New position and velocity of a particle in the interaction time coordinate (left) and real time coordinate (right) after
a Type-I particle-eddy interaction. (Adapted from Schmidt [31].)

map, it often happens that eddy boxes will overlap. In this case, the line-directed velocity component for a
given particle consists of the sum of velocities for each eddy box in which the particle is located. The off-line
fluid velocities are taken as the local gas velocity on the line.

A significant drawback to the Type-C interaction is that it does not obey the tracer-particle limit. The
fluid is mapped instantaneously to new locations during an eddy event, but the particles respond to this
fluid motion over a finite time during the diffusive advancement. This may not be statistically important in
particle dispersion studies, but in applications such as combustion, where particle temperature-history effects
are important, the correct tracer-limiting behavior is important. Another potentially important difference
is an apparent time shift. The result of an eddy triplet map is observed at the time of the triplet map in
the Type-I eddies while there is a delay of time 3,7, for the same net effect to be observed with the Type-C

eddies. The two models are compared further in the next section.

2.2.4. Instantaneous and continuous particle-eddy interaction

In this section, the fundamental difference between the Type-I and Type-C particle interaction imple-
mented in this study is discussed. In a Type-I interaction, the particle has an instantaneous displacement in
the ODT-aligned direction when it interacts with an eddy. That is, the particle goes through a discontinuous
displacement due to the eddy interaction, and then the interaction will expire immediately because the eddy
event implementation is instantaneous. Particles interact with a single eddy at a time in the simulation
time frame, although the effective eddy lifetimes might overlap. In contrast to the Type-I interactions, there

is no instantaneous displacement of particle motion in the Type-C interaction. In the Type-C interaction,
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“interaction” trajectory due to the particle-velocity history in the Type-I interaction [34].

although an eddy event is instantaneous, the eddy effect on particles is allowed to exist in the real time
coordinate for the eddy duration. In this sense, the Type-C interaction results in a “delay” in the particle
dispersion as Fig. 4 shows. In the Type-C interaction, a particle has continuous interactions with eddies no
matter when and where it enters the same space and time region as the eddy has. It is quite likely that one
particle can feel the effects of multiple eddies simultaneously. Implementation of the Type-C interactions in
ODT requires keeping track of the positions of all eddies from the time each eddy is born until that indi-
vidual eddy’s duration has expired. In the Type-I PEI model, the particles are less likely to interact with
the eddy event when the particle-line velocity becomes larger. Assume that the velocity component in the
line direction reaches the infinite limit; in that case, there is no way that the particle has a chance to enter
the eddy because particle trajectories and the triplet maps are parallel lines in the space-time plane y — t.
This is not a problem for many typical flows in which the particles move with similar or smaller velocities
than the fluid. In contrast, the Type-C PEI model “extends” the eddies in the real time coordinate and
thus allows the particles to interact with eddies when they occupy the same spatial-temporal coordinate.
The Type-C interaction is advantageous for cases in which particles move very quickly in the line direction.
Examples of such flow might include shock-driven turbulence or buoyancy dominated flows where particles
may move in a line direction corresponding to strong density gradients driving the mixing process.

A problem with the Type-C model would occur in the case of two-way coupling between the fluid and

particle phases for non-passive particles. The instantaneous triplet maps would need to account for the
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influence of the particles on the gas phase. But in the Type-C interaction, the particle motions occur
continuously and later than the instantaneous triplet maps that affect the fluid. So there is an inconsistency
between the fluid and particle phases that would be difficult to model. Conversely, two-way coupling can
be easily done in the Type-I model using kernel functions to account for particle-fluid momentum transfers
in a manner similar to the way energy is distributed among velocity components during triplet maps in the
current ODT model, (and is the subject of future work).

The particles are able to interact with an eddy in several different ways:

1. The particles could overlap the eddy box in line direction at the time the eddy is born;
2. The particles could enter the eddy box through the offline sides (Type-C only);
3. If the eddy is still active, the particle could re-enter the eddy through the sides of the box (Type-C

only).

In the implementation of the Type-C interactions, a new scheme is proposed to allow eddy boxes to move
in the x, y, and z directions that is similar to the idea of the Type-I interaction in this sense. That is, only
the relative motion of the particle and eddy box in all directions is recorded until either the particle crosses
out of the box or the eddy lifetime ends. This is very important for the Type-C interaction to accurately
capture the effect of crossing trajectories.

The eddy box is advected in the x and z directions using the x and z gas velocity components at the
initial particle location for Type-I and Type-C models. Schmidt et al. used the eddy-averaged x and z gas
velocities for their Type-I simulations [31, 29, 30]. While there is some appeal in using an eddy-average
velocity, there are inconsistencies that arise in certain cases. These are most readily observed in the case of
tracer particles. Particles that exist in fluid elements with velocities differing from the eddy-average velocity
can cross out of the eddy even though they remain associated with fluid elements. This results in a shorter
eddy interaction time and less dispersion than that of the actual fluid elements. Naturally, this breaks the
coincidence of fluid and tracer particles in the Type-I interactions. This early crossing effect is severe for
tracer particles because we find that the parameter 3, is relatively small leading to significantly reduced
tracer dispersion when the eddy-average box velocity is used. It is possible to alter model coefficients to
recover the appropriate particle dispersion, but differences will remain between the fluid and tracer evolution,
and we find that the dependence of the dispersion on the Stokes number (or particle Froude number) is
not correct. For the Type-C eddies, the particles do not match the tracer limit and the sensitivity to the
local versus eddy-averaged velocity is less significant. Further, the application of the local velocity is more
complicated for the Type-C eddies since it evolves in time. For these reasons, the simpler eddy-averaged
velocity is employed for the Type-C interactions, but we recommend the local fluid velocity for Type-I

interactions.
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Figure 5: Two illustrative Type-IC particle-eddy interactions.

2.2.5. Type-IC particle-eddy interaction

In order to overcome the violation of tracer limit of the Type-C model, another alternative interaction
model is introduced here, which is referred to as the Type-IC model. As in Type-C, the eddy is allowed
to exist in real time for the duration of the eddy lifetime. However, any particle that overlaps an eddy at
the eddy event time undergoes a Type-I interaction, and is not allowed to interact with the same eddy in a
continuous Type-C interaction, even if the particle leaves the eddy interaction box and comes back into the
box by one of the sides of eddy box. This is because the Type-I interaction already takes into account the
entire lifetime of the eddy. Conversely a particle which first enters an eddy box from one of the sides does
not undergo a Type-I interaction, but will interact with that eddy in a Type-C manner, and may interact
with that same eddy as many times as it (possibly) re-enters the box. It is worth noting that the Type-IC
interaction model is able to match the tracer particle limit because in order to have a Type-C interaction a
particle must enter an eddy interaction box from either of the sides, and a tracer or gas particle can not do
S0.

Figure 5 shows two possible particle trajectories in the Type-IC particle-eddy interaction context. In
Fig. 5 (left) the particle first interacts with eddies 1 and 2 sequentially in Type-I interactions (/1 and
12). Then it enters eddy 3 through the bottom side of the eddy box and experiences a Type-C interaction
(C3). Although the particle re-enters eddy 1 three times and eddy 2 once, it does not undergo any Type-C
interaction with them because the Type-I interaction with eddy 1 and eddy 2 have already been taken into

account at the beginning. In Fig. 5 (right) the particle has a Type-C interaction with eddy 1 (C1), and
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changes direction in a Type-I interaction with eddy 2 (I2). Then it re-enters eddy 1 (Type-C) (C3), enters
eddy 3 (Type-C) (C4), where it changes direction again, and finally enters eddy 1 (Type-C) (C5).

3. Turbulent jet configuration
3.1. Experiments

In this study the turbulent dispersion of particles in shear-dominated turbulent flows is studied. Mea-
surements of particle dispersion in round turbulent jets was studied by Kennedy and Moody [15]. These
measurements span a range of Reynolds and Stokes numbers, which were obtained by varying the jet velocity,
nozzle diameter, and particle diameter. Reynolds numbers based on the jet velocity (air) range from 10000
to 30000. Fully developed turbulent flow conditions at the nozzle exit are used. Hexadecane droplets with
number average diameters of 60 and 90 um are used for the study. The mean particle density is 4990 kg/m3.
Monodisperse particles were generated in the experiments with a size uncertainty of £2 um [15]. The air
used in the jet is at room temperature and pressure and thus the particles are essentially non-vaporizing.
The particle loading is small with more than 1000 droplet diameters separating particles so that particles
do not alter the fluid velocity, nor do they modulate the turbulence; this was verified by the measurements

of Kennedy et al [15].

3.2. Simulations

The ODT simulations are carried out in a temporally evolving planar jet configuration, which has char-
acteristics similar to those of a spatially evolving round jet [17] and has been routinely applied in ODT
simulation, e.g., [12, 8, 10]. The similarity scaling of temporal turbulent planar and spatial round jets is
illustrated by constant-density momentum scaling [17]. The width and axial velocity of a spatial round
jet evolve as W ~ x and u ~ 1/x, respectively. The scalings for a temporal planar jet are W ~ 1/t and
u ~ 1/4/t [36]. These time scalings also follow from the treatment in Schlichting [27, p. 731-2]. If we
integrate dx = udt using u ~ 1/+/t we get x ~ v/t so that the x scaling of the temporal planar jet simulated
here is the same as the experimental spatial round jet.

To compare the temporal evolution with the spatial experimental measurements, a convective velocity,
Up(t), is required to transform the evolution time (¢) to the streamwise spatial coordinate (), which is

obtained from the ratio of the momentum flux, M, to the mass flux, i,

SN [T plulyt) — Us)’dy

Un(t) = Uso = o ffooo p(u(y,t) — Uso)dy 7 =

where U, is the axial velocity of the gas phase far from the jet (U, = 0 in this study) [12]. This assumption
implies that all points on the line reach a given measurement plane at the same time. The initial gas velocity
conditions for the turbulent planar jet, Uy, are given in Table 1 as a function of the Reynolds number, Re,

and the jet exit diameter, D. The streamwise velocity at the inlet is specified using the following hyperbolic
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Table 1: Initial conditions of gas phase and particle phase (60, 90 pum), and particle nozzle Stokes number in the 7 mm jet
(St =1pUg0/D).

| Re =10000 | Re = 20000 | Re = 30000

Ugo 21.5 m/s 43 m/s 64.5 m/s
Upo (60 pm) 17.5 m/s 30 m/s 46 m/s
St (60 um) 2% 53 77
Upo (90 pm) 15 m/s 32 m/s 51.5 m/s
St (90 um) 61 122 178
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Figure 6: Schematic of the tanh profile used to specify the initial streamwise velocity profile.

tangent function to smoothly transition the velocity in the radial direction and is shown schematically in

e Uy(y) = g [1 + tanh (y_le) (1 - % (1 + tanh (y—wh))ﬂ ’ )

where A is the velocity amplitude, w is the transition boundary layer width, and L; and Lo are the middle
position of the transitions. Particles with different diameters are injected into the centerline of the jets.
The simulation domain width is 40D and the ODT model evolves for 0.11 s for all the cases, which is
approximately 70 x/D. The initial temporal resolution is 0.2 us, the initial spatial resolution is 50 um,
and an adaptive meshing algorithm is used, which refines the mesh as fluctuations cascade to smaller length
scales. The initial conditions for the dispersed phase are given in Table 1, in which the initial particle axial
velocity, Uy, along the centerline is extrapolated from experimental results. The results reported here are
collected over 512 ODT realizations, which are enough to provide stationary ensemble statistics. The ODT

parameter values are C' = 16, Z = 50 and fjes = 0.4 for all the ODT simulations.
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4. Results and discussion
4.1. Jet evolution

In order to compare particle results between our ODT results and experimental data, it is first necessary
to compare the gas-phase flow characteristics. The ODT-predicted streamwise velocity evolution at the
centerline is compared with the experimental measurements [15] in Fig. 7. The mean and fluctuating axial
velocities are normalized by the jet exit velocity Ugo, and the position is normalized by the jet exit diameter
D. The decay of the centerline mean and root-mean-square velocities, U, and U rms, are typical of free
turbulent jets. Overall, the numerical results agree well with experimental data. The ODT mean velocity
decays somewhat faster than the experiments at approximately /D > 30. The ODT exhibits a Reynolds
number similarity and the profiles are very similar for the three simulations, while the measurements exhibit
some Reynolds number dependence as shown in the figure. This may be indicative of some differences in
the development of turbulence and boundary layers within the jet nozzle; we have not attempted to correct
for this in the ODT simulations.

The best fit line through log U, vs log x is considered. At 2/D > 60, the ODT gives slopes of -0.79, -0.95,
and -0.98 for the Re=10000, 20000, and 30000 cases, respectively. The results appear to be asymptotic to
-1 with increasing Reynolds number. The experimental data are more difficult to fit. There is an obvious
“jog” in the Re=20000 data at /D = 40, and in the Re=30000 data at z/D = 52. If we take a fits through
the last 4 points in the Re=10000 data and through the points before the “jog” in the other two sets, the
slopes are -0.72, -0.71, and -0.71 for the Re=10000, 20000, and 30000 cases, respectively. For reference,
in the region 30 < x/D < 40 (corresponding to the slope for the Re=20000 experimental case), the ODT
slope ranges from -0.82 to -0.86 for the three cases. We note that the Reynolds numbers studied are not
particularly high, and that convergence to a slope of -1 is expected as Re increases.

The ODT velocity fluctuations show the same qualitative trend as the experiments, but the peak that
occurs at /D = 5 is over-predicted by the ODT by a factor of two. At later times, /D > 20, the ODT
velocity fluctuations are in good quantitative agreement with the experiments. This is important since most

of the particle dispersion (discussed below) occurs at /D > 30 in the experiments and simulations.

4.2. Particle phase

The results of particle transport are presented in this section, specifically, ODT and experimental results
for a turbulent multiphase round jet are compared. A detailed analysis is conducted to assess the performance
of the three ODT multiphase interaction models described in Sec. 2.2. In this study, the 3, value used in

the jet flow for all the interaction models is 0.08.

4.2.1. Type-I particle-eddy interaction
The particles have instantaneous displacements during the Type-I interaction with the eddies. The

dispersion of particles is predicted for nonzero gravity (¢ = 9.8 m/s?) as a function of normalized axial
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Figure 7: Normalized mean axial velocity (a) and turbulence intensity (b) along the jet centerline. Lines represent ODT
predictions. Experimental measurements are represented by cross points (Re = 10000), square points (Re = 20000), circular
points (Re = 30000).
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location x/D. Figure 8 compares the dispersion data for ODT cases of 60 um and 90 um particles to
experimental measurements for Re = 10000, 20000 and 30000 using the Type-I interaction model. Particle
dispersion D,, is defined as the root mean square displacement of the particles from the jet centerline,
computed using the ensemble of ODT realizations. The particle dispersion increases with the jet evolution.
Particles with larger Stokes numbers disperse less and the ODT Type-I interaction model provides good
qualitative predictions of this. In the upstream part of jet (z/D < 30), the particles are not strongly affected
by the fluid flow, due to a lack of large eddy structure. As the large eddies that account for the bulk of the
spreading appear later, the particles are transported away from the center of the jet, resulting in non-uniform
particle dispersion patterns with particle size.

The particle movement in the jet is strongly influenced by the size of eddies and consequently the response
time of the particles. A representative eddy map of the flow field for a single ODT realization is shown in
Fig. 9(a), discussed further below.

In Fig. 8, the particle dispersion decreases with increasing Re of the jet. This is true for both the
experiments and simulations. We attribute this to the particles having higher St at higher Re, as shown in
Table 1. At higher St, the particles are less influenced by the gas fluctuations and disperse less. In addition,
at higher Re the exit velocity of the particles is higher (though somewhat lower than the gas exit velocity in
all cases). This decreases the particle residence time in the flow. The higher St at higher Re also contributes
to the crossing-trajectory effect, which decreases dispersion, when particles exit an eddy prior to the eddy
lifetime [34, 38, 32].

As the Re and thus St increase, Fig. 8 shows that the relative differences between the dispersion of the 60
and 90 pum particles decreases. This is true for both the experiments and the simulations. For the ODT, at
x/D = 50, the difference in dispersion of the 60 and 90 pm particles is approximately 180, 155, and 90 mm?
for Re = 10000, Re = 20000, and Re = 30000, respectively. The relative difference in the Stokes numbers for
the two particle sizes are nearly the same for the three Reynolds numbers (as shown in Table 1), nevertheless,
the difference between the dispersion of the two particle sizes decreases as Re increases. This is due to the
increase in the magnitude of the Stokes numbers, which decreases the magnitude of the dispersion, as noted
above, an effect previously documented with ODT particle modeling [34]. In the previous subsection, the
power law scaling of the velocity with /D was observed to approach similarity differently with increasing
Reynolds numbers when comparing the measurements and the ODT predictions; the relative differences in
dispersion observed here are consistent with those differences in the velocity evolution.

Figure 10 shows the mean axial particle velocity along the centerline for the two particle sizes in the
three different Re jets at different axial positions. Overall, there is a good agreement between numerical
and experimental results. Initially the particles are injected at a lower velocity than the fluid. At the
nozzle exit the particles tend to accelerate to catch up to the air, and then their velocity decreases due to
momentum exchange as the particles relax to the decaying gas velocity. The differences between the ODT
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Figure 8: Type-I dispersion of 60 um and 90 um particles in the 7mm jet with Re = 10000, 20000 and 30000.
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Figure 10: Type-I mean streamwise velocities of 60 um and 90 um particles in the 7mm jet.

and experimental results are due to the combination of modeling differences and the uncertainty in the inlet
gas conditions related to turbulence development.

Generally, particle dispersion is largely determined by the inertial response time of the particles, which
is measured by the Stokes number. Small Stokes-number (St < 1) particles are carried by the fluid around
the flow field and are in a quasi-equilibrium with the fluid, as were the hollow glass particles studied in the
previous homogeneous turbulence case [34]. In contrast, particles with moderate Stokes-number (e.g. 60 um
and 90 pm particles in current study) tend to move around the eddy edges because of the effects of flow field
strain. For a high Stokes-number case (St > 100, not shown here), the general dispersion pattern is similar
to that of the medium Stokes-number cases. However, since the particles are so slow to respond and follow

the fluid motion, even the motion of large eddy structures are modulated in the particle response.

4.2.2. Type-C particle-eddy interaction
In the Type-C model, the eddy events are instantaneous, but the particle-eddy interaction is continuous,
with particles influenced by the eddy during the ODT diffusive advancement in the flow evolution coordinate.
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Figure 11: Type-C dispersion of 60 um and 90 um particles in the 7mm jet with Re = 10000, 20000 and 30000.

This is illustrated in Fig. 9(b); the overlapping regions of eddy boxes in the figure suggest the possibility
of particle interactions with multiple active eddies simultaneously. Figure 11 shows the comparison of the
particle dispersion predicted by the Type-C interaction model to the experimental data Re = 10000, 20000,
and 30000. In general, the Type-C model is able to predict particle dispersion for this range of Stokes
numbers with a similar fidelity as the Type-I model, but there are important differences between the two
predictions that will be discussed in the next paragraph. At the highest Reynolds number the agreement
with the data appears to be somewhat better than that of the Type-I model. The axial velocities of the
particles for the Type-C model for two particle sizes and three Reynolds numbers are shown in Fig. 12,
which is similar to Fig. 10.

Here we go beyond the experiment and further examine the Type-C interactions. Figure 13 compares the
dispersion of tracer fluid particles to quasi-tracer particle in the case of Re = 30000. The quasi-tracer particle
is defined to have the same properties as a hollow glass particle in previous homogeneous turbulence study

[34]. Tt turns out that the Type-C model underpredicts the tracer limit because of the delayed dispersive
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Figure 12: Type-C mean streamwise velocities of 60 pm and 90 pm particles in the 7mm jet.
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Figure 13: Comparison of Lagrangian dispersion of tracer and quasi-tracer particles predicted by the Type-C model in the
7mm jet at Re = 30000.

motion of small Stokes particles, in contrast to the fluid particles; that is, the fluid particles are displaced
at the eddy-occurrence time and the Type-C quasi-tracer particles undergo the same displacement over an
eddy lifetime. Since the greatest dispersion is associated with the largest and longest lifetime eddies, this is
not a trivial difference. Figure 14 shows the comparison of the Type-I and Type-C interaction models for the
dispersion of 60 um and 90 um particles in the Re = 10000 jet. The Type-I model gives higher dispersion
than the Type-C model because, in the Type-I model, the full PEI occurs at the occurrence of the eddy,
thus enabling the particles to move earlier. This is consistent with Fig. 4. The large Stokes-number particles
tend to retain their velocities longer, and therefore their dispersions are more independent of the PEI type
during the early stage of the jet evolution in which the eddy time scales 7. are small. With the increase
of 7. to the order of magnitude of the inertial response time of large particles, the large particles begin to
show different dispersive behaviors for the two different interaction models. In contrast, the small particles
adjust to the local jet velocities more quickly, leading to significantly different dispersions between the two
interaction models much earlier in the jet.

Quasi-tracer dispersion in the Type-I and Type-C models is further illustrated by considering particle
number density profiles. Simulations were performed in the Re=20000, 7 mm jet using 1000 hollow glass
particles uniformly distributed across the domain. 2000 realizations were computed and the number density
distribution evaluated using 101 uniformly spaced bins. Figure 15 shows the results for Type-I and Type-C
models at five downstream locations. The profiles are shifted vertically for clarity of presentation. There is
some statistical noise in the profiles, but the differences between the Type-I and Type-C models are clear.

The Type-I model shows a nearly uniform profile, which is consistent with the continuity constraint for
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Figure 14: Comparison between the dispersion of 60 um and 90 um particles in the 7mm jet for Re = 10000 predicted by the
Type-I and Type-C models.

constant density flows. (The Type-IC model, not shown, behaves like the Type-I model.) Conversely, the
Type-C model has a trimodal distribution and does not obey the continuity constraint. In the Type-C
model, the number density is depressed in high shear regions of the jet; particles are transported from the
high shear region outward and inward towards the jet center, resulting in three peaks in the number density
profile. Effectively, the local particle dispersivity in the Type-C model is accentuated in the shear regions
since the particles feel the effects of eddies that occurred at earlier times, while the jet turbulence intensity
decreases with time. This results in a mean drift of particles out of the shear regions.

Such particle drift is also known to occur in stochastic particle dispersion models based on measures
of the turbulence properties as is commonly employed in both RANS and LES simulations for Lagrangian
particles. Maclnnes and Bracco observed this uneven particle dispersion in mixing layers and jets in the
tracer limit using discrete and continuous random walk models (DRW and CRW) [22]. Normalized number
density profiles there showed severe deviation in the particle density for the DRW and CRW models, peaking
greater than three and five times the value expected based on continuity for the CRW and DRW models,
respectively, in the jet configuration. Such model errors were attributed to gradients in the fluctuating fluid
velocities. This effect has also been investigated in the context of boundary layer transport of particles as
discussed in Iliopoulos and Hanratty [14]. Corrections have been developed to reduce this effect that take
advantage of knowledge of the average fluctuation velocities [22, 14].

The fluctuations in the Type-C particle density appear to occur due to the variation in the stream-wise
velocity fluctuation profiles and are related to the delay in the particle dispersion. That is, particle dispersion

occurs starting at the eddy event and is not completed until after the eddy lifetime. In developing flows
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Figure 15: Particle number density profiles for the Re=20000, 7 mm jet at five streamwise locations. The particle number
density is normalized by the freestream number density.

this leads to small inconsistencies in the particle and fluid dispersion for Type-C particles. In the Type-C
approach within ODT, the uneven particle dispersion is less significant than observed in, e.g. [22], possibly
due to the difference in the magnitude of stream-wise versus cross-stream gradients. Still, the fact that
Type-C interactions do not inherently match fluid continuity is a reason to prefer the Type-I model in cases

where the particles largely follow the fluid motion.

4.2.8. Type-1C particle-eddy interaction

As described in Sec. 2.2, the Type-IC model is considered to be the most robust PEI model in that it not
only allows the particles to interact with multiple eddies at the same time but also matches the tracer limit.
Figure 16 shows the comparison between experimental and simulation values of particle dispersion in the
7mm jet using the Type-IC model that reproduces the experimental results. The prediction of particle axial
velocities by the Type-IC model will not be shown here because its comparison to experimental measurements
is within 5% difference of the results of the Type-I model, shown in Fig. 10. The similarity between the
Type-I and Type-IC models is due to the relatively low line-directed particle velocity. The line directed
particle velocity is due to the turbulent advection, precluding strong transverse eddy trajectory crossing
effects. The tracer dispersion is also well predicted by the Type-IC model with the combined instantaneous
and continuous interactions. This is shown in Fig. 17, where the comparison of the radial dispersion of
quasi-tracer particles and tracer particles in the 7mm jet for Re = 30000 are plotted. This comparison

shows the correct model behavior.
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Figure 16: Type-IC dispersion of 60 um and 90 um particles in the 7mm jet with Re = 10000, 20000 and Re = 30000.
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Figure 17: Comparison of Lagrangian dispersion of tracer and quasi-tracer particles predicted by the Type-IC model in the
7mm jet at Re = 30000.

4.2.4. Lagrangian dispersion

The ODT simulation results for particle dispersion predicted by the three PEI models are presented in
Lagrangian form in Fig. 18. The ODT data are presented as dispersion statistics in the simulated ODT
time coordinate. Just as we converted the temporal ODT to the spatial domain for comparison above, the
experimental data was converted to the temporal domain in [15] as their quasi-Lagrangian results, which
were computed using the “average time-of-flight” of the particles to each measurement plane. (Those results
compared favorably with the “true” Lagrangian statistics that were also computed in [15].) Note that this
average time-of-flight to each measurement plane will depend on the local particle dispersion due to radial
velocity variation. This differs somewhat from the ODT treatment in that the implied time to reach a given
measurement plane in ODT is uniform on the line, as noted above. A spatial, cylindrical ODT model would
not have this limitation (though particles would still be constrained to the line). Similar to the previous
Eulerian predictions, small particles respond to the fluid quickly and approach the fluid velocity in shorter
times than large particles, thereby dispersing faster in the jet at a given Re. The Type-I and Type-1C
models are very similar, and give reasonable predictions. The results and comparisons of the model and
experiments are similar to those presented earlier, especially in terms of the trends. At early times, there
is some over prediction of the data, especially for the high Re 60 um cases, but this is more obvious on the
log scale presented where the dispersion is very low.

Lagrangian particle dispersivity, Dy, can be defined as
_apy_1a

D, — —
=9 at — 2dt

(Dp(t)Dp(t)), (26)
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Figure 18: Lagrangian dispersion of 60 um and 90 um particles predicted by the three model types in the 7mm jet. The dotted
lines show slopes of 2 and 1 for reference.

The particle dispersivity is estimated in the linear portion of the Lagrangian dispersion curves by using
a least-squares fit. Table 2 compares ODT simulation results of Dy to the values reported in Kennedy’s
study [15] at Re = 20000 and 30000. Dy, increases with increasing Reynolds number. Taylor’s theory [35]
shows that the mean-square dispersion of fluid particles in stationary homogeneous turbulence is a quadratic
function of evolution time and behaves linearly with time for long times-of-flight. Batchelor [3] analyzed the
transport of fluid particles in shear flow and showed that the dispersion increases linearly with time, and the
dispersivity keeps constant. However, a larger Stokes-number particle is not expected to have the behavior
of a fluid particle due to its finite inertia. As discussed before, the Stokes number of inertial particles
determines how they respond to the fluctuations of the surrounding flows. The particle would eventually
tend to respond to all the velocity fluctuations of the gas phase when the local particle Stokes number is
O(1).

Figure 18 suggests that an approximately linear region after about 20 and 30 milliseconds, respectively,
where they achieve a Stokes number of O(1). The figure includes dotted lines with slopes of 2 and 1 on the
log scale, which indicate the same power law scaling exponents. Table 3 presents the long time exponents
for the experimental data and the ODT simulations. These were computed by fitting a line through the last
three measurement points of the log(¢) and log(Dg) data. The values for the experimental data vary between
1.5 and 2.1, which the ODT are closer to 1. The Type-I and Type-IC values are similar, as expected, while
the Type-C values tend to be somewhat lower. Due to time-space transformation used as described above,
the scaling exponents of the ODT in the spatial coordinate will follow from those presented here in the

temporal coordinate through the relation = ~ v/t. That is Dg ~ 22
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Table 2: Particle dispersivity Dy, (dp = 60 wm and 90 um) in the 7mm jet.

dp \ Re \ Exp \ Type-1 \ Type-C \ Type-IC
60 pm | 20000 | 0.0079 | 0.0067 | 0.0039 0.0069
30000 | 0.010 | 0.0095 | 0.0053 0.0111
90 pm | 20000 0.0066 | 0.0037 0.0068
30000 0.0106 | 0.0063 0.0103

Table 3: Power law exponents at late times using the data of Fig 18.

dp \ Re \ Exp \ Type-1 \ Type-C \ Type-IC
60 pum | 10000 | 1.8 1.0 0.87 1.2
60 pum | 20000 | 1.7 0.87 0.86 1.1
60 pm | 30000 | 2.1 1.0 1.2 1.2
90 pum | 10000 | 1.5 1.3 1.0 1.3
90 pm | 20000 | 1.7 1.3 0.90 1.2
90 pm | 30000 | 1.6 0.94 1.0 1.2

4.8. Parameter sensitivity analysis

Previous studies, e.g., [12, 21], of parameter sensitivity of ODT parameters C, Z, and f;.s have formed
the basis for parameter selection for the jet evolution. In the present work, the fluid phase is not affected by
the particles, so we have set the ODT parameters to give reasonable agreement with the fluid evolution, and
then focus on the behavior of the particle model, including sensitivity to the 8, parameter. Variations in
the ODT parameters will affect the particle dispersion, but only through the effect on the fluid phase, and
reasonable agreement of simulations and experiments is viewed as a prerequisite for analysis of the particle
dispersion.

In order to investigate the crossing-trajectory effect of particles in homogeneous turbulence, in previous
work we conducted parametric analysis of 3, that relates the turbulence characteristics to the particle-eddy
interaction time [34].

In this section, sensitivity analysis is performed to establish a common basis on which 3, can be estimated
for particle behavior in shear flow among the three PEI models. The analysis is important to guide the
future developments and extended applications of the ODT multiphase models. The particle parameter 3,
determines the magnitude of the particle-eddy interaction in the ODT turbulence. High values of /3, lead
to possibly excessive interaction time by increasing the maximum interaction time scale 8,7, and reducing
the eddy velocity, AYra/(Bp7e), felt by the particles during interactions. On the other hand, when f, is
low, the particles interact with “fast” eddies for shorter times. Thus, two competing interaction effects on
the particles are controlled by 3, simultaneously.

Figure 19, 20 and 21 show f, sensitivity on the dispersions of 60 pm and 90 um particles in the 7mm
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Figure 19: B, sensitivity on the Type-I dispersion of 60 um and 90 um particles in the 7mm jet with Re = 10000, 20000 and
30000. Square symbols represent experimental measurements.

jet for Re = 10000, 20000 and 30000 predicted by the Type-I, -C and -IC interaction models. Five 3,
values are chosen, that is, 0.02, 0.04, 0.06, 0.08 and 0.1, which are similar to those used in the homogeneous
turbulence study [34]. Simulations using 8, = 0.08 give the best predictions to experimental data.

All eighteen cases show similar particle dispersion sensitivity to [, in the shear flow. The particle
dispersion decreases as (3, increases. Increasing 3, increases the eddy time scale t. = 3,7., making the
crossing-trajectory effect more important in limiting the interaction time. As discussed in Sec. 2.2, the
interaction time is the lesser of t. and the time to leave the eddy, with this latter time scaling with {/2¢7,
under the influence of quasi-steady gravitational settling. Smaller particles with short relaxation times easily
adapt to the fluid fluctuations and tend to interact with the eddies for a longer time, so their dispersion is
less subject to the crossing-trajectory effect. In contrast to the larger particles, the dispersion of the smaller
particles is reduced less with increasing 3,. For a given particle size, the particle dispersions in the high
Re case tend to decrease faster than the low Re case when the value of 3, increases. This is attributed to
enhanced trajectory crossing in the higher Re case.

In order to illustrate the 8, sensitivity in a direct way, a spreading parameter Sz at given x/D is defined

D? - D? _
Sﬂ(ﬁp,la/@pz):( o B)/ (o). (27)
pvﬁp,i} p’3
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Figure 20: B, sensitivity on the Type-C dispersion of 60 um and 90 pm particles in the 7mm jet with Re = 10000, 20000 and
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Figure 21: B, sensitivity on the Type-IC dispersion of 60 pm and 90 um particles in the 7mm jet with Re = 10000, 20000 and
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where Dﬁ is particle dispersion evaluated at /D = 50, and 3 is the average value of 8,1 and 3, 2. Large
Ss indicates high sensitivity of particle dispersion to 3,. Figure 22 shows Spet(0.02,0.1) as a function of
Re for the three different interaction models. The dispersion is more sensitive to 3, for larger particles and
at high Re due to the increasing impact of the crossing-trajectory effect. This effect was observed in the
previous study of multiphase homogeneous turbulence [34]. The Type-C interaction model is shown to be
significantly more sensitive to 3, than the two other models. This is because the Type-C model allows the

particles to interact with multiple eddies simultaneously that leads to more trajectory crossings.

5. Conclusions

This study has been concerned with the development of ODT multiphase models coupling a dispersed
Lagrangian particle phase to the fluid evolution using three particle-eddy interaction models (Type-I, -C,
and -IC), and the prediction of the transport of particles in turbulent round jet flows (and more general
shear-driven turbulent flows). The challenge in this work is to properly account for particle-eddy interaction.

The ODT multiphase model uses a Lagrangian framework to solve the transport equations of a particle as
it interacts with a succession of discrete turbulent eddies. The Type-I PEI model uses instantaneous particle-
eddy interactions and provides good predictions of particle dispersion, but does not allow the particles to
interact with multiple eddies at the same time. The Type-C PEI model resolves the above drawback of the
Type-I PEI model by using continuous PEIs for the finite evolution time. However, the Type-C model is
not able to capture the tracer limit, and therefore only accurately predicts higher Stokes-number particles.

The Type-IC PEI model combines the features of the Type-I and -C PEI models, and it is considered to be
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the most robust PEI model among the three.

The models compare favorably with experimental results for a range of characteristic particle response
times and jet exit velocities. The particle dispersion in Lagrangian form is initially quadratic for short
times-of-flight; the function becomes linear for long times-of-flight as the particle Stokes number becomes
O (1) and the particles behave more like tracer particles. The single model parameter 3, is used to scale the
eddy lifetime and fluid velocities felt by particles during the interactions. Particle interactions depend on
the lesser of the eddy lifetime and the eddy-crossing time, and this makes dispersion results sensitive to 3,
for finite Stokes-number particles. The sensitivity was evaluated and is greater for larger particles and for
the flows with greater overall acceleration (higher Reynolds number here) due to enhanced eddy crossing.

The ODT model has the benefit of resolving a full range of length and time scales with dynamically
evolved turbulence properties. Hence, the ODT particle model is expected to provide a novel approach to
modeling a wide range of dispersed particle flows, providing an alternative to methods that filter the fine
scales. Extension of the models to reacting flows, and flows with particle modulation of turbulence under

high particle loading conditions are under development.
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