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Abstract

ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the

jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air

jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities

are obtained as functions of axial position. The time and length scales of the jet are varied through control

of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter

(7mm), particle diameters (60 and 90 µm), and Reynolds numbers (10000 to 30000) are analyzed to obtain

the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental

measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction

of the dispersive transport of particles in a round jet. In this paper, three particle-eddy interaction models

(Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction

in jet flow.
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1. Introduction1

Particle and droplet dispersion in turbulent jet flows is an essential part of many important industrial2

processes. Typical examples include the dispersion of liquid fuel droplets in gas combustors and the mixing3

of coal particles by the injection jets of coal-fired power plants. The dispersion of the particles largely4

determines the efficiency and the stability of these processes.5

Many computational studies on gas-particle turbulent jets have been performed. Direct numerical simu-6

lations (DNS) have been used to study gas-particle jets at relatively low Reynolds numbers [5, 20]. However,7

DNS for a high Reynolds number flow is not computationally efficient. Therefore, simulation approaches are8
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required that do not resolve all flow scales in three dimensions. Many gas-particle flows have been studied9

in which the subgrid-scale turbulence is modeled using large eddy simulation (LES) [39, 1]. LES provides10

good means to capture unsteady physical features in the turbulence. The accuracy and the reliability of LES11

predictions depend on several factors, such as the accurate modeling of the subgrid-scale phase interactions.12

A promising alternative approach is the one-dimensional turbulence (ODT) model, which is able to resolve13

a full range of length scales on a one-dimensional domain that is evolved at the finest time scales [16, 18].14

ODT has been applied to many different homogeneous and shear-dominating reacting [8, 12, 13, 26, 25, 21]15

and nonreacting [16, 18, 2, 34] flows including homogeneous turbulence, channel flow, jets, mixing layers,16

buoyant plumes, and wall fires.17

Schmidt et al. [31] extended the ODT model to the prediction of particle-velocity statistics in turbulent18

channel flow. Punati [25], and Goshayeshi and Sutherland [10, 9] studied coal combustion and particle laden19

jets using ODT (using a version of the Type-C model noted below). In our previous study, one version of the20

ODT multiphase interaction model using an instantaneous (referred to as Type-I) particle-eddy interaction21

(PEI) model was presented to investigate particle transport and crossing-trajectory effects in homogeneous22

turbulence [34]. Here, we extend this previous ODT study to shear flows and present two new PEI models to23

analyze the behavior of individual particles in jets at high Reynolds numbers (Re). One of the models applies24

continuous PEI (referred to as Type-C) and the other combines instantaneous and continuous interaction25

features (referred to as Type-IC).26

The remainder of this paper is organized as follow: first, a summary description of ODT is presented,27

with details of of the PEI models given. This is followed by a presentation and discussion of the results of28

the Type-I, -C and -IC models, including comparisons to experimental results. Sensitivity of results to the29

single particle model parameter is discussed, and summary and concluding remarks are given.30

2. Numerical description31

2.1. ODT model32

One-dimensional turbulence (ODT) is a numerical method to generate realizations of turbulent flows33

using a stochastic model of the turbulent cascade on a one-dimensional domain [16]. The one-dimensional34

domain is formulated in the direction of primary velocity gradients and on which the governing equations for,35

e.g., mass, momentum, energy, and species conservation are solved. Most ODT applications, including that36

presented here, use Cartesian coordinates in which the y, x and z coordinates are the ODT domain-aligned,37

streamwise (direction for flow evolution), and spanwise directions, respectively.38

The ODT model consists of two main mechanisms: diffusive advancement, and advective eddy events.39

The diffusive evolution on the 1D domain is governed by transport equations (described below) that omit the40

nonlinear advective terms, which are modeled by the eddy events. These diffusive equations dissipate velocity41

fluctuations and kinetic energy, though this process is only significant at diffusive scales, and the eddy events42
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model the cascade of fluctuations to the dissipative scales. In general flows, nonlinear advection describes a43

vortex-stretching process that acts in three dimensions to transfer fluctuations to higher wave numbers and is44

costly to predict. In order to describe these nonlinear advective terms, ODT introduces the concept of the so-45

called “triplet map” that transfers fluctuations to higher wave numbers during eddy events. The triplet maps46

that make up the eddy events in ODT occur instantaneously. The rate of occurrence of this transfer by ODT47

eddy events is determined through a stochastic sampling of the evolving velocity field through a measure of48

the shear energy that is a function of the location on the domain and the eddy length scale (wavenumber).49

There are two approaches to evolve the ODT domain: (i) temporal evolution where each ODT realization is50

parameterized by (y, t) and represents a (possibly Lagrangian) time history, and (ii) spatial evolution, where51

each ODT realization is parameterized by (y, x). Even in predicting spatially developing flows like the jet52

in this case, most ODT simulations have been conducted using temporal evolution assuming a Lagrangian53

evolution of the flow domain to map results to the spatial evolution [12].54

2.1.1. Diffusive advancement55

In the Lagrangian frame of reference, choosing (y, t) as independent variables, the governing equations56

are derived from the Reynolds transport theorem and advanced in time along the ODT line [21]. Since there57

is no mass source term, no non-convection mass flux, and uniform properties inside the grid control volumes58

in one dimension, the finite-volume equation applied on the grid cells for the continuity equation is59

ρ4y = constant, (1)

where the density ρ is constant for the nonreacting flow considered here. The diffusive advancement evolves60

scalar equations of momentum (per mass) component Ui using a conservative finite volume method written61

here for a given cell:62

dUi
dt

= − 1

ρ4y
(σi,e − σi,w) , (2)

where σi,j is the viscous stress. The subscripts e and w represent east and west faces of the control volume.63

The viscous stresses for the three velocity components are represented as64

σi = −µdUi
dy

, (3)

where µ is viscosity. The spatial derivative appearing in this equation is evaluated at cell faces using a finite65

difference approximation between the two neighboring cells.66

2.1.2. Eddy events67

Turbulence is characterized by a three-dimensional vortex stretching process that is modeled in ODT68

through a representative sequence of eddy events as introduced at the beginning of this section. This model69

has two key components, the triplet-map representation of the length-scale cascade and the model for the70

rate of triplet maps. Turbulent eddies are sampled randomly on the domain as a function of the eddy71
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location, represented by their left bound, y0, and by their size, l, with the triplet map occurring over the72

region [y0, y0 + l] for the given sample. The triplet map spatially compresses the fluid property profiles73

within [y0, y0 + l] by a factor of three. The original profiles are replaced with three copies of the compressed74

profiles, with the middle copy spatially inverted. This mapping is described by75

f (y) = y0 +



3 (y − y0) if y0 ≤ y ≤ y0 + 1/3l,

2l − 3 (y − y0) if y0 + 1/3l ≤ y ≤ y0 + 2/3l,

3 (y − y0)− 2l if y0 + 2/3l ≤ y ≤ y0 + l,

y − y0 otherwise.

(4)

where f (y) and y are the original fluid location and the post-triplet-map location, respectively. The fluid76

outside [y0, y0 + l] is unaffected. The triplet map is measure preserving and all integral properties (e.g.,77

mass, momentum, and energy) or moments thereof are constant during a triplet map. Specifically, the kinetic78

energy is conserved, which is a desirable property because eddy events physically model the inviscid advection79

process. Immediately after the triplet map, kernel transformations are introduced that redistribute energy80

among the velocity components [37]. The transformations are meant to model the velocity randomization81

and so-called return to isotropy effect in turbulent flows. The kernel can be considered as a wave function82

that adds or subtracts energy from the eddy based on the amplitude of the wave. An eddy event maps the83

velocity component i as follows:84

Ui (y) −→ Ui (f (y)) + ciK (y) , (5)

where the kernel K (y) ≡ y − f (y) is the displacement induced by the triplet map and integrates to zero85

over the eddy interval. ci is the kernel coefficient of K (y) and is specified to ensure conservation of energy86

among momentum components. This form is written for constant density flows, as studied here. A variable87

density formulation is also available [2].88

The procedure to sample and accept an eddy follows that described in [21], and a summary description89

is provided here. The eddy rate density for an eddy occurrence at location y0 and length l is denoted as90

λe(y0, l, t) and is dimensionally τ−1e l−2 where τe is an eddy time scale given in Eq. 10. The rate of all eddies91

at a given time is Λ(t) =
∫∫

λe(y0, l, t)dy0dl, and the eddy PDF is defined as P (y0, l, t) = λ(y0, l, t)/Λ(t). (In92

the following, the y0, l, and t functional dependecies will be presumed.) Ideally, eddies would be sampled93

from this PDF, with occurrence times sampled with Poisson statistics with mean rate Λ. However, this94

is inconvenient and computationally expensive since the two dimensional eddy distribution would have to95

be constructed at each timestep, with a correspondingly complex sampling procedure involving numerical96

inversion. Instead, we use a thinning method [19] coupled with the rejection method [24]. In a thinning97

process, we can sample in time as a Poisson process with mean rate αΛ where α > 1, and then accept eddies98

with probability Pa = Λ/αΛ. In the rejection method, rather than sample from the unknown P , we sample99
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eddies from a presumed distribution P̃ , and accept with probability Pa = P/βP̃ , where β is some constant100

(or in general, some function) so that Pa < 1 (i.e., β > 1). Together, these give101

Pa =
Λ

αΛ

P

βP̃
. (6)

Now, take ∆ts = 1/αΛ, insert ΛP = λ = 1/τel
2, and absorb 1/β into ∆ts so that ∆ts/β ⇒ ∆ts (since α > 1102

and β > 1 are arbitrary), to give103

Pa =
∆ts

τel2P̃
. (7)

Note that 1/τel
2 in Eq. 7 gives the actual eddy rate determined from the sampled instantaneous velocity104

field as given below in Eq. 10. choice of P̃ may affect the efficiency, but not the accuracy. We use105

P0(y0, l) = g(y0)f(l). (8)

The eddy location distribution, g(y0), is taken to be uniform over the domain while the eddy size distribution,106

f(l), is assumed to be [21]107

f(l) = Al exp(−2l̃/l), (9)

where l̃ is the most probable eddy size (typically 0.015 times the domain length) and Al is the PDF nor-108

malization constant. Eddy occurrence times are sampled as a Poisson process with mean rate ∆ts, with the109

eddy size and location sampled from f(l) and g(y0). Each candidate eddy is accepted with probability Pa110

given above. ∆ts is adjusted during the simulation to ensure that the average Pa is of order 0.02.111

The eddy time scale τe is obtained using a measure of the available energy at wavelength l. In the present112

constant density work (without buoyant or other forms of energy), τe is computed using scaling arguments113

to relate to the available kinetic energy, which is given by Ekin = ρ
(
U2
K + V 2

K +W 2
K

)
[16],114

1

τe
= C

√
2

ρl2
(Ekin − ZEvp). (10)

To obtain Ekin the velocities are integrated across the kernel function K (y) as115

UK =
1

l2

∫ y0+1

y0

U(f(y))K(y)dy. (11)

In Eq. 10, Evp is included as a viscous penalty to restrict unphysically small eddies,116

Evp = ρν/l, (12)

where ν is the kinematic viscosity of the fluid.117

Beyond the basic elements of Eq. 11 as a measure of velocity fluctuations, the form of Eq. 11 is not118

fixed, and other forms have been used [16]. In Eq. 10, C is a constant model parameter relating the kinetic119

energy formed from Eq. 11 to the eddy time scale in Eq. 10. C directly scales the probability of an eddy120

occuring as per Eq. 7. Similarly, a constant, Z, is introduced for the viscous energy dissipation, Evp. C121
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plays an important role in the rate for the turbulent cascade and the flow evolution is sensitive to it, as122

the rate of evolution of the flow is directly proportional to C. Z is provided more as a numerical expedient123

to reduce the occurrence of sub-Kolmogorov scale eddies; these small eddies affect transport less than the124

viscous evolution. A maximum value of Z will exist above which there will be an unphysical buildup of125

fluctuations above the Kolmogorov scale that is visible in spectra (not shown here).126

In unbounded systems, like jets, eddy events may result in the occurrence of unphysically large eddies127

that adversely affect the overall mixing, and a mechanism for suppressing such eddies is required. This is128

not normally needed for bounded systems (such as channel flows), or other cases (such as stratification)129

that otherwise limit the mixing. There are several mechanisms of large eddy suppression that have been130

developed [12, 13, 18, 2]. The method favored for jet flows is an elapsed time method in which the eddy time131

scale τe can be compared with the simulation elapsed time t; eddy events are allowed only when t ≥ βlesτe,132

where βles is a model parameter. βles has a similar (but inverse) effect of C [12]: larger values of βles133

suppress larger eddies, and delay the flow evolution.134

In summary, there are three ODT parameters C, Z, and βles that control the evolution of the jet. C is135

the eddy rate parameter and scales the time evolution of the jet. Z suppresses unphysically small eddies and136

the overall flow is insensitive to this parameter. βles suppresses large eddies and has a similar, but inverse,137

effect as C. In the next section, we discuss the Lagrangian particle model, where an additional parameter138

βp is introduced.139

2.2. Lagrangian particle model140

The velocity and trajectory of particles are described by a Lagrangian approach in this study. Like the141

ODT treatment of the continuous fluid phase, the action of turbulent eddies is handled in a special manner,142

referred to here as the particle-eddy interaction (PEI), as compared with diffusive processes characterized143

by the standard approaches described in Sec. 2.2.1. The triplet map is implemented as an instantaneous144

process, and the action of the triplet map on the particle can be treated either as an instantaneous or145

continuous process as observed in the flow evolution coordinate. The motion of the particles is traced146

as they interact with a random succession of turbulent eddy motions, each of which represents a Type-I147

(referred to as instantaneous), Type-C (referred to as continuous), or Type-IC (referred to as instantaneous148

and continuous) interaction between a particle and a triplet map. In the Type-I model, the PEI is represented149

as an instantaneous change of the particle position and velocity in the same manner that the triplet-map150

itself is an instantaneous event. In the Type-C model, the PEI occurs during the flow evolution by mapping151

the equivalent triplet-map space-time influence to the flow evolution. In the Type-IC model, the particles152

undergo the Type-I PEI when they are in the eddy region at the time of the eddy occurrence, and experience153

the Type-C PEI if they are initially outside the eddy, but move into the eddy region during the flow evolution.154

Dispersive transport property statistics of particles are obtained by computing a statistically significant155
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ensemble of flow realizations and particle trajectories. Schmidt [28] proposed several particle models that156

are similar in nature to the ones here, and implemented the Type-I model to study particle behavior in a157

different context [31, 30]. A version of the Type-C model was used by Punati [25] and by Goshayeshi and158

Sutherland [10, 9]. In this section, we summarize the implementation of the models, and more importantly,159

discuss and compare different types of particle-eddy interactions.160

A particle-eddy interaction occurs when both the particle and the triplet map occupy the same space-161

time. To predict the interaction, a finite temporal interval and spatially cubic region, consistent with162

turbulence isotropy, is assumed for each eddy based on the eddy time and length scale, τe and l. This163

spatial-temporal region is referred to as the eddy box. Within the eddy box, the particle evolves in the x, y,164

and z dimensions as described in the following subsections, and the PEI ends when the particle leaves the165

idealized eddy box or when the eddy lifetime has passed. The eddy lifetime,166

te = βpτe (y, l; t) , (13)

is related to the eddy time scale, τe(y, l; t), but these quantities should not be expected to be equal; the167

proportionality between these times is represented by the parameter βp.168

In many flows, the particles typically leave the box at the end of the eddy lifetime, te, but if there is169

significant relative motion between particles and eddies, the particles will depart spatially. This latter spatial170

crossing of the eddy boundary is referred to in the literature as the crossing-trajectory effect [7]. This use171

of an eddy length and lifetime to predict the eddy influence on the particles is common to the stochastic172

approaches. In the ODT model, the fluid evolution results in a full spectrum of dynamic and flow-dependent173

eddy scales, as opposed to only predicting integral scale eddies (or scales sampled from some static eddy174

distribution). The selection of the eddy lifetime in the ODT formulation is equivalent to the selection in175

other modeling approaches of te, and a proportionality appears there between the integral turbulent time176

scale evaluated from, for example, the turbulent kinetic energy and its dissipation rate. In approaches we177

will refer to as discontinuous random walk, an eddy-velocity fluctuation is selected to act for an eddy lifetime178

[40, 11, 33]. Another class of models referred to as continuous random walk approaches sample fluctuating179

velocity increments [4, 41, 23].180

2.2.1. Particle evolution equations181

For the simulation of particles, two assumptions about the behavior of particles are made: (i) all particles182

are rigid spheres with identical diameter dp and density ρp; (ii) only the drag and gravity forces of particles183

are considered because the ratio of the particle-to-fluid material density is high.184

Under the above conditions, the momentum equation of a single particle at position r with velocity u at
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time t can be described using Newton’s second law:

dri
dt

= Up,i, (14)

dUp,i
dt

= −Up,i − Ug,i
τp

f + gi, (15)

where the subscripts p and g represent particle and gas, respectively. The equation shows that the rate of185

momentum change is equal to the sum of external forces on the particle. The first and second terms on the186

right-hand side are the drag force between the particle and surrounding fluid and the gravitational force on187

the particle, respectively. The response time τp of a particle with mass mp in the fluid of viscosity µ, based188

on Stokes flow, is given by189

τp =
mpCc
3πdpµ

. (16)

Clift et al. [6] suggested that for a particle slip-velocity Reynolds number Rep < 200, which is true for most190

practical dilute flow systems, the nonlinear correction factor f needs to be added,191

f = 1 + 0.15Re0.687p , (17)

where Rep = (ρg|~vp − ~vg|dp)/µ. Also the Cunningham slip factor Cc with mean free path of fluid λ is192

Cc = 1 +
λ

rp

[
1.257 + 0.4 exp

(
−1.1

rp
λ

)]
, (18)

where rp is the particle diameter.193

All three components of the particle momentum are computed using the above equations, but the particles194

are constrained to the line. The off-line velocity components are used in the PEI models discussed below.195

Constraining the particles to the line is a limitation of the ODT model.196

2.2.2. Type-I particle model197

During the ODT diffusive advancement, Eq. (15) is solved for the three components of the particle198

velocity using the local components of the ODT gas velocity in the x and z directions, and zero for the199

ODT line-directed (y) gas velocity (since y motions are governed by eddy events). That is, dispersion in200

directions other than the ODT-line direction naturally occur during the diffusive advancement described in201

Sec. 2.1.1.202

The interaction between a particle and an ODT eddy event is defined as both the particle and the triplet203

map occupying the same space-time. For the Type-I PEI, the particle-eddy interaction is instantaneous204

in the simulation advancement time t. However, to capture the interaction, a finite temporal interval and205

cubic spatial region of each eddy (of side-length l) is assumed based on its own time and length scale. The206

interaction between particles and an eddy evolves in three directions governed by the x, y and z components207

of the above modified Stokes’ law. The interaction is chosen to have the same length scale in all three208

directions, though other modeling choices could be appropriate. The particle-eddy interaction ends when209
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Figure 1: Schematic diagram of the particle-eddy interactions in the interaction and real time coordinates. The figure also
illustrates the need to treat the so-called double counting effect. Dashed lines represent the trajectory of a ballistic particle.
The rectangular box (left) and vertical line (right) represent eddy events. (Adapted from Schmidt et al. [31])

the particle leaves the idealized eddy or when the eddy lifetime has passed, whichever comes first. The ODT210

eddy events affect only the line-directed particle velocity and position. However, the particle drag law is211

solved in all three directions in order to determine the interaction time of a particle with an eddy. A new212

temporal coordinate is needed which is called the interaction time coordinate, θ, which describes how long213

the particle interacts with the eddy. Simply speaking, the particle-eddy interaction is instantaneous in real214

time coordinate t while it exists for finite time in interaction time coordinate θ. Figure 1 shows (among215

other things) the eddy effect in the interaction time coordinate (left) and real time coordinate (right) in the216

y direction. When θixn > te, the interaction ceases even if the particles are still in the eddy box, where θixn217

is interaction time between the particles and eddy. When θixn ≤ te, the particles may exit the eddy box by218

reaching the boundaries of the box.219

Eddy velocities in the x, y, and z directions are defined to describe the drag force between the particle220

and the eddy so that particle y positions and velocities after the interaction may be determined,221

Ue = Ug, (19)

222

Ve =
4YTM
te

, (20)

223

We = Wg. (21)

Eddy velocities Ue and We are the respective x and z ODT velocity components at the particle location.224

The eddy velocity Ve in the y direction is the turnover velocity of a fluid parcel containing the particles225
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Figure 2: Illustration of the triplet map implementation. Jagged lines indicate eddy edges; solid lines are cell boundaries.

during the triplet map. 4YTM is the displacement of a notional Lagrangian fluid particle by the triplet map226

at the particle location, as described in the following paragraphs.227

As shown in Fig. 2 of the triplet mapping operation, there are three distinct displacements of a given228

fluid element that correspond to its three subdivisions. Unlike the fluid elements, the particles cannot be229

subdivided, which requires the determination of which of the three distinct fluid displacements to use in230

Eq. 20. There are two ways to make this determination. One is to use the discrete implementation of the231

triplet map (as has been done in some previous ODT implementations) to assign a unique displacement of232

the fluid that contains the particles. (The present ODT uses a continuous implementation of the triplet233

map on an adaptive computational grid.) A disadvantage of this discrete approach is that the first and last234

fluid cells of the eddy subdivisions are not moved and 4YTM = 0 in Eq. 20. Neglecting small displacement235

near eddy endpoints has a disproportionate impact near walls, where these small displacements can be the236

dominant mechanism [28]. This undesired affect could be minimized by using high spatial resolution, but237

that significantly increases computational costs.238

Another more cost-effective approach is a random selection procedure. In the infinitely high-resolution239

case, all the flow properties including particle distribution are statistically uniform at the fine scale. Any240

location class of particles is equally distributed among the eddy fluid cells that correspond to three distinct241

field subdivisions of given fluid element. This indicates that a given particle can be statistically localized to242

any of the three pre-mapped subdivisions with equal probabilities. Therefore, a random selection of one of243

the three fluid parcels for the particle environment is used in this work. The procedure is illustrated in Fig. 2244

by the open and filled circles that denote notional Lagrangian fluid elements. The notional fluid elements245

are positioned on the triplet map on the region of the discretized ODT domain. The letters a, b, and c246

represent the values of fluid profiles in the given cells and serve to identify the cells. After the triplet map,247

the original profile (a, b, c) becomes (a, b, c; c, b, a; a, b, c). The original scalar profile is compressed spatially248

by a factor of three, and a copy is placed on the first and last third of the eddy domain, whereas the profile249

is spatially inverted for the middle third. The notional Lagrangian fluid element in a cell with a given fluid250
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property (e.g., a, b, or c) will be mapped to a random one of the three post-mapped locations with the same251

fluid property. This is shown in the figure as the open circle in the cell b is moved to the cell b1 (though it252

could have been cell b2 or b3), whereas the filled circle in cell c is mapped to cell c2 (though it could have253

been cell c1 or c3).254

With eddy velocities specified as in Eqs. (19-21), the drag law is integrated to determine the particle-255

eddy interation time. The particle is initially located in the center of the eddy box in the off-line directions,256

and the eddy box is advected with the x and z eddy-velocity components.257

Schmidt et al. [31] found that since the particle transport is implemented instantaneously, but the258

momentum equation of particles is integrated for the interaction time, the concurrent diffusive advancement259

would result in a double integration effect. To elaborate this effect, consider a particle that has infinitely260

large inertia. The particle will not be affected by the eddy. However, as Fig. 1 shows, the double integration261

effect will produce the shift of the particle velocity and position, which violates physical behavior. To avoid262

this, the particle velocity V newp and position ynewp resulting from the particle-eddy interaction are computed263

by taking the difference of the integration solution of the momentum equation with and without the eddy264

velocity. This is illustrated schematically in Fig. 3. That is,265

V newp = 4Vp = V ip (θixn)− V np (θixn) , (22)
266

ynewp = yoldp +4yp = yoldp + yip (θixn)− ynp (θixn) , (23)

where superscript i and n indicate with and without the effect of the eddy, respectively. The result is a267

particle-eddy interaction with the expected behavior in both the tracer particle limit (particles stay with the268

fluid) and in the ballistic limit (particles are no displaced by eddy events) avoiding the potential of artificial269

dispersion suggested in Fig. 1.270

2.2.3. Type-C particle model271

The Type-I PEI model described above leads to an instantaneous displacement and velocity change of272

the particles at the moment of the occurrence of the triplet map. The Type-C PEI model differs from the273

Type-I model in that the PEI occurs continuously during the continuous diffusive process. While the eddies274

occur instantaneously, the effect of the eddies on the particles is implemented over a finite duration during275

the ODT diffusive advancement. As in the Type-I interaction, each eddy is modeled with a cubical eddy276

box that exists spatially over the domain [y0, y0 + l] and temporally over the eddy lifetime te. Unlike the277

Type-I eddy, the interaction is not implemented instantaneously, but rather the eddy velocity is mapped to278

a spatial-temporal eddy box that starts at and continues after the eddy event. Each eddy box is advected279

in the off-line directions, and the advection velocity is taken as the average local fluid velocity in the box.280

The crossing-trajectory effect is captured as the particles move relative to the eddy.281

The line-directed eddy velocity is taken as ±(2l/
√

27)/βpτe based on the root mean square displacement282

of fluid particles in an eddy due to a triplet map [2], and the sign is randomized. In the eddy space-time283
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Figure 3: New position and velocity of a particle in the interaction time coordinate (left) and real time coordinate (right) after
a Type-I particle-eddy interaction. (Adapted from Schmidt [31].)

map, it often happens that eddy boxes will overlap. In this case, the line-directed velocity component for a284

given particle consists of the sum of velocities for each eddy box in which the particle is located. The off-line285

fluid velocities are taken as the local gas velocity on the line.286

A significant drawback to the Type-C interaction is that it does not obey the tracer-particle limit. The287

fluid is mapped instantaneously to new locations during an eddy event, but the particles respond to this288

fluid motion over a finite time during the diffusive advancement. This may not be statistically important in289

particle dispersion studies, but in applications such as combustion, where particle temperature-history effects290

are important, the correct tracer-limiting behavior is important. Another potentially important difference291

is an apparent time shift. The result of an eddy triplet map is observed at the time of the triplet map in292

the Type-I eddies while there is a delay of time βpτe for the same net effect to be observed with the Type-C293

eddies. The two models are compared further in the next section.294

2.2.4. Instantaneous and continuous particle-eddy interaction295

In this section, the fundamental difference between the Type-I and Type-C particle interaction imple-296

mented in this study is discussed. In a Type-I interaction, the particle has an instantaneous displacement in297

the ODT-aligned direction when it interacts with an eddy. That is, the particle goes through a discontinuous298

displacement due to the eddy interaction, and then the interaction will expire immediately because the eddy299

event implementation is instantaneous. Particles interact with a single eddy at a time in the simulation300

time frame, although the effective eddy lifetimes might overlap. In contrast to the Type-I interactions, there301

is no instantaneous displacement of particle motion in the Type-C interaction. In the Type-C interaction,302
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Figure 4: Type-I vs. Type-C particle-eddy interaction. Shadow boxes represent the eddy effect over the spatial domain
[y0, y0 +L] and temporal period βpτe; single solid lines represent the particle trajectory; the dashed line represents the particle
“interaction” trajectory due to the particle-velocity history in the Type-I interaction [34].

although an eddy event is instantaneous, the eddy effect on particles is allowed to exist in the real time303

coordinate for the eddy duration. In this sense, the Type-C interaction results in a “delay” in the particle304

dispersion as Fig. 4 shows. In the Type-C interaction, a particle has continuous interactions with eddies no305

matter when and where it enters the same space and time region as the eddy has. It is quite likely that one306

particle can feel the effects of multiple eddies simultaneously. Implementation of the Type-C interactions in307

ODT requires keeping track of the positions of all eddies from the time each eddy is born until that indi-308

vidual eddy’s duration has expired. In the Type-I PEI model, the particles are less likely to interact with309

the eddy event when the particle-line velocity becomes larger. Assume that the velocity component in the310

line direction reaches the infinite limit; in that case, there is no way that the particle has a chance to enter311

the eddy because particle trajectories and the triplet maps are parallel lines in the space-time plane y − t.312

This is not a problem for many typical flows in which the particles move with similar or smaller velocities313

than the fluid. In contrast, the Type-C PEI model “extends” the eddies in the real time coordinate and314

thus allows the particles to interact with eddies when they occupy the same spatial-temporal coordinate.315

The Type-C interaction is advantageous for cases in which particles move very quickly in the line direction.316

Examples of such flow might include shock-driven turbulence or buoyancy dominated flows where particles317

may move in a line direction corresponding to strong density gradients driving the mixing process.318

A problem with the Type-C model would occur in the case of two-way coupling between the fluid and319

particle phases for non-passive particles. The instantaneous triplet maps would need to account for the320
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influence of the particles on the gas phase. But in the Type-C interaction, the particle motions occur321

continuously and later than the instantaneous triplet maps that affect the fluid. So there is an inconsistency322

between the fluid and particle phases that would be difficult to model. Conversely, two-way coupling can323

be easily done in the Type-I model using kernel functions to account for particle-fluid momentum transfers324

in a manner similar to the way energy is distributed among velocity components during triplet maps in the325

current ODT model, (and is the subject of future work).326

The particles are able to interact with an eddy in several different ways:327

1. The particles could overlap the eddy box in line direction at the time the eddy is born;328

2. The particles could enter the eddy box through the offline sides (Type-C only);329

3. If the eddy is still active, the particle could re-enter the eddy through the sides of the box (Type-C330

only).331

In the implementation of the Type-C interactions, a new scheme is proposed to allow eddy boxes to move332

in the x, y, and z directions that is similar to the idea of the Type-I interaction in this sense. That is, only333

the relative motion of the particle and eddy box in all directions is recorded until either the particle crosses334

out of the box or the eddy lifetime ends. This is very important for the Type-C interaction to accurately335

capture the effect of crossing trajectories.336

The eddy box is advected in the x and z directions using the x and z gas velocity components at the337

initial particle location for Type-I and Type-C models. Schmidt et al. used the eddy-averaged x and z gas338

velocities for their Type-I simulations [31, 29, 30]. While there is some appeal in using an eddy-average339

velocity, there are inconsistencies that arise in certain cases. These are most readily observed in the case of340

tracer particles. Particles that exist in fluid elements with velocities differing from the eddy-average velocity341

can cross out of the eddy even though they remain associated with fluid elements. This results in a shorter342

eddy interaction time and less dispersion than that of the actual fluid elements. Naturally, this breaks the343

coincidence of fluid and tracer particles in the Type-I interactions. This early crossing effect is severe for344

tracer particles because we find that the parameter βp is relatively small leading to significantly reduced345

tracer dispersion when the eddy-average box velocity is used. It is possible to alter model coefficients to346

recover the appropriate particle dispersion, but differences will remain between the fluid and tracer evolution,347

and we find that the dependence of the dispersion on the Stokes number (or particle Froude number) is348

not correct. For the Type-C eddies, the particles do not match the tracer limit and the sensitivity to the349

local versus eddy-averaged velocity is less significant. Further, the application of the local velocity is more350

complicated for the Type-C eddies since it evolves in time. For these reasons, the simpler eddy-averaged351

velocity is employed for the Type-C interactions, but we recommend the local fluid velocity for Type-I352

interactions.353
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Figure 5: Two illustrative Type-IC particle-eddy interactions.

2.2.5. Type-IC particle-eddy interaction354

In order to overcome the violation of tracer limit of the Type-C model, another alternative interaction355

model is introduced here, which is referred to as the Type-IC model. As in Type-C, the eddy is allowed356

to exist in real time for the duration of the eddy lifetime. However, any particle that overlaps an eddy at357

the eddy event time undergoes a Type-I interaction, and is not allowed to interact with the same eddy in a358

continuous Type-C interaction, even if the particle leaves the eddy interaction box and comes back into the359

box by one of the sides of eddy box. This is because the Type-I interaction already takes into account the360

entire lifetime of the eddy. Conversely a particle which first enters an eddy box from one of the sides does361

not undergo a Type-I interaction, but will interact with that eddy in a Type-C manner, and may interact362

with that same eddy as many times as it (possibly) re-enters the box. It is worth noting that the Type-IC363

interaction model is able to match the tracer particle limit because in order to have a Type-C interaction a364

particle must enter an eddy interaction box from either of the sides, and a tracer or gas particle can not do365

so.366

Figure 5 shows two possible particle trajectories in the Type-IC particle-eddy interaction context. In367

Fig. 5 (left) the particle first interacts with eddies 1 and 2 sequentially in Type-I interactions (I1 and368

I2). Then it enters eddy 3 through the bottom side of the eddy box and experiences a Type-C interaction369

(C3). Although the particle re-enters eddy 1 three times and eddy 2 once, it does not undergo any Type-C370

interaction with them because the Type-I interaction with eddy 1 and eddy 2 have already been taken into371

account at the beginning. In Fig. 5 (right) the particle has a Type-C interaction with eddy 1 (C1), and372
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changes direction in a Type-I interaction with eddy 2 (I2). Then it re-enters eddy 1 (Type-C) (C3), enters373

eddy 3 (Type-C) (C4), where it changes direction again, and finally enters eddy 1 (Type-C) (C5).374

3. Turbulent jet configuration375

3.1. Experiments376

In this study the turbulent dispersion of particles in shear-dominated turbulent flows is studied. Mea-377

surements of particle dispersion in round turbulent jets was studied by Kennedy and Moody [15]. These378

measurements span a range of Reynolds and Stokes numbers, which were obtained by varying the jet velocity,379

nozzle diameter, and particle diameter. Reynolds numbers based on the jet velocity (air) range from 10000380

to 30000. Fully developed turbulent flow conditions at the nozzle exit are used. Hexadecane droplets with381

number average diameters of 60 and 90 µm are used for the study. The mean particle density is 4990 kg/m3.382

Monodisperse particles were generated in the experiments with a size uncertainty of ±2µm [15]. The air383

used in the jet is at room temperature and pressure and thus the particles are essentially non-vaporizing.384

The particle loading is small with more than 1000 droplet diameters separating particles so that particles385

do not alter the fluid velocity, nor do they modulate the turbulence; this was verified by the measurements386

of Kennedy et al [15].387

3.2. Simulations388

The ODT simulations are carried out in a temporally evolving planar jet configuration, which has char-389

acteristics similar to those of a spatially evolving round jet [17] and has been routinely applied in ODT390

simulation, e.g., [12, 8, 10]. The similarity scaling of temporal turbulent planar and spatial round jets is391

illustrated by constant-density momentum scaling [17]. The width and axial velocity of a spatial round392

jet evolve as W ∼ x and u ∼ 1/x, respectively. The scalings for a temporal planar jet are W ∼
√
t and393

u ∼ 1/
√
t [36]. These time scalings also follow from the treatment in Schlichting [27, p. 731-2]. If we394

integrate dx = udt using u ∼ 1/
√
t we get x ∼

√
t so that the x scaling of the temporal planar jet simulated395

here is the same as the experimental spatial round jet.396

To compare the temporal evolution with the spatial experimental measurements, a convective velocity,397

Um(t), is required to transform the evolution time (t) to the streamwise spatial coordinate (x), which is398

obtained from the ratio of the momentum flux, Ṁ , to the mass flux, ṁ,399

Um(t)− U∞ =
Ṁ

ṁ
=

∫∞
−∞ ρ(u(y, t)− U∞)2dy∫∞
−∞ ρ(u(y, t)− U∞)dy

, (24)

where U∞ is the axial velocity of the gas phase far from the jet (U∞ = 0 in this study) [12]. This assumption400

implies that all points on the line reach a given measurement plane at the same time. The initial gas velocity401

conditions for the turbulent planar jet, Ug0, are given in Table 1 as a function of the Reynolds number, Re,402

and the jet exit diameter, D. The streamwise velocity at the inlet is specified using the following hyperbolic403
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Table 1: Initial conditions of gas phase and particle phase (60, 90 µm), and particle nozzle Stokes number in the 7 mm jet
(St = τpUg0/D).

Re = 10000 Re = 20000 Re = 30000

Ug0 21.5 m/s 43 m/s 64.5 m/s
Up0 (60µm) 17.5 m/s 30 m/s 46 m/s
St (60µm) 26 53 77
Up0 (90µm) 15 m/s 32 m/s 51.5 m/s
St (90µm) 61 122 178

w 

A

L1 L2 

Ug 

y 

Figure 6: Schematic of the tanh profile used to specify the initial streamwise velocity profile.

tangent function to smoothly transition the velocity in the radial direction and is shown schematically in404

Fig. 6,405

Ug(y) =
A

2

[
1 + tanh

(
y − L1

w

)(
1− 1

2

(
1 + tanh

(
y − L2

w

)))]
, (25)

where A is the velocity amplitude, w is the transition boundary layer width, and L1 and L2 are the middle406

position of the transitions. Particles with different diameters are injected into the centerline of the jets.407

The simulation domain width is 40D and the ODT model evolves for 0.11 s for all the cases, which is408

approximately 70 x/D. The initial temporal resolution is 0.2 µs, the initial spatial resolution is 50 µm,409

and an adaptive meshing algorithm is used, which refines the mesh as fluctuations cascade to smaller length410

scales. The initial conditions for the dispersed phase are given in Table 1, in which the initial particle axial411

velocity, Up0, along the centerline is extrapolated from experimental results. The results reported here are412

collected over 512 ODT realizations, which are enough to provide stationary ensemble statistics. The ODT413

parameter values are C = 16, Z = 50 and βles = 0.4 for all the ODT simulations.414
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4. Results and discussion415

4.1. Jet evolution416

In order to compare particle results between our ODT results and experimental data, it is first necessary417

to compare the gas-phase flow characteristics. The ODT-predicted streamwise velocity evolution at the418

centerline is compared with the experimental measurements [15] in Fig. 7. The mean and fluctuating axial419

velocities are normalized by the jet exit velocity Ug0, and the position is normalized by the jet exit diameter420

D. The decay of the centerline mean and root-mean-square velocities, Uc and Uc,rms, are typical of free421

turbulent jets. Overall, the numerical results agree well with experimental data. The ODT mean velocity422

decays somewhat faster than the experiments at approximately x/D > 30. The ODT exhibits a Reynolds423

number similarity and the profiles are very similar for the three simulations, while the measurements exhibit424

some Reynolds number dependence as shown in the figure. This may be indicative of some differences in425

the development of turbulence and boundary layers within the jet nozzle; we have not attempted to correct426

for this in the ODT simulations.427

The best fit line through logUc vs log x is considered. At x/D > 60, the ODT gives slopes of -0.79, -0.95,428

and -0.98 for the Re=10000, 20000, and 30000 cases, respectively. The results appear to be asymptotic to429

-1 with increasing Reynolds number. The experimental data are more difficult to fit. There is an obvious430

“jog” in the Re=20000 data at x/D = 40, and in the Re=30000 data at x/D = 52. If we take a fits through431

the last 4 points in the Re=10000 data and through the points before the “jog” in the other two sets, the432

slopes are -0.72, -0.71, and -0.71 for the Re=10000, 20000, and 30000 cases, respectively. For reference,433

in the region 30 < x/D < 40 (corresponding to the slope for the Re=20000 experimental case), the ODT434

slope ranges from -0.82 to -0.86 for the three cases. We note that the Reynolds numbers studied are not435

particularly high, and that convergence to a slope of -1 is expected as Re increases.436

The ODT velocity fluctuations show the same qualitative trend as the experiments, but the peak that437

occurs at x/D ≈ 5 is over-predicted by the ODT by a factor of two. At later times, x/D > 20, the ODT438

velocity fluctuations are in good quantitative agreement with the experiments. This is important since most439

of the particle dispersion (discussed below) occurs at x/D > 30 in the experiments and simulations.440

4.2. Particle phase441

The results of particle transport are presented in this section, specifically, ODT and experimental results442

for a turbulent multiphase round jet are compared. A detailed analysis is conducted to assess the performance443

of the three ODT multiphase interaction models described in Sec. 2.2. In this study, the βp value used in444

the jet flow for all the interaction models is 0.08.445

4.2.1. Type-I particle-eddy interaction446

The particles have instantaneous displacements during the Type-I interaction with the eddies. The447

dispersion of particles is predicted for nonzero gravity (g = 9.8m/s2) as a function of normalized axial448
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location x/D. Figure 8 compares the dispersion data for ODT cases of 60 µm and 90 µm particles to449

experimental measurements for Re = 10000, 20000 and 30000 using the Type-I interaction model. Particle450

dispersion Dp is defined as the root mean square displacement of the particles from the jet centerline,451

computed using the ensemble of ODT realizations. The particle dispersion increases with the jet evolution.452

Particles with larger Stokes numbers disperse less and the ODT Type-I interaction model provides good453

qualitative predictions of this. In the upstream part of jet (x/D < 30), the particles are not strongly affected454

by the fluid flow, due to a lack of large eddy structure. As the large eddies that account for the bulk of the455

spreading appear later, the particles are transported away from the center of the jet, resulting in non-uniform456

particle dispersion patterns with particle size.457

The particle movement in the jet is strongly influenced by the size of eddies and consequently the response458

time of the particles. A representative eddy map of the flow field for a single ODT realization is shown in459

Fig. 9(a), discussed further below.460

In Fig. 8, the particle dispersion decreases with increasing Re of the jet. This is true for both the461

experiments and simulations. We attribute this to the particles having higher St at higher Re, as shown in462

Table 1. At higher St, the particles are less influenced by the gas fluctuations and disperse less. In addition,463

at higher Re the exit velocity of the particles is higher (though somewhat lower than the gas exit velocity in464

all cases). This decreases the particle residence time in the flow. The higher St at higher Re also contributes465

to the crossing-trajectory effect, which decreases dispersion, when particles exit an eddy prior to the eddy466

lifetime [34, 38, 32].467

As the Re and thus St increase, Fig. 8 shows that the relative differences between the dispersion of the 60468

and 90 µm particles decreases. This is true for both the experiments and the simulations. For the ODT, at469

x/D = 50, the difference in dispersion of the 60 and 90 µm particles is approximately 180, 155, and 90 mm2
470

for Re = 10000, Re = 20000, and Re = 30000, respectively. The relative difference in the Stokes numbers for471

the two particle sizes are nearly the same for the three Reynolds numbers (as shown in Table 1), nevertheless,472

the difference between the dispersion of the two particle sizes decreases as Re increases. This is due to the473

increase in the magnitude of the Stokes numbers, which decreases the magnitude of the dispersion, as noted474

above, an effect previously documented with ODT particle modeling [34]. In the previous subsection, the475

power law scaling of the velocity with x/D was observed to approach similarity differently with increasing476

Reynolds numbers when comparing the measurements and the ODT predictions; the relative differences in477

dispersion observed here are consistent with those differences in the velocity evolution.478

Figure 10 shows the mean axial particle velocity along the centerline for the two particle sizes in the479

three different Re jets at different axial positions. Overall, there is a good agreement between numerical480

and experimental results. Initially the particles are injected at a lower velocity than the fluid. At the481

nozzle exit the particles tend to accelerate to catch up to the air, and then their velocity decreases due to482

momentum exchange as the particles relax to the decaying gas velocity. The differences between the ODT483
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Figure 8: Type-I dispersion of 60µm and 90µm particles in the 7mm jet with Re = 10000, 20000 and 30000.
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Figure 10: Type-I mean streamwise velocities of 60µm and 90µm particles in the 7mm jet.

and experimental results are due to the combination of modeling differences and the uncertainty in the inlet484

gas conditions related to turbulence development.485

Generally, particle dispersion is largely determined by the inertial response time of the particles, which486

is measured by the Stokes number. Small Stokes-number (St < 1) particles are carried by the fluid around487

the flow field and are in a quasi-equilibrium with the fluid, as were the hollow glass particles studied in the488

previous homogeneous turbulence case [34]. In contrast, particles with moderate Stokes-number (e.g. 60µm489

and 90µm particles in current study) tend to move around the eddy edges because of the effects of flow field490

strain. For a high Stokes-number case (St > 100, not shown here), the general dispersion pattern is similar491

to that of the medium Stokes-number cases. However, since the particles are so slow to respond and follow492

the fluid motion, even the motion of large eddy structures are modulated in the particle response.493

4.2.2. Type-C particle-eddy interaction494

In the Type-C model, the eddy events are instantaneous, but the particle-eddy interaction is continuous,495

with particles influenced by the eddy during the ODT diffusive advancement in the flow evolution coordinate.496
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Figure 11: Type-C dispersion of 60µm and 90µm particles in the 7mm jet with Re = 10000, 20000 and 30000.

This is illustrated in Fig. 9(b); the overlapping regions of eddy boxes in the figure suggest the possibility497

of particle interactions with multiple active eddies simultaneously. Figure 11 shows the comparison of the498

particle dispersion predicted by the Type-C interaction model to the experimental data Re = 10000, 20000,499

and 30000. In general, the Type-C model is able to predict particle dispersion for this range of Stokes500

numbers with a similar fidelity as the Type-I model, but there are important differences between the two501

predictions that will be discussed in the next paragraph. At the highest Reynolds number the agreement502

with the data appears to be somewhat better than that of the Type-I model. The axial velocities of the503

particles for the Type-C model for two particle sizes and three Reynolds numbers are shown in Fig. 12,504

which is similar to Fig. 10.505

Here we go beyond the experiment and further examine the Type-C interactions. Figure 13 compares the506

dispersion of tracer fluid particles to quasi -tracer particle in the case of Re = 30000. The quasi-tracer particle507

is defined to have the same properties as a hollow glass particle in previous homogeneous turbulence study508

[34]. It turns out that the Type-C model underpredicts the tracer limit because of the delayed dispersive509
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Figure 12: Type-C mean streamwise velocities of 60µm and 90µm particles in the 7mm jet.
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motion of small Stokes particles, in contrast to the fluid particles; that is, the fluid particles are displaced510

at the eddy-occurrence time and the Type-C quasi-tracer particles undergo the same displacement over an511

eddy lifetime. Since the greatest dispersion is associated with the largest and longest lifetime eddies, this is512

not a trivial difference. Figure 14 shows the comparison of the Type-I and Type-C interaction models for the513

dispersion of 60µm and 90µm particles in the Re = 10000 jet. The Type-I model gives higher dispersion514

than the Type-C model because, in the Type-I model, the full PEI occurs at the occurrence of the eddy,515

thus enabling the particles to move earlier. This is consistent with Fig. 4. The large Stokes-number particles516

tend to retain their velocities longer, and therefore their dispersions are more independent of the PEI type517

during the early stage of the jet evolution in which the eddy time scales τe are small. With the increase518

of τe to the order of magnitude of the inertial response time of large particles, the large particles begin to519

show different dispersive behaviors for the two different interaction models. In contrast, the small particles520

adjust to the local jet velocities more quickly, leading to significantly different dispersions between the two521

interaction models much earlier in the jet.522

Quasi-tracer dispersion in the Type-I and Type-C models is further illustrated by considering particle523

number density profiles. Simulations were performed in the Re=20000, 7 mm jet using 1000 hollow glass524

particles uniformly distributed across the domain. 2000 realizations were computed and the number density525

distribution evaluated using 101 uniformly spaced bins. Figure 15 shows the results for Type-I and Type-C526

models at five downstream locations. The profiles are shifted vertically for clarity of presentation. There is527

some statistical noise in the profiles, but the differences between the Type-I and Type-C models are clear.528

The Type-I model shows a nearly uniform profile, which is consistent with the continuity constraint for529
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Figure 14: Comparison between the dispersion of 60µm and 90µm particles in the 7mm jet for Re = 10000 predicted by the
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constant density flows. (The Type-IC model, not shown, behaves like the Type-I model.) Conversely, the530

Type-C model has a trimodal distribution and does not obey the continuity constraint. In the Type-C531

model, the number density is depressed in high shear regions of the jet; particles are transported from the532

high shear region outward and inward towards the jet center, resulting in three peaks in the number density533

profile. Effectively, the local particle dispersivity in the Type-C model is accentuated in the shear regions534

since the particles feel the effects of eddies that occurred at earlier times, while the jet turbulence intensity535

decreases with time. This results in a mean drift of particles out of the shear regions.536

Such particle drift is also known to occur in stochastic particle dispersion models based on measures537

of the turbulence properties as is commonly employed in both RANS and LES simulations for Lagrangian538

particles. MacInnes and Bracco observed this uneven particle dispersion in mixing layers and jets in the539

tracer limit using discrete and continuous random walk models (DRW and CRW) [22]. Normalized number540

density profiles there showed severe deviation in the particle density for the DRW and CRW models, peaking541

greater than three and five times the value expected based on continuity for the CRW and DRW models,542

respectively, in the jet configuration. Such model errors were attributed to gradients in the fluctuating fluid543

velocities. This effect has also been investigated in the context of boundary layer transport of particles as544

discussed in Iliopoulos and Hanratty [14]. Corrections have been developed to reduce this effect that take545

advantage of knowledge of the average fluctuation velocities [22, 14].546

The fluctuations in the Type-C particle density appear to occur due to the variation in the stream-wise547

velocity fluctuation profiles and are related to the delay in the particle dispersion. That is, particle dispersion548

occurs starting at the eddy event and is not completed until after the eddy lifetime. In developing flows549
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this leads to small inconsistencies in the particle and fluid dispersion for Type-C particles. In the Type-C550

approach within ODT, the uneven particle dispersion is less significant than observed in, e.g. [22], possibly551

due to the difference in the magnitude of stream-wise versus cross-stream gradients. Still, the fact that552

Type-C interactions do not inherently match fluid continuity is a reason to prefer the Type-I model in cases553

where the particles largely follow the fluid motion.554

4.2.3. Type-IC particle-eddy interaction555

As described in Sec. 2.2, the Type-IC model is considered to be the most robust PEI model in that it not556

only allows the particles to interact with multiple eddies at the same time but also matches the tracer limit.557

Figure 16 shows the comparison between experimental and simulation values of particle dispersion in the558

7mm jet using the Type-IC model that reproduces the experimental results. The prediction of particle axial559

velocities by the Type-IC model will not be shown here because its comparison to experimental measurements560

is within 5% difference of the results of the Type-I model, shown in Fig. 10. The similarity between the561

Type-I and Type-IC models is due to the relatively low line-directed particle velocity. The line directed562

particle velocity is due to the turbulent advection, precluding strong transverse eddy trajectory crossing563

effects. The tracer dispersion is also well predicted by the Type-IC model with the combined instantaneous564

and continuous interactions. This is shown in Fig. 17, where the comparison of the radial dispersion of565

quasi-tracer particles and tracer particles in the 7mm jet for Re = 30000 are plotted. This comparison566

shows the correct model behavior.567
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4.2.4. Lagrangian dispersion568

The ODT simulation results for particle dispersion predicted by the three PEI models are presented in569

Lagrangian form in Fig. 18. The ODT data are presented as dispersion statistics in the simulated ODT570

time coordinate. Just as we converted the temporal ODT to the spatial domain for comparison above, the571

experimental data was converted to the temporal domain in [15] as their quasi-Lagrangian results, which572

were computed using the “average time-of-flight” of the particles to each measurement plane. (Those results573

compared favorably with the “true” Lagrangian statistics that were also computed in [15].) Note that this574

average time-of-flight to each measurement plane will depend on the local particle dispersion due to radial575

velocity variation. This differs somewhat from the ODT treatment in that the implied time to reach a given576

measurement plane in ODT is uniform on the line, as noted above. A spatial, cylindrical ODT model would577

not have this limitation (though particles would still be constrained to the line). Similar to the previous578

Eulerian predictions, small particles respond to the fluid quickly and approach the fluid velocity in shorter579

times than large particles, thereby dispersing faster in the jet at a given Re. The Type-I and Type-IC580

models are very similar, and give reasonable predictions. The results and comparisons of the model and581

experiments are similar to those presented earlier, especially in terms of the trends. At early times, there582

is some over prediction of the data, especially for the high Re 60 µm cases, but this is more obvious on the583

log scale presented where the dispersion is very low.584

Lagrangian particle dispersivity, DL, can be defined as585

DL =
1

2

dD2
p

dt
=

1

2

d

dt
〈Dp(t)Dp(t)〉, (26)
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Figure 18: Lagrangian dispersion of 60µm and 90µm particles predicted by the three model types in the 7mm jet. The dotted
lines show slopes of 2 and 1 for reference.

The particle dispersivity is estimated in the linear portion of the Lagrangian dispersion curves by using586

a least-squares fit. Table 2 compares ODT simulation results of DL to the values reported in Kennedy’s587

study [15] at Re = 20000 and 30000. DL increases with increasing Reynolds number. Taylor’s theory [35]588

shows that the mean-square dispersion of fluid particles in stationary homogeneous turbulence is a quadratic589

function of evolution time and behaves linearly with time for long times-of-flight. Batchelor [3] analyzed the590

transport of fluid particles in shear flow and showed that the dispersion increases linearly with time, and the591

dispersivity keeps constant. However, a larger Stokes-number particle is not expected to have the behavior592

of a fluid particle due to its finite inertia. As discussed before, the Stokes number of inertial particles593

determines how they respond to the fluctuations of the surrounding flows. The particle would eventually594

tend to respond to all the velocity fluctuations of the gas phase when the local particle Stokes number is595

O(1).596

Figure 18 suggests that an approximately linear region after about 20 and 30 milliseconds, respectively,597

where they achieve a Stokes number of O(1). The figure includes dotted lines with slopes of 2 and 1 on the598

log scale, which indicate the same power law scaling exponents. Table 3 presents the long time exponents599

for the experimental data and the ODT simulations. These were computed by fitting a line through the last600

three measurement points of the log(t) and log(D2
p) data. The values for the experimental data vary between601

1.5 and 2.1, which the ODT are closer to 1. The Type-I and Type-IC values are similar, as expected, while602

the Type-C values tend to be somewhat lower. Due to time-space transformation used as described above,603

the scaling exponents of the ODT in the spatial coordinate will follow from those presented here in the604

temporal coordinate through the relation x ∼
√
t. That is D2

p ∼ x2.605
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Table 2: Particle dispersivity DL (dp = 60µm and 90µm) in the 7mm jet.

dp Re Exp Type-I Type-C Type-IC

60 µm 20000 0.0079 0.0067 0.0039 0.0069
30000 0.010 0.0095 0.0053 0.0111

90 µm 20000 0.0066 0.0037 0.0068
30000 0.0106 0.0063 0.0103

Table 3: Power law exponents at late times using the data of Fig 18.

dp Re Exp Type-I Type-C Type-IC

60 µm 10000 1.8 1.0 0.87 1.2
60 µm 20000 1.7 0.87 0.86 1.1
60 µm 30000 2.1 1.0 1.2 1.2
90 µm 10000 1.5 1.3 1.0 1.3
90 µm 20000 1.7 1.3 0.90 1.2
90 µm 30000 1.6 0.94 1.0 1.2

4.3. Parameter sensitivity analysis606

Previous studies, e.g., [12, 21], of parameter sensitivity of ODT parameters C, Z, and βles have formed607

the basis for parameter selection for the jet evolution. In the present work, the fluid phase is not affected by608

the particles, so we have set the ODT parameters to give reasonable agreement with the fluid evolution, and609

then focus on the behavior of the particle model, including sensitivity to the βp parameter. Variations in610

the ODT parameters will affect the particle dispersion, but only through the effect on the fluid phase, and611

reasonable agreement of simulations and experiments is viewed as a prerequisite for analysis of the particle612

dispersion.613

In order to investigate the crossing-trajectory effect of particles in homogeneous turbulence, in previous614

work we conducted parametric analysis of βp that relates the turbulence characteristics to the particle-eddy615

interaction time [34].616

In this section, sensitivity analysis is performed to establish a common basis on which βp can be estimated617

for particle behavior in shear flow among the three PEI models. The analysis is important to guide the618

future developments and extended applications of the ODT multiphase models. The particle parameter βp619

determines the magnitude of the particle-eddy interaction in the ODT turbulence. High values of βp lead620

to possibly excessive interaction time by increasing the maximum interaction time scale βpτe and reducing621

the eddy velocity, 4YTM/(βpτe), felt by the particles during interactions. On the other hand, when βp is622

low, the particles interact with “fast” eddies for shorter times. Thus, two competing interaction effects on623

the particles are controlled by βp simultaneously.624

Figure 19, 20 and 21 show βp sensitivity on the dispersions of 60 µm and 90 µm particles in the 7mm625
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Figure 19: βp sensitivity on the Type-I dispersion of 60µm and 90µm particles in the 7mm jet with Re = 10000, 20000 and
30000. Square symbols represent experimental measurements.

jet for Re = 10000, 20000 and 30000 predicted by the Type-I, -C and -IC interaction models. Five βp626

values are chosen, that is, 0.02, 0.04, 0.06, 0.08 and 0.1, which are similar to those used in the homogeneous627

turbulence study [34]. Simulations using βp = 0.08 give the best predictions to experimental data.628

All eighteen cases show similar particle dispersion sensitivity to βp in the shear flow. The particle629

dispersion decreases as βp increases. Increasing βp increases the eddy time scale te = βpτe, making the630

crossing-trajectory effect more important in limiting the interaction time. As discussed in Sec. 2.2, the631

interaction time is the lesser of te and the time to leave the eddy, with this latter time scaling with l/2gτp632

under the influence of quasi-steady gravitational settling. Smaller particles with short relaxation times easily633

adapt to the fluid fluctuations and tend to interact with the eddies for a longer time, so their dispersion is634

less subject to the crossing-trajectory effect. In contrast to the larger particles, the dispersion of the smaller635

particles is reduced less with increasing βp. For a given particle size, the particle dispersions in the high636

Re case tend to decrease faster than the low Re case when the value of βp increases. This is attributed to637

enhanced trajectory crossing in the higher Re case.638

In order to illustrate the βp sensitivity in a direct way, a spreading parameter Sβ at given x/D is defined639

as640

Sβ(βp,1, βp,2) =

(
D2
p,βp,1

−D2
p,βp,2

D2
p,βp,3

)/(
βp,2 − βp,1

βp,3

)
, (27)
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Figure 20: βp sensitivity on the Type-C dispersion of 60µm and 90µm particles in the 7mm jet with Re = 10000, 20000 and
30000. Square symbols represent experimental measurements.
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where D2
p is particle dispersion evaluated at x/D = 50, and βp,3 is the average value of βp,1 and βp,2. Large641

Sβ indicates high sensitivity of particle dispersion to βp. Figure 22 shows Sbeta(0.02, 0.1) as a function of642

Re for the three different interaction models. The dispersion is more sensitive to βp for larger particles and643

at high Re due to the increasing impact of the crossing-trajectory effect. This effect was observed in the644

previous study of multiphase homogeneous turbulence [34]. The Type-C interaction model is shown to be645

significantly more sensitive to βp than the two other models. This is because the Type-C model allows the646

particles to interact with multiple eddies simultaneously that leads to more trajectory crossings.647

5. Conclusions648

This study has been concerned with the development of ODT multiphase models coupling a dispersed649

Lagrangian particle phase to the fluid evolution using three particle-eddy interaction models (Type-I, -C,650

and -IC), and the prediction of the transport of particles in turbulent round jet flows (and more general651

shear-driven turbulent flows). The challenge in this work is to properly account for particle-eddy interaction.652

The ODT multiphase model uses a Lagrangian framework to solve the transport equations of a particle as653

it interacts with a succession of discrete turbulent eddies. The Type-I PEI model uses instantaneous particle-654

eddy interactions and provides good predictions of particle dispersion, but does not allow the particles to655

interact with multiple eddies at the same time. The Type-C PEI model resolves the above drawback of the656

Type-I PEI model by using continuous PEIs for the finite evolution time. However, the Type-C model is657

not able to capture the tracer limit, and therefore only accurately predicts higher Stokes-number particles.658

The Type-IC PEI model combines the features of the Type-I and -C PEI models, and it is considered to be659
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the most robust PEI model among the three.660

The models compare favorably with experimental results for a range of characteristic particle response661

times and jet exit velocities. The particle dispersion in Lagrangian form is initially quadratic for short662

times-of-flight; the function becomes linear for long times-of-flight as the particle Stokes number becomes663

O (1) and the particles behave more like tracer particles. The single model parameter βp is used to scale the664

eddy lifetime and fluid velocities felt by particles during the interactions. Particle interactions depend on665

the lesser of the eddy lifetime and the eddy-crossing time, and this makes dispersion results sensitive to βp666

for finite Stokes-number particles. The sensitivity was evaluated and is greater for larger particles and for667

the flows with greater overall acceleration (higher Reynolds number here) due to enhanced eddy crossing.668

The ODT model has the benefit of resolving a full range of length and time scales with dynamically669

evolved turbulence properties. Hence, the ODT particle model is expected to provide a novel approach to670

modeling a wide range of dispersed particle flows, providing an alternative to methods that filter the fine671

scales. Extension of the models to reacting flows, and flows with particle modulation of turbulence under672

high particle loading conditions are under development.673

Acknowledgments674

The authors acknowledge helpful discussions with Alan Kerstein. This work was supported by the Defense675

Threat Reduction Agency under Award Number HDTRA-11-4503I. Sandia National Laboratories is a multi-676

program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed677

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under678

contract DE-AC04-94AL85000.679

References680

[1] Almeida, T. G., Jaberi, F. A., 2008. Large-eddy simulation of a dispersed particle-laden turbulent round jet. International681

Journal of Heat and Mass Transfer 51 (3), 683–695.682

[2] Ashurst, W. T., Kerstein, A. R., 2005. One-dimensional turbulence: variable density formulation and application to mixing683

layers. Physics of Fluids 17-025107, 1–26.684

[3] Batchelor, G., 1957. Diffusion in free turbulent shear flows. Journal of Fluid Mechanics 3 (01), 67–80.685

[4] Berlemont, A., Desjonqueres, P., Gouesbet, G., 1990. Particle lagrangian simulation in turbulent flows. International686

Journal of Multiphase Flow 16 (1), 19–34.687

[5] Chien, K., 1982. Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA688

Journal 20 (1), 33–38.689

[6] Clift, R., Grace, J. R., Weber, M. E., 1978. Bubbles, drops and particles. Academic Press, New York.690

[7] Csanady, G., 1963. Turbulent diffusion of heavy particles in the atmosphere. Journal of Atmospheric Science 20, 201–208.691

[8] Echekki, T., Kerstein, A. R., Dreeben, T. D., 2001. One-dimensional turbulence simulation of turbulent jet diffusion692

flames: model formulation and illustrative applications. Combustion and Flame 125, 1083–1105.693

[9] Goshayeshi, B., Sutherland, J. C., 2015. A comparative study of themochemistry models for oxy-coal combustion simula-694

tion. Combustion and Flame 162 (10), 4016–4024.695

[10] Goshayeshi, B., Sutherland, J. C., 2015. Prediction of oxy-coal flame stand-off using high-fidelity thermochemical models696

and the one-dimensioinal turbulence model. Proceedings of the Combustion Institute 35, 2829–2837.697

[11] Gosman, A., Loannides, E., 1983. Aspects of computer simulation of liquid-fueled combustors. Journal of Energy 7 (6),698

482–490.699

[12] Hewson, J. C., Kerstein, A. R., 2001. Stochastic simulation of transport and chemical kinetics in turbulent CO/H2/N2700

flames. Combustion Theory and Modelling 5, 669–697.701

36



[13] Hewson, J. C., Kerstein, A. R., 2002. Local extinction and reignition in nonpremixed turbulent CO/H2/N2 jet flames.702

Combustion Science and Technology 174, 35–66.703

[14] Iliopolous, I., Hanratty, T., 1999. Turbulent dispersion in a non-homogenous field. Journal of Fluid Mechanics 392, 45–71.704

[15] Kennedy, I. M., Moody, M. H., 1998. Particle dispersion in a turbulent round jet. Experimental Thermal and Fluid Science705

18, 11–26.706

[16] Kerstein, A. R., 1999. One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear707

flows, and buoyant stratified flows. Journal of Fluid Mechanics 392, 277–334.708

[17] Kerstein, A. R., 2013. Hierarchical parcel-swapping representation of turbulent mixing. part 1. formulation and scaling709

properties. Journal of Statistical Physics 153 (1), 142–161.710

[18] Kerstein, A. R., Ashurst, W. T., Wunsch, S., Nilsen, V., 2001. One-dimensional turbulence: vector formulation and711

application to free shear flows. Journal of Fluid Mechanics 447, 85–109.712

[19] Lewis, P. A., Shedler, G. S., 1979. Simulation of nonhomogeneous poisson processes by thinning. Naval Res. Logistics713

Quart. 26, 403–413.714

[20] Li, D., Fan, J., Luo, K., Cen, K., 2011. Direct numerical simulation of a particle-laden low reynolds number turbulent715

round jet. International Journal of Multiphase Flow 37 (6), 539–554.716

[21] Lignell, D. O., Kerstein, A. R., Sun, G., Monson, E. I., 2012. Mesh adaption for efficient multiscale implementation of717

one-dimensional turbulence. Theoretical and Computational Fluid Dynamics.718

[22] MacInnes, J., F.V., B., 1992. Stochastic particle dispersion modeling and the tracer-particle limit. Physics of Fluids A719

4 (12), 2809–2824.720

[23] Ormancey, A., Martinon, J., 1984. Prediction of particle dispersion in turbulent flows. PhysicoChemical Hydrodynamics721

5, 229–244.722

[24] Papoulis, A., Pillai, S. U., 2002. Probability, Random Variables, and Stochastic Processes, 4th Edition. McGraw-Hill, New723

York.724

[25] Punati, N., 2012. An Eulerian one-dimensional turbulence model: application to turbulent and multiphase reacting flows.725

Ph.D. thesis, University of Utah.726

[26] Ricks, A. J., Hewson, J. C., Kerstein, A. R., Gore, J. P., Tieszen, S. R., Ashurst, W. T., 2010. A spatially developing one-727

dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames. Combustion728

Science and Technology 182, 60–101.729

[27] Schlichting, H., 1979. Boundary Layer Theory, 7th Edition. McGraw-Hill.730

[28] Schmidt, J. R., 2004. Stochastic models for the prediction of individual particle trajectories in one dimensional turbulence731

flows. Ph.D. thesis, The University of Arizona.732

[29] Schmidt, J. R., Wendt, J. O., Kerstein, A. R., 2006. Prediction of particle laden turbulent channel flow using one-733

dimensional turbulence. In: IUTAM Symposium on Computational Approaches to Multiphase Flow. Springer, pp. 433–734

441.735

[30] Schmidt, J. R., Wendt, J. O., Kerstein, A. R., 2009. Non-equilibrium wall deposition of inertial particles in turbulent flow.736

Journal of Statistical Physics 137 (2), 233–257.737

[31] Schmidt, J. R., Wendt, J. O. L., Kerstein, A. R., October 2004. Prediction of particle laden turbulent channel flow738

using one dimensional turbulence. In: Proceedins of the IUTAM Symposium on Computational Approaches to Disperse739

Multiphase Flow, Argonne, IL.740

[32] Shirolkar, J., Coimbra, C., McQuay, M., 1996. Fundamental aspects of modeling turbulent particle dispersion in dilute741

flows. Progress in Energy and Combustion Science 22, 363–399.742

[33] Shuen, J., Chen, L., Faeth, G., 1983. Evaluation of a stochastic model of particle dispersion in a turbulent round jet.743

AIChE Journal 29, 167–170.744

[34] Sun, G., Lignell, D. O., Hewson, J. C., Gin, C. R., 2014. Particle dispersion in homogeneous turbulence using the one-745

dimensional turbulence model. Physics of Fluids (1994-present) 26 (10), 103301.746

[35] Taylor, G. I., 1922. Diffusion by continuous movements. Proc. London Math. Soc 20 (1), 196–212.747

[36] van Reeuwijk, M., Holzner, M., 2014. The turbulence boundary of a temporal jet. Journal of Fluid Mechanics 739, 254–275.748

[37] Wunsch, S., Kerstein, A., 2001. A model for layer formation in stably stratified turbulence. Physics of Fluids 13, 702–712.749

[38] Yudine, M., 1959. Physical consideration on heavy particle diffusion. Advances in Geophysics 6, 185–191.750

[39] Yuu, S., Ueno, T., Umekage, T., 2001. Numerical simulation of the high reynolds number slit nozzle gas–particle jet using751

subgrid-scale coupling large eddy simulation. Chemical Engineering Science 56 (14), 4293–4307.752

[40] Yuu, S., Yasukouchi, N., Hirosawa, Y., Jotaki, T., 1978. Particle turbulent diffusion in a dust laden round jet. AIChE753

Journal 24 (3), 509–519.754

[41] Zhou, Q., Leschziner, M., 1991. A time-correlated stochastic model for particle dispersion in anisotropic turbulence. In:755

8th Symposium on Turbulent Shear Flows, Volume 1. Vol. 1. pp. 10–3.756

37




