DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanomechanical and thermophoretic analyses of the nucleotide-dependent interactions between the AAA+ subunits of magnesium chelatase

Abstract

In chlorophyll biosynthesis, the magnesium chelatase enzyme complex catalyzes the insertion of a Mg2+ ion into protoporphyrin IX. Prior to this event, two of the three subunits, the AAA+ proteins ChlI and ChlD, form a ChlID–MgATP complex. We used microscale thermophoresis to directly determine dissociation constants for the I-D subunits from Synechocystis, and to show that the formation of a ChlID–MgADP complex, mediated by the arginine finger and the sensor II domain on ChlD, is necessary for the assembly of the catalytically active ChlHID–MgATP complex. The N-terminal AAA+ domain of ChlD is essential for complex formation, but some stability is preserved in the absence of the C-terminal integrin domain of ChlD, particularly if the intervening polyproline linker region is retained. Single molecule force spectroscopy (SMFS) was used to determine the factors that stabilize formation of the ChlID–MgADP complex at the single molecule level; ChlD was attached to an atomic force microscope (AFM) probe in two different orientations, and the ChlI subunits were tethered to a silica surface; the probability of subunits interacting more than doubled in the presence of MgADP, and we show that the N-terminal AAA+ domain of ChlD mediates this process, in agreement with the microscale thermophoresis data.more » Analysis of the unbinding data revealed a most probable interaction force of around 109 pN for formation of single ChlID–MgADP complexes. Finally, these experiments provide a quantitative basis for understanding the assembly and function of the Mg chelatase complex.« less

Authors:
 [1];  [1];  [1];  [1]
  1. Univ. of Sheffield, Sheffield (United Kingdom)
Publication Date:
Research Org.:
Univ. of Sheffield, Sheffield (United Kingdom)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1346002
Grant/Contract Number:  
SC0001035
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 138; Journal Issue: 20; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Adams, Nathan B. P., Vasilev, Cvetelin, Brindley, Amanda A., and Hunter, C. Neil. Nanomechanical and thermophoretic analyses of the nucleotide-dependent interactions between the AAA+ subunits of magnesium chelatase. United States: N. p., 2016. Web. doi:10.1021/jacs.6b02827.
Adams, Nathan B. P., Vasilev, Cvetelin, Brindley, Amanda A., & Hunter, C. Neil. Nanomechanical and thermophoretic analyses of the nucleotide-dependent interactions between the AAA+ subunits of magnesium chelatase. United States. https://doi.org/10.1021/jacs.6b02827
Adams, Nathan B. P., Vasilev, Cvetelin, Brindley, Amanda A., and Hunter, C. Neil. Sat . "Nanomechanical and thermophoretic analyses of the nucleotide-dependent interactions between the AAA+ subunits of magnesium chelatase". United States. https://doi.org/10.1021/jacs.6b02827. https://www.osti.gov/servlets/purl/1346002.
@article{osti_1346002,
title = {Nanomechanical and thermophoretic analyses of the nucleotide-dependent interactions between the AAA+ subunits of magnesium chelatase},
author = {Adams, Nathan B. P. and Vasilev, Cvetelin and Brindley, Amanda A. and Hunter, C. Neil},
abstractNote = {In chlorophyll biosynthesis, the magnesium chelatase enzyme complex catalyzes the insertion of a Mg2+ ion into protoporphyrin IX. Prior to this event, two of the three subunits, the AAA+ proteins ChlI and ChlD, form a ChlID–MgATP complex. We used microscale thermophoresis to directly determine dissociation constants for the I-D subunits from Synechocystis, and to show that the formation of a ChlID–MgADP complex, mediated by the arginine finger and the sensor II domain on ChlD, is necessary for the assembly of the catalytically active ChlHID–MgATP complex. The N-terminal AAA+ domain of ChlD is essential for complex formation, but some stability is preserved in the absence of the C-terminal integrin domain of ChlD, particularly if the intervening polyproline linker region is retained. Single molecule force spectroscopy (SMFS) was used to determine the factors that stabilize formation of the ChlID–MgADP complex at the single molecule level; ChlD was attached to an atomic force microscope (AFM) probe in two different orientations, and the ChlI subunits were tethered to a silica surface; the probability of subunits interacting more than doubled in the presence of MgADP, and we show that the N-terminal AAA+ domain of ChlD mediates this process, in agreement with the microscale thermophoresis data. Analysis of the unbinding data revealed a most probable interaction force of around 109 pN for formation of single ChlID–MgADP complexes. Finally, these experiments provide a quantitative basis for understanding the assembly and function of the Mg chelatase complex.},
doi = {10.1021/jacs.6b02827},
journal = {Journal of the American Chemical Society},
number = 20,
volume = 138,
place = {United States},
year = {Sat Apr 30 00:00:00 EDT 2016},
month = {Sat Apr 30 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC68031
journal, September 1998

  • Jensen, Poul E.; Gibson, Lucien C. D.; Hunter, C. Neil
  • Biochemical Journal, Vol. 334, Issue 2
  • DOI: 10.1042/bj3340335

The ATPase Activity of the ChlI Subunit of Magnesium Chelatase and Formation of a Heptameric AAA + Ring
journal, June 2003

  • Reid, James D.; Siebert, C. Alistair; Bullough, Per A.
  • Biochemistry, Vol. 42, Issue 22
  • DOI: 10.1021/bi034082q

The Allosteric Role of the AAA + Domain of ChlD Protein from the Magnesium Chelatase of Synechocystis Species PCC 6803
journal, August 2013

  • Adams, Nathan B. P.; Reid, James D.
  • Journal of Biological Chemistry, Vol. 288, Issue 40
  • DOI: 10.1074/jbc.M113.477943

Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI–BchD complex
journal, January 1999

  • Gibson, Lucien C. D.; Jensen, Poul Erik; Hunter, C. Neil
  • Biochemical Journal, Vol. 337, Issue 2
  • DOI: 10.1042/bj3370243

Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase
journal, August 2001

  • Fodje, M. N.; Hansson, A.; Hansson, M.
  • Journal of Molecular Biology, Vol. 311, Issue 1
  • DOI: 10.1006/jmbi.2001.4834

Structural and functional consequences of removing the N-terminal domain from the magnesium chelatase ChlH subunit of Thermosynechococcus elongatus
journal, December 2014

  • Adams, Nathan B. P.; Marklew, Christopher J.; Qian, Pu
  • Biochemical Journal, Vol. 464, Issue 3
  • DOI: 10.1042/BJ20140463

Crystal structure of the catalytic subunit of magnesium chelatase
journal, August 2015


Evolutionary Relationships and Structural Mechanisms of aaa+ Proteins
journal, June 2006


Integrins
journal, September 2002


Protein-binding assays in biological liquids using microscale thermophoresis
journal, October 2010

  • Wienken, Christoph J.; Baaske, Philipp; Rothbauer, Ulrich
  • Nature Communications, Vol. 1, Issue 1
  • DOI: 10.1038/ncomms1093

MicroScale Thermophoresis: Interaction analysis and beyond
journal, December 2014


Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions
journal, March 2013


Why molecules move along a temperature gradient
journal, December 2006

  • Duhr, S.; Braun, D.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 52
  • DOI: 10.1073/pnas.0603873103

Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases
journal, April 2004

  • Ogura, Teru; Whiteheart, Sidney W.; Wilkinson, Anthony J.
  • Journal of Structural Biology, Vol. 146, Issue 1-2
  • DOI: 10.1016/j.jsb.2003.11.008

Structure and function of the AAA+ nucleotide binding pocket
journal, January 2012

  • Wendler, Petra; Ciniawsky, Susanne; Kock, Malte
  • Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Vol. 1823, Issue 1
  • DOI: 10.1016/j.bbamcr.2011.06.014

AAA+ proteins: have engine, will work
journal, July 2005

  • Hanson, Phyllis I.; Whiteheart, Sidney W.
  • Nature Reviews Molecular Cell Biology, Vol. 6, Issue 7
  • DOI: 10.1038/nrm1684

Mg-chelatase of tobacco: The role of the subunit CHL D in the chelation step of protoporphyrin IX
journal, March 1999

  • Grafe, S.; Saluz, H. -P.; Grimm, B.
  • Proceedings of the National Academy of Sciences, Vol. 96, Issue 5
  • DOI: 10.1073/pnas.96.5.1941

Force Spectroscopy of Molecular Systems—Single Molecule Spectroscopy of Polymers and Biomolecules
journal, September 2000


Nanoscale mapping and functional analysis of individual adhesins on living bacteria
journal, June 2005

  • Dupres, Vincent; Menozzi, Franco D.; Locht, Camille
  • Nature Methods, Vol. 2, Issue 7
  • DOI: 10.1038/nmeth769

The NTA–His6 bond is strong enough for AFM single-molecular recognition studies
journal, January 2007

  • Verbelen, Claire; Gruber, Hermann J.; Dufrêne, Yves F.
  • Journal of Molecular Recognition, Vol. 20, Issue 6
  • DOI: 10.1002/jmr.833

A molecular switch between alternative conformational states in the complex of Ran and importin β1
journal, June 2003

  • Nevo, Reinat; Stroh, Cordula; Kienberger, Ferry
  • Nature Structural & Molecular Biology, Vol. 10, Issue 7
  • DOI: 10.1038/nsb940

Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes
journal, November 2003

  • Riener, Christian K.; Kienberger, Ferry; Hahn, Christoph D.
  • Analytica Chimica Acta, Vol. 497, Issue 1-2
  • DOI: 10.1016/j.aca.2003.08.041

Antigen Binding Forces of Single Antilysozyme Fv Fragments Explored by Atomic Force Microscopy
journal, June 2005

  • Berquand, Alexandre; Xia, Nan; Castner, David G.
  • Langmuir, Vol. 21, Issue 12
  • DOI: 10.1021/la050162e

A New Cryo-EM Single-Particle Ab Initio Reconstruction Method Visualizes Secondary Structure Elements in an ATP-Fueled AAA+ Motor
journal, January 2008

  • Elmlund, Hans; Lundqvist, Joakim; Al-Karadaghi, Salam
  • Journal of Molecular Biology, Vol. 375, Issue 4
  • DOI: 10.1016/j.jmb.2007.11.028

ATP-Induced Conformational Dynamics in the AAA+ Motor Unit of Magnesium Chelatase
journal, March 2010


Insights into dynein motor domain function from a 3.3-Å crystal structure
journal, March 2012

  • Schmidt, Helgo; Gleave, Emma S.; Carter, Andrew P.
  • Nature Structural & Molecular Biology, Vol. 19, Issue 5
  • DOI: 10.1038/nsmb.2272

Single-molecule dissection of the high-affinity cohesin-dockerin complex
journal, November 2012

  • Stahl, S. W.; Nash, M. A.; Fried, D. B.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 50
  • DOI: 10.1073/pnas.1211929109

Energy landscape roughness of the streptavidin–biotin interaction
journal, January 2007

  • Rico, Félix; Moy, Vincent T.
  • Journal of Molecular Recognition, Vol. 20, Issue 6
  • DOI: 10.1002/jmr.841

Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy
journal, April 2013

  • Bowers, Carleen M.; Carlson, David A.; Rivera, Monica
  • The Journal of Physical Chemistry B, Vol. 117, Issue 17
  • DOI: 10.1021/jp309393s

The NTA–His6 bond is strong enough for AFM single-molecular recognition studies
journal, January 2007

  • Verbelen, Claire; Gruber, Hermann J.; Dufrêne, Yves F.
  • Journal of Molecular Recognition, Vol. 20, Issue 6
  • DOI: 10.1002/jmr.833

Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase
journal, August 2001

  • Fodje, M. N.; Hansson, A.; Hansson, M.
  • Journal of Molecular Biology, Vol. 311, Issue 1
  • DOI: 10.1006/jmbi.2001.4834

Structure and function of the AAA+ nucleotide binding pocket
journal, January 2012

  • Wendler, Petra; Ciniawsky, Susanne; Kock, Malte
  • Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Vol. 1823, Issue 1
  • DOI: 10.1016/j.bbamcr.2011.06.014

A New Cryo-EM Single-Particle Ab Initio Reconstruction Method Visualizes Secondary Structure Elements in an ATP-Fueled AAA+ Motor
journal, January 2008

  • Elmlund, Hans; Lundqvist, Joakim; Al-Karadaghi, Salam
  • Journal of Molecular Biology, Vol. 375, Issue 4
  • DOI: 10.1016/j.jmb.2007.11.028

MicroScale Thermophoresis: Interaction analysis and beyond
journal, December 2014


ATP-Induced Conformational Dynamics in the AAA+ Motor Unit of Magnesium Chelatase
journal, March 2010


Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions
journal, March 2013


A Microcantilever Device to Assess the Effect of Force on the Lifetime of Selectin-Carbohydrate Bonds
journal, February 2001


Single molecule force spectroscopy in biology using the atomic force microscope
journal, August 2000


The ATPase Activity of the ChlI Subunit of Magnesium Chelatase and Formation of a Heptameric AAA + Ring
journal, June 2003

  • Reid, James D.; Siebert, C. Alistair; Bullough, Per A.
  • Biochemistry, Vol. 42, Issue 22
  • DOI: 10.1021/bi034082q

Crystal structure of the catalytic subunit of magnesium chelatase
journal, August 2015


A molecular switch between alternative conformational states in the complex of Ran and importin β1
journal, June 2003

  • Nevo, Reinat; Stroh, Cordula; Kienberger, Ferry
  • Nature Structural & Molecular Biology, Vol. 10, Issue 7
  • DOI: 10.1038/nsb940

Insights into dynein motor domain function from a 3.3-Å crystal structure
journal, March 2012

  • Schmidt, Helgo; Gleave, Emma S.; Carter, Andrew P.
  • Nature Structural & Molecular Biology, Vol. 19, Issue 5
  • DOI: 10.1038/nsmb.2272

Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI‒BchD complex
journal, January 1999

  • Gibson, Lucien C. D.; Jensen, Poul Erik; Hunter, C. Neil
  • Biochemical Journal, Vol. 337, Issue 2
  • DOI: 10.1042/0264-6021:3370243

Characterization of the magnesium chelatase from Thermosynechococcus elongatus
journal, December 2013

  • Adams, Nathan B. P.; Marklew, Christopher J.; Brindley, Amanda A.
  • Biochemical Journal, Vol. 457, Issue 1
  • DOI: 10.1042/bj20130834

Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC68031
journal, September 1998

  • Jensen, Poul E.; Gibson, Lucien C. D.; Hunter, C. Neil
  • Biochemical Journal, Vol. 334, Issue 2
  • DOI: 10.1042/bj3340335

Single-molecule dissection of the high-affinity cohesin-dockerin complex
journal, November 2012

  • Stahl, S. W.; Nash, M. A.; Fried, D. B.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 50
  • DOI: 10.1073/pnas.1211929109

Mg-chelatase of tobacco: The role of the subunit CHL D in the chelation step of protoporphyrin IX
journal, March 1999

  • Grafe, S.; Saluz, H. -P.; Grimm, B.
  • Proceedings of the National Academy of Sciences, Vol. 96, Issue 5
  • DOI: 10.1073/pnas.96.5.1941

Structure of the Cyanobacterial Magnesium Chelatase H Subunit Determined by Single Particle Reconstruction and Small-angle X-ray Scattering
journal, February 2012

  • Qian, Pu; Marklew, Christopher J.; Viney, Joanne
  • Journal of Biological Chemistry, Vol. 287, Issue 7
  • DOI: 10.1074/jbc.m111.308239

Magnesium-dependent ATPase Activity and Cooperativity of Magnesium Chelatase from Synechocystis sp. PCC6803
journal, June 2004

  • Reid, James D.; Hunter, C. Neil
  • Journal of Biological Chemistry, Vol. 279, Issue 26
  • DOI: 10.1074/jbc.m400958200

Evolutionary Relationships and Structural Mechanisms of aaa+ Proteins
journal, June 2006


Works referencing / citing this record:

The ChlD subunit links the motor and porphyrin binding subunits of magnesium chelatase
journal, July 2019

  • Farmer, David A.; Brindley, Amanda A.; Hitchcock, Andrew
  • Biochemical Journal, Vol. 476, Issue 13
  • DOI: 10.1042/bcj20190095

Phenotype of ribonuclease 1 deficiency in mice
journal, May 2019


Hexameric structure of the ATPase motor subunit of magnesium chelatase in chlorophyll biosynthesis
journal, January 2020

  • Gao, Yong‐Shan; Wang, Yan‐Li; Wang, Xiao
  • Protein Science, Vol. 29, Issue 4
  • DOI: 10.1002/pro.3816