DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches

Abstract

Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD ofmore » 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.« less

Authors:
; ; ; ; ; ORCiD logo; ORCiD logo; ORCiD logo; ; ORCiD logo
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1342645
Report Number(s):
BNL-113460-2017-JA
Journal ID: ISSN 1549-9618; R&D Project: 16068; KC0403020
Grant/Contract Number:  
SC0012704; SC0011297; GM096678-02; GM072558; GM051501
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Theory and Computation
Additional Journal Information:
Journal Volume: 13; Journal Issue: 2; Journal ID: ISSN 1549-9618
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Huang, Jing, Mei, Ye, König, Gerhard, Simmonett, Andrew C., Pickard, Frank C., Wu, Qin, Wang, Lee-Ping, MacKerell, Alexander D., Brooks, Bernard R., and Shao, Yihan. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches. United States: N. p., 2017. Web. doi:10.1021/acs.jctc.6b01125.
Huang, Jing, Mei, Ye, König, Gerhard, Simmonett, Andrew C., Pickard, Frank C., Wu, Qin, Wang, Lee-Ping, MacKerell, Alexander D., Brooks, Bernard R., & Shao, Yihan. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches. United States. https://doi.org/10.1021/acs.jctc.6b01125
Huang, Jing, Mei, Ye, König, Gerhard, Simmonett, Andrew C., Pickard, Frank C., Wu, Qin, Wang, Lee-Ping, MacKerell, Alexander D., Brooks, Bernard R., and Shao, Yihan. Tue . "An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches". United States. https://doi.org/10.1021/acs.jctc.6b01125. https://www.osti.gov/servlets/purl/1342645.
@article{osti_1342645,
title = {An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches},
author = {Huang, Jing and Mei, Ye and König, Gerhard and Simmonett, Andrew C. and Pickard, Frank C. and Wu, Qin and Wang, Lee-Ping and MacKerell, Alexander D. and Brooks, Bernard R. and Shao, Yihan},
abstractNote = {Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.},
doi = {10.1021/acs.jctc.6b01125},
journal = {Journal of Chemical Theory and Computation},
number = 2,
volume = 13,
place = {United States},
year = {Tue Jan 24 00:00:00 EST 2017},
month = {Tue Jan 24 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Polarizable force fields
journal, April 2001


Empirical force fields for biological macromolecules: Overview and issues
journal, January 2004

  • Mackerell, Alexander D.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20082

Advanced Potential Energy Surfaces for Condensed Phase Simulation
journal, April 2014


Electronegativity equalization: application and parametrization
journal, February 1985

  • Mortier, Wilfried J.; Van Genechten, Karin; Gasteiger, Johann
  • Journal of the American Chemical Society, Vol. 107, Issue 4
  • DOI: 10.1021/ja00290a017

Electronegativity-equalization method for the calculation of atomic charges in molecules
journal, July 1986

  • Mortier, Wilfried J.; Ghosh, Swapan K.; Shankar, S.
  • Journal of the American Chemical Society, Vol. 108, Issue 15
  • DOI: 10.1021/ja00275a013

Charge equilibration for molecular dynamics simulations
journal, April 1991

  • Rappe, Anthony K.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a070

Dynamical fluctuating charge force fields: Application to liquid water
journal, October 1994

  • Rick, Steven W.; Stuart, Steven J.; Berne, B. J.
  • The Journal of Chemical Physics, Vol. 101, Issue 7
  • DOI: 10.1063/1.468398

Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation of Amides
journal, January 1996

  • Rick, Steven W.; Berne, B. J.
  • Journal of the American Chemical Society, Vol. 118, Issue 3
  • DOI: 10.1021/ja952535b

A chemical potential equalization method for molecular simulations
journal, January 1996

  • York, Darrin M.; Yang, Weitao
  • The Journal of Chemical Physics, Vol. 104, Issue 1
  • DOI: 10.1063/1.470886

Constructing ab initio force fields for molecular dynamics simulations
journal, March 1998

  • Liu, Yi-Ping; Kim, Kyungsun; Berne, B. J.
  • The Journal of Chemical Physics, Vol. 108, Issue 12
  • DOI: 10.1063/1.475886

A chemical potential equalization model for treating polarization in molecular mechanical force fields
journal, June 2000


A transferable polarizable electrostatic force field for molecular mechanics based on the chemical potential equalization principle
journal, November 2002

  • Chelli, Riccardo; Procacci, Piero
  • The Journal of Chemical Physics, Vol. 117, Issue 20
  • DOI: 10.1063/1.1515773

CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations
journal, January 2003

  • Patel, Sandeep; Brooks, Charles L.
  • Journal of Computational Chemistry, Vol. 25, Issue 1
  • DOI: 10.1002/jcc.10355

CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model
journal, January 2004

  • Patel, Sandeep; Mackerell, Alexander D.; Brooks, Charles L.
  • Journal of Computational Chemistry, Vol. 25, Issue 12
  • DOI: 10.1002/jcc.20077

QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics
journal, April 2007


A unified theoretical framework for fluctuating-charge models in atom-space and in bond-space
journal, December 2008

  • Chen, Jiahao; Hundertmark, Dirk; Martínez, Todd J.
  • The Journal of Chemical Physics, Vol. 129, Issue 21
  • DOI: 10.1063/1.3021400

Charge conservation in electronegativity equalization and its implications for the electrostatic properties of fluctuating-charge models
journal, July 2009

  • Chen, Jiahao; Martínez, Todd J.
  • The Journal of Chemical Physics, Vol. 131, Issue 4
  • DOI: 10.1063/1.3183167

The effects of charge transfer on the properties of liquid water
journal, May 2011

  • Lee, Alexis J.; Rick, Steven W.
  • The Journal of Chemical Physics, Vol. 134, Issue 18
  • DOI: 10.1063/1.3589419

The effects of charge transfer on the aqueous solvation of ions
journal, July 2012

  • Soniat, Marielle; Rick, Steven W.
  • The Journal of Chemical Physics, Vol. 137, Issue 4
  • DOI: 10.1063/1.4736851

A Polarizable Intermolecular Potential Function for Simulation of Liquid Alcohols
journal, November 1995

  • Gao, Jiali; Habibollazadeh, Dariush; Shao, Lei
  • The Journal of Physical Chemistry, Vol. 99, Issue 44
  • DOI: 10.1021/j100044a039

Simulation of Liquid Amides Using a Polarizable Intermolecular Potential Function
journal, January 1996

  • Gao, Jiali; Pavelites, Joseph J.; Habibollazadeh, Dariush
  • The Journal of Physical Chemistry, Vol. 100, Issue 7
  • DOI: 10.1021/jp9521969

An effective fragment method for modeling solvent effects in quantum mechanical calculations
journal, August 1996

  • Day, Paul N.; Jensen, Jan H.; Gordon, Mark S.
  • The Journal of Chemical Physics, Vol. 105, Issue 5
  • DOI: 10.1063/1.472045

Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation
journal, May 2003

  • Ren, Pengyu; Ponder, Jay W.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 24
  • DOI: 10.1021/jp027815+

Gradients of the polarization energy in the effective fragment potential method
journal, November 2006

  • Li, Hui; Netzloff, Heather M.; Gordon, Mark S.
  • The Journal of Chemical Physics, Vol. 125, Issue 19
  • DOI: 10.1063/1.2378767

Comparison of models with distributed polarizable sites for describing water clusters
journal, October 2007

  • Defusco, Albert; Schofield, Daniel P.; Jordan, Kenneth D.
  • Molecular Physics, Vol. 105, Issue 19-22
  • DOI: 10.1080/00268970701620669

Development of a Polarizable Intermolecular Potential Function (PIPF) for Liquid Amides and Alkanes
journal, October 2007

  • Xie, Wangshen; Pu, Jingzhi; MacKerell, Alexander D.
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 6
  • DOI: 10.1021/ct700146x

Current Status of the AMOEBA Polarizable Force Field
journal, March 2010

  • Ponder, Jay W.; Wu, Chuanjie; Ren, Pengyu
  • The Journal of Physical Chemistry B, Vol. 114, Issue 8
  • DOI: 10.1021/jp910674d

A second generation distributed point polarizable water model
journal, January 2010

  • Kumar, Revati; Wang, Fang-Fang; Jenness, Glen R.
  • The Journal of Chemical Physics, Vol. 132, Issue 1
  • DOI: 10.1063/1.3276460

Polarizable Atomic Multipole-Based Molecular Mechanics for Organic Molecules
journal, August 2011

  • Ren, Pengyu; Wu, Chuanjie; Ponder, Jay W.
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 10
  • DOI: 10.1021/ct200304d

Fragmentation Methods: A Route to Accurate Calculations on Large Systems
journal, August 2011

  • Gordon, Mark S.; Fedorov, Dmitri G.; Pruitt, Spencer R.
  • Chemical Reviews, Vol. 112, Issue 1
  • DOI: 10.1021/cr200093j

LIBEFP: A new parallel implementation of the effective fragment potential method as a portable software library
journal, July 2013

  • Kaliman, Ilya A.; Slipchenko, Lyudmila V.
  • Journal of Computational Chemistry, Vol. 34, Issue 26
  • DOI: 10.1002/jcc.23375

Effective fragment potential method in Q-CHEM : A guide for users and developers : Software News and Updates
journal, January 2013

  • Ghosh, Debashree; Kosenkov, Dmytro; Vanovschi, Vitalii
  • Journal of Computational Chemistry, Vol. 34, Issue 12
  • DOI: 10.1002/jcc.23223

Systematic Improvement of a Classical Molecular Model of Water
journal, August 2013

  • Wang, Lee-Ping; Head-Gordon, Teresa; Ponder, Jay W.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 34
  • DOI: 10.1021/jp403802c

Advanced Potential Energy Surfaces for Molecular Simulation
journal, August 2016

  • Albaugh, Alex; Boateng, Henry A.; Bradshaw, Richard T.
  • The Journal of Physical Chemistry B, Vol. 120, Issue 37
  • DOI: 10.1021/acs.jpcb.6b06414

A simple polarizable model of water based on classical Drude oscillators
journal, September 2003

  • Lamoureux, Guillaume; MacKerell, Alexander D.; Roux, Benoı̂t
  • The Journal of Chemical Physics, Vol. 119, Issue 10
  • DOI: 10.1063/1.1598191

A polarizable model of water for molecular dynamics simulations of biomolecules
journal, January 2006


Six-site polarizable model of water based on the classical Drude oscillator
journal, January 2013

  • Yu, Wenbo; Lopes, Pedro E. M.; Roux, Benoît
  • The Journal of Chemical Physics, Vol. 138, Issue 3
  • DOI: 10.1063/1.4774577

A polarizable empirical force field for molecular dynamics simulation of liquid hydrocarbons
journal, February 2014

  • Szklarczyk, Oliwia M.; Bachmann, Stephan J.; van Gunsteren, Wilfred F.
  • Journal of Computational Chemistry, Vol. 35, Issue 10
  • DOI: 10.1002/jcc.23551

All-atom polarizable force field for DNA based on the classical drude oscillator model
journal, April 2014

  • Savelyev, Alexey; MacKerell, Alexander D.
  • Journal of Computational Chemistry, Vol. 35, Issue 16
  • DOI: 10.1002/jcc.23611

Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field
journal, June 2014

  • Savelyev, Alexey; MacKerell, Alexander D.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 24
  • DOI: 10.1021/jp503469s

An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications
journal, January 2016


Fluctuating Charge, Polarizable Dipole, and Combined Models:  Parameterization from ab Initio Quantum Chemistry
journal, June 1999

  • Stern, Harry A.; Kaminski, George A.; Banks, Jay L.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 22
  • DOI: 10.1021/jp984498r

Multiple Environment Single System Quantum Mechanical/Molecular Mechanical (MESS-QM/MM) Calculations. 1. Estimation of Polarization Energies
journal, September 2014

  • Sodt, Alexander J.; Mei, Ye; König, Gerhard
  • The Journal of Physical Chemistry A, Vol. 119, Issue 9
  • DOI: 10.1021/jp5072296

Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method
journal, December 2015

  • König, Gerhard; Mei, Ye; Pickard, Frank C.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 1
  • DOI: 10.1021/acs.jctc.5b00874

Direct computation of parameters for accurate polarizable force fields
journal, November 2014

  • Verstraelen, Toon; Vandenbrande, Steven; Ayers, Paul W.
  • The Journal of Chemical Physics, Vol. 141, Issue 19
  • DOI: 10.1063/1.4901513

Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory
journal, June 2016

  • Wang, Hao; Yang, Weitao
  • The Journal of Chemical Physics, Vol. 144, Issue 22
  • DOI: 10.1063/1.4953558

The Charge Response Kernel with Modified Electrostatic Potential Charge Model
journal, March 2002

  • Morita, Akihiro; Kato, Shigeki
  • The Journal of Physical Chemistry A, Vol. 106, Issue 15
  • DOI: 10.1021/jp014114o

Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations
journal, January 2004

  • Lu, Zhenyu; Yang, Weitao
  • The Journal of Chemical Physics, Vol. 121, Issue 1
  • DOI: 10.1063/1.1757436

Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

Distributed polarizabilities obtained using a constrained density-fitting algorithm
journal, January 2006

  • Misquitta, Alston J.; Stone, Anthony J.
  • The Journal of Chemical Physics, Vol. 124, Issue 2
  • DOI: 10.1063/1.2150828

Practical schemes for distributed polarizabilities
journal, April 1993


Distributed polarizabilities using the topological theory of atoms in molecules
journal, March 1994


Distributed dispersion: A new approach
journal, September 2003

  • Williams, Greg J.; Stone, Anthony J.
  • The Journal of Chemical Physics, Vol. 119, Issue 9
  • DOI: 10.1063/1.1594722

Local properties of quantum chemical systems: The LoProp approach
journal, September 2004

  • Gagliardi, Laura; Lindh, Roland; Karlström, Gunnar
  • The Journal of Chemical Physics, Vol. 121, Issue 10
  • DOI: 10.1063/1.1778131

Local polarizabilities and dispersion energy coefficients
journal, June 2008


Accuracy of distributed multipoles and polarizabilities: Comparison between the LoProp and MpProp models
journal, January 2007

  • Söderhjelm, P.; Krogh, J. W.; Karlström, G.
  • Journal of Computational Chemistry, Vol. 28, Issue 6
  • DOI: 10.1002/jcc.20632

Variation of Ion Polarizability from Vacuum to Hydration: Insights from Hirshfeld Partitioning
journal, August 2010

  • Bauer, Brad A.; Lucas, Timothy R.; Krishtal, Alisa
  • The Journal of Physical Chemistry A, Vol. 114, Issue 34
  • DOI: 10.1021/jp103691w

Distributed molecular polarisabilities and asymptotic intermolecular interaction energies
journal, May 2013


Reduced and quenched polarizabilities of interior atoms in molecules
journal, January 2013

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • Chemical Science, Vol. 4, Issue 6
  • DOI: 10.1039/c3sc50242b

Numerical Study on the Partitioning of the Molecular Polarizability into Fluctuating Charge and Induced Atomic Dipole Contributions
journal, May 2015

  • Mei, Ye; Simmonett, Andrew C.; Pickard, Frank C.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 22
  • DOI: 10.1021/acs.jpca.5b03159

Perturbation Approach to Combined QM/MM Simulation of Solute−Solvent Interactions in Solution
journal, January 2003

  • Cubero, Elena; Luque, F. Javier; Orozco, Modesto
  • The Journal of Physical Chemistry B, Vol. 107, Issue 7
  • DOI: 10.1021/jp026874k

Efficient calculation of the energy of a molecule in an arbitrary electric field
journal, January 2009

  • Pulay, Peter; Janowski, Tomasz
  • International Journal of Quantum Chemistry, Vol. 109, Issue 10
  • DOI: 10.1002/qua.22064

Ultrafast Quantum Mechanics/Molecular Mechanics Monte Carlo simulations using generalized multipole polarizabilities
journal, March 2012


Efficient calculation of the density response function from generalized polarizabilities
journal, December 2015

  • Janowski, Tomasz; Wolinski, Krzysztof; Pulay, Peter
  • Theoretical Chemistry Accounts, Vol. 135, Issue 1
  • DOI: 10.1007/s00214-015-1761-0

A priori evaluation of aqueous polarization effects through Monte Carlo QM-MM simulations
journal, October 1992


Fast evaluation of induction energies: a second-order perturbation theory approach
journal, December 2000


Hardness, softness, and the fukui function in the electronic theory of metals and catalysis.
journal, October 1985

  • Yang, W.; Parr, R. G.
  • Proceedings of the National Academy of Sciences, Vol. 82, Issue 20
  • DOI: 10.1073/pnas.82.20.6723

Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities
journal, February 1988

  • Berkowitz, Max; Parr, Robert G.
  • The Journal of Chemical Physics, Vol. 88, Issue 4
  • DOI: 10.1063/1.454034

Strategies for computing chemical reactivity indices
journal, September 2001

  • Ayers, Paul W.
  • Theoretical Chemistry Accounts, Vol. 106, Issue 4
  • DOI: 10.1007/PL00012385

The unconstrained local hardness: an intriguing quantity, beset by problems
journal, January 2011

  • Cuevas-Saavedra, Rogelio; Rabi, Nataly; Ayers, Paul W.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 43
  • DOI: 10.1039/c1cp21646e

Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
journal, January 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 44
  • DOI: 10.1039/b810189b

Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
journal, January 1980

  • Krishnan, R.; Binkley, J. S.; Seeger, R.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438955

Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
journal, September 2014


CHARMM: The biomolecular simulation program
journal, July 2009

  • Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.
  • Journal of Computational Chemistry, Vol. 30, Issue 10
  • DOI: 10.1002/jcc.21287

Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


A new mixing of Hartree–Fock and local density‐functional theories
journal, January 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 2
  • DOI: 10.1063/1.464304

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Self‐consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory
journal, April 1977

  • Seeger, Rolf; Pople, John A.
  • The Journal of Chemical Physics, Vol. 66, Issue 7
  • DOI: 10.1063/1.434318

An approach to computing electrostatic charges for molecules
journal, April 1984

  • Singh, U. Chandra; Kollman, Peter A.
  • Journal of Computational Chemistry, Vol. 5, Issue 2
  • DOI: 10.1002/jcc.540050204

Atomic charges derived from semiempirical methods
journal, May 1990

  • Besler, Brent H.; Merz, Kenneth M.; Kollman, Peter A.
  • Journal of Computational Chemistry, Vol. 11, Issue 4
  • DOI: 10.1002/jcc.540110404

Non-Boltzmann sampling and Bennett's acceptance ratio method: How to profit from bending the rules
journal, November 2010

  • König, Gerhard; Boresch, Stefan
  • Journal of Computational Chemistry, Vol. 32, Issue 6
  • DOI: 10.1002/jcc.21687

Multiscale Free Energy Simulations: An Efficient Method for Connecting Classical MD Simulations to QM or QM/MM Free Energies Using Non-Boltzmann Bennett Reweighting Schemes
journal, March 2014

  • König, Gerhard; Hudson, Phillip S.; Boresch, Stefan
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 4
  • DOI: 10.1021/ct401118k

Efficient treatment of induced dipoles
journal, August 2015

  • Simmonett, Andrew C.; Pickard, Frank C.; Shao, Yihan
  • The Journal of Chemical Physics, Vol. 143, Issue 7
  • DOI: 10.1063/1.4928530

Compatibility of Quantum Chemical Methods and Empirical (MM) Water Models in Quantum Mechanics/Molecular Mechanics Liquid Water Simulations
journal, November 2009

  • Shaw, Katherine E.; Woods, Christopher J.; Mulholland, Adrian J.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 1
  • DOI: 10.1021/jz900096p

Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations
journal, October 2002

  • Ren, Pengyu; Ponder, Jay W.
  • Journal of Computational Chemistry, Vol. 23, Issue 16
  • DOI: 10.1002/jcc.10127

A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model
journal, October 1993

  • Bayly, Christopher I.; Cieplak, Piotr; Cornell, Wendy
  • The Journal of Physical Chemistry, Vol. 97, Issue 40
  • DOI: 10.1021/j100142a004

Conformational dependence of electrostatic potential-derived charges: Studies of the fitting procedure
journal, July 1993

  • Stouch, Terry R.; Williams, Donald E.
  • Journal of Computational Chemistry, Vol. 14, Issue 7
  • DOI: 10.1002/jcc.540140711

Fitting Molecular Electrostatic Potentials from Quantum Mechanical Calculations
journal, March 2007

  • Hu, Hao; Lu, Zhenyu; Yang, Weitao
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 3
  • DOI: 10.1021/ct600295n

A numerically stable restrained electrostatic potential charge fitting method
journal, December 2012

  • Zeng, Juan; Duan, LiLi; Zhang, John Z. H.
  • Journal of Computational Chemistry, Vol. 34, Issue 10
  • DOI: 10.1002/jcc.23208

Induced dipole moment and atomic charges based on average electrostatic potentials in aqueous solution
journal, February 1993

  • Gao, Jiali; Luque, F. J.; Orozco, Modesto
  • The Journal of Chemical Physics, Vol. 98, Issue 4
  • DOI: 10.1063/1.464126

A general population analysis preserving the dipole moment
journal, January 1983

  • Thole, Bernard T.; Duijnen, Petrus Th.
  • Theoretica Chimica Acta, Vol. 63, Issue 3
  • DOI: 10.1007/BF00569246

A charge analysis derived from an atomic multipole expansion
journal, January 2000


Dipole preserving and polarization consistent charges
journal, May 2011

  • Zhang, Peng; Bao, Peng; Gao, Jiali
  • Journal of Computational Chemistry, Vol. 32, Issue 10
  • DOI: 10.1002/jcc.21795

Classical Electrostatics for Biomolecular Simulations
journal, August 2013

  • Cisneros, G. Andrés; Karttunen, Mikko; Ren, Pengyu
  • Chemical Reviews, Vol. 114, Issue 1
  • DOI: 10.1021/cr300461d

A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations
journal, July 2016

  • Loco, Daniele; Polack, Étienne; Caprasecca, Stefano
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 8
  • DOI: 10.1021/acs.jctc.6b00385

LICHEM: A QM/MM program for simulations with multipolar and polarizable force fields: A QM/MM Program for Simulations with Multipolar and Polarizable Force Fields
journal, January 2016

  • Kratz, Eric G.; Walker, Alice R.; Lagardère, Louis
  • Journal of Computational Chemistry, Vol. 37, Issue 11
  • DOI: 10.1002/jcc.24295

TINKTEP: A fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field
journal, September 2016

  • Dziedzic, Jacek; Mao, Yuezhi; Shao, Yihan
  • The Journal of Chemical Physics, Vol. 145, Issue 12
  • DOI: 10.1063/1.4962909

Works referencing / citing this record:

Predicting partition coefficients of drug-like molecules in the SAMPL6 challenge with Drude polarizable force fields
journal, January 2020