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Abstract

Self-assembled aggregates of peptides containing aromatic groups possess optoelectronic

properties that make them attractive targets for the fabrication of biocompatible elec-

tronics. Molecular-level understanding of how the microscopic peptide chemistry influ-

ences the properties of the aggregates is vital for rational peptide design. We construct

a coarse-grained model of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG-OPV3-

GAFD) peptides containing OPV3 (distyrylbenzene) π-conjugated cores explicitly pa-

rameterized against all-atom calculations and perform molecular dynamics simulations

of the self-assembly of hundreds of molecules over hundreds of nanoseconds. We ob-

serve a hierarchical assembly mechanism wherein ∼2-8 peptides assemble into stacks

with aligned aromatic cores that subsequently form elliptical aggregates and ultimately

a branched network with a fractal dimensionality of ∼1.5. The assembly dynamics

are well described by a Smoluchowski coagulation process for which we extract rate

constants from the molecular simulations to both furnish insight into the microscopic

assembly kinetics and extrapolate our aggregation predictions to time and length scales

beyond the reach of molecular simulation. This study presents new molecular-level

understanding of the morphology and dynamics of the spontaneous self-assembly of

DFAG-OPV3-GAFD peptides and establishes a systematic protocol to develop coarse-

grained models of optoelectronic peptides for the exploration and design of π-conjugated

peptides with tunable optoelectronic properties.
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1. INTRODUCTION

As the understanding of biological molecules and techniques to synthesize new materials

continues to improve, there is growing interest in “designer” nanomaterials: organic ma-

terials that can be tuned at a microscopic level to produce desirable macroscopic prop-

erties. Proteins and polymers that display triggerable self-assembly into supramolecular

aggregates have proven to be valuable components in the fabrication of such nanomaterials1

with a wide range of potential applications including drug delivery, tissue regeneration2–4,

and as biomineralization scaffolds for tooth and bone growth5,6. Furthermore, “smart” self-

assembling peptide-based materials have found multifarious applications in biosensing due

to their ability to respond to diverse stimuli including pH, temperature, metal ion concen-

tration, enzymatic activity, and light bombardment7. In other cases, such external stimuli

have been used to tune the properties of the resultant aggregates for specific applications in

materials design8, biomedical diagnostics9, and bioelectronics10.

Self-assembling π-conjugated peptides are easily synthesizable, water soluble, and bio-

compatible. Their optoelectronic functionality – due to overlap and delocalization of the

π orbitals within the supramolecular aggregates11 – makes them well suited for bioelec-

tronic applications such as organic field-effect transistors, light-emitting diodes, and pho-

tovoltaic cells12–16. They also display promising tunability, with assembly behavior and

emergent photophysical and electronic properties of the aggregates controllable by manip-

ulation of the chemistry of the conjugated cores and side chain moieties and the prevailing

environmental conditions13. Several experimental and computational studies have been per-

formed on π-conjugated peptide systems containing oligophenylenevinylene (OPV) cores.

It has been demonstrated that these systems can undergo β-sheet-like assembly into one-

dimensional nanostructures whose optoelectronic properties can be tuned from excimeric-

like to excitonic-like by changing the chemistry and symmetry of the molecules16–19. In this

paper, we focus on the symmetric Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG-OPV3-
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GAFD) oligopeptide containing an OPV3 (distyrylbenzene) π-conjugated core in which the

N-to-C directionality of the peptide wings proceeds away from the OPV3 core such that the

molecule possesses two C-termini (Fig. 1a)17,18. At high pH, these peptides exist as dispersed

monomers or small oligomers with large-scale assembly prohibited by electrostatic repulsion

between the doubly negatively charged aspartic acid termini20. At low pH, protonation of

the termini eliminates the electrostatic repulsion and triggers assembly into long β-sheet-like

aggregates mediated by hydrogen bonding, π-π stacking, and dispersion interactions between

the peptide cores and side chains15–17,19,20, producing structures similar to amyloid fibrils21.

Previous theoretical and computational work on DFAG-OPV3-GAFD assembly has in-

cluded simulations of dimer aggregation and dimerization potentials of mean force16, simu-

lation and characterization of the morphology of preformed one-dimensional nanostructures

of tens of monomers18, and the characterization of the early stages of assembly up to tens

of nanoseconds using implicit solvent molecular dynamics simulations and a Markov state

model20. These works shed valuable light on both the kinetics of early-stage assembly and

the effects of chemistry on the morphology of preformed aggregates. No studies to date have

directly simulated the assembly of aggregates containing more than ∼10 oligopeptides, and

it is of interest to probe longer time and length scales to determine the morphology and

dynamics of assembly beyond these small-scale and early-stage events.

In this work, we construct a coarse-grained molecular model explicitly parameterized

against all-atom calculations that enables us to perform molecular dynamics simulations

of the assembly of hundreds of monomers over hundreds of nanoseconds. The structure

of this paper is as follows. In Section 2, we describe our development of a coarse-grained

DFAG-OPV3-GAFD model from all-atom calculations and our use of this model to perform

coarse-grained molecular dynamics simulations. In Section 3, we report the results of our

coarse-grained simulations, characterize the morphology of the self-assembly pathway, and

extract microscopic rate constants to parameterize a Smoluchowksi coagulation model of

non-equilibrium dynamics of peptide assembly. In Section 4, we present our conclusions and
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Figure 1: Atomistic and coarse-grained representations of the Asp-Phe-Ala-Gly-OPV3-Gly-
Ala-Phe-Asp (DFAG-OPV3-GAFD) π-conjugated oligopeptide. These molecules are sym-
metric in the sense that each of the peptidic wings possess N-to-C directionality proceed-
ing away from the π-conjugated core such that there are two C-termini17,18. (a) Chemi-
cal structure of DFAG-OPV3-GAFD, produced using Marvin 15.12.7.0 (ChemAxon, 2015)
(http://www.chemaxon.com). Under high pH conditions (pH & 10), the distal aspartic
acid residues are doubly negatively charged, prohibiting large-scale assembly due to electro-
static repulsion; at low pH (pH . 2), protonation of the terminal residues leads to large-scale
aggregation of the electrically neutral molecules18. (b) Mapping of the DFAG-OPV3-GAFD
oligopeptide from an all atom representation to a coarse-grained representation under the
Martini model22,23. Colored circles represent different coarse-grained beads formed by lump-
ing of atoms. Detailed descriptions of the Martini beads may be found in Monticelli et al. 22 .
(c) Coarse-grained topology of the DFAG-OPV3-GAFD oligopeptide with bonds and bead
numbering scheme implemented in the coarse-grained adaptation of the Martini force field
that we explicitly reparameterize against all-atom calculations. Full details of the force field
are provided in the Supporting Information.

outlook for future work.
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2. THEORETICAL METHODS

In this section, we report the development of a coarse-grained model explicitly parame-

terized against all-atom calculations, describe the simulation of hundreds of coarse-grained

monomers over hundreds of nanoseconds at different concentrations, and define structural

measures used to characterize cluster morphology.

2.1 Development of a coarse-grained model through atomistic and

coarse-grained molecular dynamics simulations

Molecular dynamics simulations provide a means to link the chemical details of self-assembling

peptides to the emergent structural and functional properties of self-assembled aggregates,

providing a route to molecular-level mechanistic understanding and rational materials de-

sign1. All-atom simulations of hundreds of thousands of atoms over microsecond time scales

are computationally challenging. Coarse-grained or multiphysics models reduce the number

of degrees of freedom, providing the efficiency gains necessary to access the time and length

scales required to robustly observe assembly24–26. Coarse-grained molecular dynamics simu-

lations in which groups of atoms are lumped together into single beads have been employed

to elucidate the structural and functional properties of large systems, including proteins27,28,

DNA29, lipids and lipid membranes24, and even bacterial flagella30.

In this work, we develop a coarse-grained potential based on the Martini potential22,23,

which is a popular coarse-grained model31 of proteins23,32, lipids33, and carbohydrates34

that has been profitably employed to study peptide self-assembly35,36. The Martini force

field is computationally efficient, transferable, and explicitly distinguishes between the 20

natural amino acid side chains22,37 providing a good balance between computational efficiency

and chemical realism that permits us to explicitly link oligopeptide sequence to emergent

assembly behavior. As we describe below, we construct coarse-grained Martini models for

the DFAG-OPV3-GAFD oligopeptide and then recalibrate the Martini parameters against
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all-atom simulation data to develop a coarse-grained force field offering ∼25× speedups

over all-atom calculations. The approach we present offers a systematic means to develop

efficient and accurate bespoke coarse-grained potentials explicitly incorporating atomistic

information.

2.1.1. All-atom molecular dynamics simulations for coarse-grained model pa-

rameterization

We employed the Gromacs 4.6 simulation suite38 to perform all-atom molecular dynamics

simulations of a single DFAG-OPV3-GAFD molecule solvated in water. Initial peptide con-

figurations were prepared using the GlycoBioChem PRODRG2 server39. Peptides were pre-

pared with protonated Asp termini corresponding to the electrically neutral, low-pH form

of these molecules that have been experimentally demonstrated to exhibit triggered self-

assembly under acidic conditions17. We modeled water explicitly using the TIP3P model40,

and treated the peptides using the CHARMM27 force field41 supplemented with bonded

parameters required to model the OPV3 core as described in Thurston et al. 20 . Simulations

were conducted in the NPT ensemble at 298 K and 1 bar using a Nosé-Hoover thermo-

stat42 and Parrinello-Rahman barostat43. Three-dimensional periodic boundary conditions

were employed. Initial atom velocities were randomly assigned from a Maxwell-Boltzmann

distribution at 298 K and high energy overlaps in initial configurations were eliminated by

performing steepest descent energy minimization to remove forces exceeding 500 kJ/mol-nm.

The equations of motion were numerically integrated using a leap-frog algorithm44 with a 2

fs time step, and bond lengths were fixed using the LINCS algorithm to improve efficiency45.

Electrostatic interactions were treated using Particle Mesh Ewald (PME) with a real-space

cutoff of 1.2 nm and a 0.12 nm Fourier grid spacing46. Lennard-Jones interactions were

shifted smoothly to zero at 1.2 nm, and Lorentz-Berthelot combining rules were used to

determine interaction parameters between unlike atoms47. Calculations were performed on

40 × 2.2 GHz Intel Xeon E5-2430 CPU cores, achieving execution speeds of ∼30 ns/day.
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Isolated molecules. A single DFAG-OPV3-GAFD molecule was placed in a 7× 7× 7

nm3 box, which was sufficiently large to preclude direct interactions of the peptide with

its own periodic image in its fully-extended state. The peptide was then solvated to a

density of 0.988 g/cm3 with TIP3P water40 and an equilibration run of 10 ps performed,

after which time the density, energy, temperature, and pressure had attained stable values.

A production run of 340 ns was conducted to comprehensively sample the intramolecular

degrees of freedom.

Monomer potential of mean force. The end-to-end potentials of mean force (PMF)

quantifying the free energy of a monomer as a function of the distance between its terminal

carbon atoms were computed using umbrella sampling in the end-to-end distance48. The

oligopeptide termini were restrained at intermolecular separations between 0.0 nm and 4.0 nm

at intervals of 0.1-0.2 nm to assure good overlap of neighboring umbrella window histograms.

A harmonic restraining potential of 1000 kJ/mol-nm2 was employed in each window, and

the system allowed to relax for 100 ps prior to a 10 ns production run. End-to-end distances

were recorded and the PMF computed by self-consistent solution of the weighted histogram

analysis method (WHAM) equations49 to a tolerance of 10−6 in the estimated probability

distribution, and uncertainties estimated by block averaging.

Dimerization potential of mean force. Dimerization PMFs quantifying the free

energy as a function of the center of mass separation between a pair of monomers were

computed in umbrella sampling calculations in which the monomer pair was restrained at

separations between 0.0 nm and 5.0 nm at intervals of 0.1-0.2 nm using a harmonic potential

with a force constant of 1000 kJ/mol-nm2. The largest separation considered was sufficient

to observe a plateau in the PMF corresponding to a regime in which the monomers are

effectively non-interacting. The dimerization PMF was computed by solving the WHAM

equations49 to a tolerance of 10−6 in the estimated probability distribution, and uncertainties

estimated by block averaging.
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2.1.2. Coarse-grained mapping and force field parameterization

Coarse-grained models of the DFAG-OPV3-GAFD molecule were prepared in the low pH

state (pH . 1) in which the aspartic acid residues are fully protonated and the molecule

is electrically neutral, and the high pH state (pH & 10) in which the aspartic acids are

fully deprotonated and the molecule carries a net charge of (-4)18,20. We first describe the

construction of the protonated (low pH) coarse-grained model, and then the modifications

made for the deprotonated (high pH) model. Construction of the coarse-grained model from

all-atom simulation data proceeds in three stages: (i) mapping from all-atom to coarse-

grained topology, (ii) definition of non-bonded (intermolecular) interactions between coarse-

grained beads, and (iii) definition of bonded (intramolecular) interactions between the beads.

We now describe each step in turn.

Coarse-grained mapping. A coarse-grained representation of the electrically neutral

(low-pH) DFAG-OPV3-GAFD was constructed from the all-atom structure using the Martini

model in which approximately four heavy atoms are mapped to a single bead (Fig. 1b)22,23.

An initial molecular topology was built using the martinize.py script available from the

Martini website (http://www.cgmartini.nl)23, which was subsequently modified to

treat the aromatic rings as described in the Martini force field50 and the peptide-core linker

regions following the guidelines on the Martini website (http://www.cgmartini.nl/

index.php/faq/topologies) (Fig. 1c).

Non-bonded interactions. The non-bonded interactions were treated using the Mar-

tini force field (version 2.2)23 and the non-polarizable Martini water model51.

Bonded interactions. Bonded parameters for the coarse-grained bond stretching, angle

bending, and proper and improper dihedrals were extracted from our 340 ns all-atom simula-

tion trajectory using Boltzmann inversion to infer an effective coarse-grained potential from

the all-atom intramolecular distributions26,26,52. By explicitly calculating the bonded poten-

tials in this manner we developed a bespoke coarse-grained model that exhibited improved

agreement with the all-atom calculations compared to the standard Martini parameters (see
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Supporting Information). A deficiency of coarse-grained models is that they frequently do

not adequately reproduce the intramolecular secondary structure of the all-atom model (cf.

the monomer collapse PMF of the unmodified Martini model in Fig. 2a). In addition to

reparameterizing each bonded Martini interaction, we follow Seo et al. 36 and apply proper

dihedrals to every group of four consecutive beads in the backbone to enforce the backbone

conformations observed in the all-atom calculations. The specific beads participating in

these additional proper dihedrals and the parameters of the dihedral potential (cf. Eqn. 1)

are listed in Tables S5-S8 in the Supporting Information.

To compute the effective coarse-grained potentials, we first located the hypothetical

coarse-grained beads within the all-atom simulation trajectory as the centers of mass of

the atoms mapped to each of the corresponding coarse-grained beads. We then compiled

histograms of the distribution functions for each coarse-grained bonded interaction over the

course of the all-atom trajectory under this coarse-grained mapping and extracted tabulated

effective coarse-grained bonded potentials from these histograms. Both procedures were

performed by using the Direct Boltzmann Inversion module in the Coarse-graining Toolkit

of the Versatile Object-oriented Toolkit for Coarse-graining Applications software package

(VOTCA-CSG)53. In implementing these effective potentials in Gromacs, the bond stretch-

ing and angle bending potentials were represented directly as tabulated potentials produced

by VOTCA, whereas the periodic proper dihedrals were represented in the form,

Vd(φ) =
4∑

n=1

Cn [1 + cos(nφ)] +
4∑

n=0

Sn

[
1 + cos

(
nφ− π

2

)]
(1)

by constructing least squares fits in {Cn}4n=1 and {Sn}4n=0 to the tabulated potential using

Matlab54. For convenience of representation in Gromacs, the improper dihedrals were rep-

resented using the same functional form as the propers. The distribution functions for bond

lengths within the rigid aromatic rings were observed to be extremely narrow, so – similar to

the rigid coarse-grained model of benzene due to Marrink et al. 51 – we elected to treat aro-
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matic bond lengths as hard constraints enforced by the LINCS algorithm45. The symmetric

DFAG-OPV3-GAFD molecule contains several chemically identical bonded interactions, and

we improved the sampling in our inversion procedure by averaging the calculated effective

potentials over all equivalent bonded interactions.

Protonated (low pH) and deprotonated (high pH) models. The low pH state

in which the aspartic acid residues are fully protonated requires two modifications to con-

struct a high pH model containing deprotonated aspartic acid residues. First, the aspartic

acid beads were converted from P3 and P5 semi-attractive beads to negatively charged Qa

beads, corresponding to the Martini treatment of the change in the Asp protonation state22.

Secondly, the water was treated by the Martini polarizable water model, which, despite its

higher computational cost, is a more realistic model for systems containing charged particles

where polarization effects are anticipated to be important55.

2.1.3. Coarse-grained molecular dynamics simulations for model parameteriza-

tion

Isolated molecules. In order to assess the quality of the original Martini and reparame-

terized coarse-grained models, we performed coarse-grained molecular dynamics simulations

of a single monomer in solution. Calculations were conducted in the Gromacs 4.6 simulation

suite56. A single DFAG-OPV3-GAFD peptide was placed in a 7 × 7 × 7 nm3 box, which

was sufficiently large to preclude direct interactions of the peptide with its own periodic

image even in its fully-extended state. The peptide was then solvated to a density of 0.988

g/cm3 with Martini non-polarizable51 or Martini polarizable55 water, depending on which

model was being tested. Simulations were conducted in the NPT ensemble at 298 K and

1 bar, employing a velocity rescaling thermostat57, a Parrinello-Rahman barostat43, and

three-dimensional periodic boundary conditions. Initial velocities were randomly assigned

from a Maxwell-Boltzmann distribution at 298 K, and high energy overlaps in the initial

configurations eliminated by performing steepest descent energy minimization to remove
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forces exceeding 1000 kJ/mol-nm. Equations of motion were numerically integrated using a

leap-frog algorithm44 with a model-dependent time step, and constrained bond lengths fixed

using the LINCS algorithm45. Lennard-Jones interactions were shifted smoothly to zero at

1.1 nm. Electrostatic interactions were treated using reaction field electrostatics and a rela-

tive electrostatic screening of 2.5 for polarizable water and 15 for non-polarizable water. An

equilibration run of 10 ps was performed, after which time the density, energy, temperature,

and pressure had attained stable values. Following equilibration, a production run of 340 ns

was then performed to comprehensively sample the intramolecular degrees of freedom. An

average calculation was performed on 6 × 2.2 GHz Intel Xeon E5-2430 CPU cores, achieving

execution speeds of ∼1100 ns/day for the optimal model selected by our procedure.

Monomer and dimerization potentials of mean force. Potentials of mean force for

the reparameterized coarse-grained model and the original Martini model were computed in

an identical manner to those described for the all atom model in Section 2.1.1, with umbrella

potentials applied to the beads containing the terminal carbon atoms (Fig. 1).

2.1.4. Validation of coarse-grained model

We assess and validate the performance of the reparameterized coarse-grained model in re-

producing the bonded distribution functions, all-atom monomer collapse PMF, dimerization

PMF, and contact map. A complete listing of the coarse-grained bonded and non-bonded

parameters is provided in Tables S1-S8 in the Supporting Information, and in the tabu-

lated force field files b0-b8.txt and a0-a12.txt and the DFAG coarse-grained topology

topology.txt provided as Supplementary Files.

Bonded distributions. It is important that the bonded distributions of a coarse-grained

model be in good agreement with the all-atom results in order to accurately reproduce the

internal bonded structure of the molecule. Coarse-grained simulations of the original Mar-

tini model showed relatively poor agreement with the all-atom calculations, and we improved

the quality of the coarse-grained model by reparameterizing the bonded interactions using
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Figure 2: Validation of the reparameterized coarse-grained model. (a) Monomer collapse
PMFs for all-atom (AA), reparameterized coarse-grained (CG), and original Martini (M)
models. de→e represents the distance between the terminal carbon atoms or the beads con-
taining the terminal carbon atoms, and ∆F is the (relative) Gibbs free energy determined
by umbrella sampling. The arbitrary additive constant specifying the vertical offset of each
PMF profile was specified for the all-atom model such that ∆F averaged over the profile
is zero, and for the two coarse-grained models to minimize the point-wise root-mean-square
distance mrms relative to the all-atom profile (cf. Eqn. 2). (b) Dimerization PMFs for the
all-atom, reparameterized coarse-grained, and original Martini models. dcom represents the
center of mass distance between the two monomers and ∆F is the (relative) Gibbs free energy
determined by umbrella sampling. The arbitrary additive constant specifying the vertical
offsets of the PMF profiles were specified by aligning the plateau regions at large separations
corresponding to effectively non-interacting monomers to ∆F = 0 kBT . (c) Time-averaged
contact maps of the all-atom (lower triangle) and reparameterized coarse-grained (upper
triangle) models.
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the Boltzmann inversion procedure detailed in Section 2.1.2. In Figs. S1-S5 of the Supple-

mentary Information, we present a comparison between the 33 bond, 24 angle, 15 proper

dihedral, and 2 improper dihedral distributions sampled by the all-atom and reparameterized

coarse-grained models. In all cases, the reparameterized coarse-grained model adequately

recapitulates the range and character of the bonded distribution functions, with the ex-

ception of 6/33 bonds (Fig. S1e-j) and 9/24 angles (Fig. S3a,d,e,l,m,q-t) where it fails to

precisely reproduce bimodalities observed in the all-atom calculations. This should be re-

garded as a deficiency of the reparameterized coarse-grained model that could be ameliorated

by more sophisticated inversion techniques such as iterative Boltzmann inversion or inverse

Monte-Carlo26,53, or more extensive modifications of the functional forms of the bonded and

angle potentials in addition to retuning of the parameters. Nevertheless, the overall agree-

ment of the coarse-grained and all-atom bonded distributions is quite good, a substantial

improvement over the original Martini model, and sufficient to accurately reproduce the

thermodynamic and structural properties described below.

Monomer collapse PMFs. In Fig. 2a, we present PMF curves quantifying the free

energy of a monomer in solution as a function of its end-to-end distance computed from the

all-atom, original Martini, and reparameterized coarse-grained models. Accurate reproduc-

tion of the all-atom PMF by a coarse-grained model is a prerequisite to realistic modeling of

the equilibrium distribution between extended and collapsed configurations of a single pep-

tide. It is apparent from the PMF curves that the original Martini model poorly reproduces

the distribution of end-to-end distances observed in the all-atom simulations, whereas our

coarse-grained model constructed by reparameterizing the bonded Martini interactions and

incorporating backbone proper dihedrals exhibits greatly improved agreement. Specifically,

the all-atom PMF exhibits a flat-bottomed character in which the free energy is essentially

flat within error bars over the region 1.6 to 3.2 nm. Our coarse-grained model reproduces this

feature, possessing a flat bottom over the range 1.3 to 2.8 nm that is shifted relative to the

all-atom model by only ∼0.3 nm, marginally favoring slightly more collapsed configurations.
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In contrast, the original Martini model excessively favors highly collapsed peptide configu-

rations, exhibiting a flat-bottomed minimum over the range 0.5 to 1.1 nm that is completely

outside the range of that for the all-atom model. Outside of the flat-bottomed minimum,

our coarse-grained model also significantly better reproduces the wings of the distribution

relative to the original Martini model, but the agreement is not quantitative. Specifically, for

end-to-end distances in the range 0.5 to 1.5 nm, the reparameterized coarse-grained model

under-predicts the all-atom PMF, leading to an elevated preference for collapsed peptide

configurations. Conversely, over the range 1.5 to 3.8 nm the coarse-grained PMF lies above

that of the all-atom model, leading to a slightly suppressed preference for moderately ex-

tended conformations in the coarse-grained model, but this trend inverts in the region above

3.8 nm such that highly extended conformations are slightly more favored. Nevertheless,

the agreement between the reparameterized coarse-grained and all-atom models is very good

over the flat-bottomed minimum, and differs outside this region by ∼5 kBT such that dis-

crepancies in the relative stabilities of the collapsed and extended conformations predicted

by the two models are within only a few multiples of the scale of thermal fluctuations.

We quantify the agreement between the reparameterized coarse-grained and all-atom

PMFs using the point-wise root-mean-square distance between the optimally-aligned PMF

profiles,

mrms =
1

N

√√√√ N∑
i=1

(MAA
i − M̃i)2, (2)

whereMAA is the all-atom PMF and M̃ is the coarse-grained PMF, optimally shifted relative

to MAA to minimize mrms (i.e., specifying the arbitrary additive constant in the PMF to

minimize the point-wise RMSD), and linearly interpolated at the i = 1...N points at which

MAA was computed. Our reparameterized coarse-grained model better reproduces the all-

atom distribution (mCG
rms = 0.14 kBT per point) compared to the unmodified Martini model

(mM
rms= 0.24 kBT per point), corresponding to an average 42% improvement in the per point

agreement of the PMF curves. The substantially improved agreement of our coarse-grained
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PMF relative to the original Martini model demonstrates the importance and value of explicit

reparameterization against all-atom data. Moreover, it is notable that the reparameterized

coarse-grained model uses identical non-bonded parameters to the original Martini model,

and that this elevation in performance emerges exclusively from reparameterization of the

bonded interactions and is not due to direct fitting of the monomer collapse PMF.

Dimerization PMFs. In Fig. 2b, we present dimerization PMF curves quantifying

the free energy as a function of the center of mass distance between a pair of monomers

calculated using the all-atom, original Martini, and reparameterized coarse-grained models.

In each case, we explicitly remove the trivial entropic contribution arising from restraining

two objects to reside at a particular separation58. Reproduction of the all-atom dimerization

PMF by a coarse-grained model is critical in properly modeling the strength and character

of the pairwise interactions between monomers that mediate peptide assembly. The all-atom

PMF reveals a relatively strong thermodynamic driving force for dimerization of ∆FAA =

(16± 3) kBT , as measured from the plateau region at center of mass separations in excess of

∼3 nm, corresponding to essentially non-interacting monomers, to the global minimum at

∼0.25 nm, representing the dimer contact pair. The original Martini model predicts ∆FM =

(22 ± 1) kBT , overestimating the driving force for dimerization by 38%. The prediction of

the reparameterized coarse-grained model of ∆FCG = (15±2) kBT is in excellent agreement

with the all-atom calculations. The shape of the curve along the dimerization pathway is

also in quite good agreement, although the coarse-grained model slightly overestimates the

all-atom PMF by a maximum of ∼4 kBT for center of mass separations in the range 1.5 to

2.0 nm. Again, it is notable that this agreement emerges from reparameterization of only

the bonded interactions and is not due to direct fitting of the dimerization PMF.

We again quantify the difference in the all-atom and reparameterized coarse-grained

PMFs using the point-wise root-mean-square distance between the optimally-aligned dimer-
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ization PMF profiles,

drms =

√√√√ N∑
i=1

(DAA
i − D̃i)2, (3)

where DAA is the dimer all-atom profile and D̃ is the dimer coarse-grained profile linearly

interpolated at the i = 1...N points at which DAA was computed. In this case, the arbitrary

additive constant for each PMF was specified by aligning the plateau regions of the two PMFs

at large monomer separations, corresponding to effectively non-interacting monomers. The

modified coarse-grained model provides a much more accurate reproduction of the all-atom

PMF (dCGrms = 0.10 kBT per point) compared to the unmodified Martini model (dMrms = 0.27

kBT per point), an average 62% improvement in the per point agreement of the PMF curves.

Contact maps. In Fig. 2c, we present a comparison of the contact maps computed from

our all-atom and reparameterized coarse-grained models. The all-atom contact map CAA was

computed as the time-averaged pairwise distances between the centers of mass of the thirteen

residues of the all-atom system of an isolated DFAG peptide simulated in water for 340 ns

(cf. Section 2.1.1), and the coarse-grained contact map CCG as the time-averaged pairwise

distances between the centers of mass of the corresponding thirteen residues of the coarse-

grained system of an isolated DFAG peptide simulated in water for 340 ns (cf. Section 2.1.3).

Contact maps provide a time-averaged measure of relative residue positions and therefore

quantify differences in intramolecular structure36. It is critical that a coarse-grained model

accurately recapitulate the all-atom contact map in order to properly reproduce the peptide

secondary structure. Visual comparison of the two contact maps shows good agreement

between the two models, indicating that the reparameterized coarse-grained model properly

recapitulates the internal structure of the all-atom peptide. It is visually apparent that

neighboring residues in the coarse-grained model tend to be slightly further separated than in

the all-atom calculations, but no pair of residues over the entire peptide is in disagreement by

more than ∼0.5 nm. To provide a global comparative measure of pairwise residue distances

in the all-atom and coarse-grained systems, we compute the Frobenius norm of the difference
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of the contact map matrices,

dCGcmap =

√√√√rnum∑
i=1

rnum∑
j=1

(cAAij − cCGij )2, (4)

where rnum = 13 is the number of residues (four amino acid residues in each wing, two

C-termini, and three OPV3 aromatic rings; see Fig. 1), cAAij is the (i, j)th element in the

all-atom contact map matrix CAA, and cCGij is the (i, j)th element in the coarse-grained

contact map matrix CCG. The resultant value dCGcmap = 1.98 nm indicates that on average the

coarse-grained contact map differs from the atomistic by only dCGcmap/N2 = 0.012 nm/residue,

indicating globally good agreement of the secondary structure predicted by the two models.

Summary. Overall, the reparameterized coarse-grained model satisfactorily reproduces

the all-atom bonded distribution functions, monomer collapse PMF, dimerization PMF, and

contact maps. Although the standard Martini potential has been previously profitably em-

ployed to study self-assembly of small peptides35, it is notable that by incorporating backbone

proper dihedrals and reparameterizing the bonded interactions using all-atom data, the mod-

ified model demonstrates substantial improvements in recapitulating the dimerization PMF

and secondary structure predictions that are important features governing self-assembly36.

This enhancement illustrates the value of this approach in tailoring the coarse-grained model

for a particular peptide chemistry to elevate predictive performance and offers an extensible

means to develop coarse-grained models for other peptide chemistries. The coarse-grained

model does, however, possess two non-trivial deficiencies. First, it does not properly resolve

bimodalities in several bonds and angles observed in all-atom calculations, although this

occurs for only a relatively small fraction of the bonded distribution functions and does not

compromise the global structural and thermodynamic properties assessed by the monomer

and dimer PMFs and contact maps. Second, the coarse-grained model overly favors collapsed

peptide conformations relative to the all-atom calculations, but the discrepancy is on the

order of ∼5 kBT such that the effect is rather mild. In both cases, we observe that agree-
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ment could be improved by using more sophisticated reparameterization procedures26,53,

modification of the functional forms of the bonded potentials, or by reparameterization of

the non-bonded interaction parameters. Finally, the reparameterized model offers ∼25×

speedups relative to all-atom calculations, allowing us to probe self-assembly up to hundreds

of monomers and hundreds of nanoseconds to reach time and length scales inaccessible to

atomistically-detailed simulations.

2.2 Coarse-grained molecular dynamics simulations of self-assembly

The coarse-grained model detailed in Section 2.1.2 permits us to access the time and length

scales necessary to observe spontaneous peptide self-assembly in coarse-grained molecular

dynamics simulations of hundreds of DFAG-OPV3-GAFD oligopeptides in water over hun-

dreds of nanoseconds. Calculations were conducted in the Gromacs 4.6 simulation suite56.

Initial peptide configurations were constructed from coarse-grained mappings from structures

harvested from the all-atom calculations. Simulations were conducted in the NPT ensemble

at 298 K and 1 bar, employing a velocity rescaling thermostat57, a Parrinello-Rahman baro-

stat43, and three-dimensional periodic boundary conditions. Initial bead velocities were ran-

domly assigned from a Maxwell-Boltzmann distribution at 298 K, and high energy overlaps

in the initial configurations eliminated by performing steepest descent energy minimization

to remove forces exceeding 1000 kJ/mol-nm. Equations of motion were numerically inte-

grated using a leap-frog algorithm44 with a 5 fs time step, and constrained bond lengths

fixed using the LINCS algorithm45. Lennard-Jones interactions were shifted smoothly to

zero at 1.1 nm. Electrostatic interactions were treated using reaction field electrostatics and

a relative electrostatic screening of 2.5 for polarizable water (deprotonated, high-pH model)

and 15 for non-polarizable water (protonated, low-pH model). Calculations were performed

on 12 × 2.2 GHz Intel Xeon E5 CPU cores and 2 × NVIDIA Tesla M7020 GPUs, achieving

execution speeds on the order of ∼150 ns/day.
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2.2.1. Deprotonated (high pH) simulations.

Simulations of 343 deprotonated (-4 net charge) DFAG-OPV3-GAFD molecules were ini-

tialized by placing the oligopeptides in random locations with random orientations in an

initially 33× 33× 33 nm3 box. Charge neutrality was maintained by 1372 randomly placed

counter ions represented by Martini Qd beads each carrying a +1 charge22 and the system

solvated with Martini polarizable water55 to a achieve a peptide concentration of 15 mM.

Experimentally, there is evidence that peptides do not form large aggregates under high pH

conditions16–19, but that they may form small aggregates such as dimers or trimers59. The

system was subjected to a 300 ns equilibration run to allow the cluster size distribution

to attain a steady value, before conducting a single 100 ns production run over which we

harvested equilibrium statistics.

2.2.2. Protonated (low pH) simulations.

Simulations of 42, 126, 200, 252, and 378 protonated (electrically neutral) DFAG-OPV3-

GAFD molecules were prepared by insertion at random locations in random orientations

into 23.5 × 23.5 × 23.5 nm3 boxes and solvated with Martini non-polarizable water51 to

achieve average molar concentrations of 5.0 mM, 15 mM, 24 mM, 30 mM, and 44 mM,

respectively. Each system was initially subjected to a short 50 ps run to allow the energy,

temperature, and pressure to attain stable values before commencing 5 × 400 ns independent

production runs in which we observed spontaneous and irreversible peptide aggregation.

Experimentally, DFAG-OPV3-GAFD oligopeptides are known to aggregate under low pH

conditions at concentrations exceeding 10−3 mM18, and have been studied at concentrations

up to 0.86 mM19. We perform simulations at six-fold larger concentrations and higher

to robustly observe assembly of hundreds of peptides over hundreds of nanoseconds. We

demonstrate below that the aggregation mechanism is concentration independent over the

range of values considered in this work.

For direct comparison with the deprotonated (high pH) simulations, we also conducted

20



a simulation of 343 protonated (low pH) molecules in a 33× 33× 33 nm3 box solvated with

Martini non-polarizable water51 at a concentration of 15 mM. It was initially subjected to a

short 50 ps run to allow the energy, temperature, and pressure to attain stable values before

commencing a 1.3 µs production run.

2.2.3. Time scale correspondence in all-atom and coarse-grained simulations

It is well known that coarse-graining can artificially accelerate the system dynamics by elim-

inating degrees of freedom and smoothing the underlying free energy landscape, and that

different dynamical degrees of freedom may be accelerated by different scaling factors37,51,60.

Since it is peptide self-assembly that is of the most interest to us, the relevant dynamical

time scale is the center of mass peptide translation that governs the rate at with which the

molecules come into contact with one another. Accordingly, we ascertain the coarse-graining

speedup by comparing the translational self-diffusion coefficients of the all-atom and coarse-

grained DFAG-OPV3-GAFD molecules20,61–63. Using the same simulation procedures as

described in Section 2.1.1 and Section 2.2.2, we conducted a 10 ns simulation of an isolated

peptide in a 7× 7× 7 nm3 simulation box employing both the all-atom and coarse-grained

models. We computed the self-diffusion coefficients by calculating the mean squared dis-

placement of the peptide center of mass and applying the Einstein relation64. Uncertainties

were estimated by blocking the trajectory into 20 equally sized segments and computing the

standard deviation of the self-diffusion coefficients calculated over these blocks. We deter-

mine a self-diffusion coefficient in the coarse-grained runs of DCG = (7 ± 2) × 10−6 cm2/s

compared to DAA = (12 ± 3) × 10−6 cm2/s in the all-atom calculations. Interestingly, we

observe a slight slowing down of the coarse-grained dynamics, which has previously been

observed for Martini representations of certain molecules including alkane chains37. Nev-

ertheless, the self-diffusion coefficients agree within error bars, indicating that there is no

significant difference in the dynamical time scales of the two simulations. Accordingly, we

apply no rescaling corrections to the coarse-grained simulation time scale.
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2.3 Metrics to define a hierarchy of cluster types with different

aggregation morphologies

Overlap and delocalization of the π-orbitals in the OPV3 cores of the oligopeptides within

supramolecular aggregates endows these assemblies with emergent optoelectronic function-

ality11. The structural arrangement of the OPV3 cores is therefore of primary interest in

characterizing the observed self-assembled aggregates. Following metrics previously devel-

oped to define clusters in asphaltene aggregation65, we define three criteria to determine

whether or not two oligopeptides should be considered to exist in the same aggregate. The

metrics, in increasing degree of strictness, are described below and illustrated schematically

in Fig. 3.

Metric 1 – Contact clusters. Metric 1 defines the distance between two oligopeptides

a and b as,

R
(1)
a,b = min

i∈a
min
j∈b

rij, (5)

where rij is the distance between beads i and j, and the minimization is taken over all beads

in each molecule. We define “contact clusters” to be clusters comprised of pairs of molecules

that satisfy R(1)
a,b < r

(1)
cut, where r

(1)
cut is a tunable cutoff distance that is discussed below. Two

molecules are therefore considered to be in a contact cluster if any two of their constituent

atoms are within the cutoff distance of each other. Contact clusters would not necessarily

be expected to demonstrate desirable optoelectronic properties, as their cores may or may

not possess the π-π stacking necessary for electronic delocalization.

Metric 2 – Optical clusters. Metric 2 defines the distance between two oligopeptides

a and b as,

R
(2)
a,b = min

i∈(core a)
min

j∈(core b)
rij, (6)

where rij is the distance between the centers of mass of aromatic rings i and j, and the

minimization proceeds over the three aromatic rings within the OPV3 core of each molecule.
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Figure 3: A schematic illustration of the hierarchy of cluster types as defined by Metrics 1,
2, and 3. Metric 3 defines an “aligned cluster,” which is made up of molecules with aligned
aromatic cores. Metric 2 defines an “optical cluster,” composed of aligned clusters with
interacting, but not necessarily aligned, aromatic cores. Metric 1 defines a “contact cluster,”
which is made up of optical clusters interacting by promiscuous and non-specific side chain
and core contacts. The distinct clusters defined by each metric are identified in different
colors.

We define “optical clusters” to be clusters comprised of pairs of molecules that satisfy R(2)
a,b <

r
(2)
cut. Two molecules are considered to be in an optical cluster if the minimum distance

between any two aromatic rings is within the cutoff. This metric assures proximity of the

aromatic rings between the two molecules, and we term these aggregates optical clusters

since this proximity can lead to electronic delocalization and the emergence of optoelectronic

properties.
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Metric 3 – Aligned clusters. Metric 3 defines an associated distance between any two

molecules a and b as,

R
(3)
a,b = max

[(
max

i∈(core a)
min

j∈(core b)
rij

)
,

(
max

i′∈(core b)
min

j′∈(core a)
ri′j′

)]
, (7)

where rij is the distance between the centers of mass of aromatic rings i and j, and the

minimization and maximization are taken over three aromatic rings within the OPV3 core

of each molecule. We define “aligned clusters” to be clusters comprised of pairs of molecules

that satisfy R(3)
a,b < r

(3)
cut. The first term in the square brackets computes the minimum distance

from each aromatic ring center of mass i in molecule a to any aromatic ring center of mass

j in molecule b, and returns the largest of these distances65. The second term inverts the

order of a and b since the maximin operation does not commute. As previously observed65,

this “longest shortest distance” is analogous to the mathematical definition of the diameter

of a graph66. Accordingly, two molecules a and b are in an aligned cluster if the maximum of

all minimum distances between any aromatic ring in a and any aromatic ring in b is within

the cutoff. Pairs of molecules that meet this requirement possess OPV3 cores that are well

aligned, and aggregates defined according to this metric are expected to exhibit the strongest

optoelectronic properties.

Cutoff distances. Following Thurston et al. 20 , we employed a cutoff for Metric 1 r(1)cut =

0.5 nm defined to be close to the minimum of the Lennard-Jones potential for larger atoms in

the atomistic model. To determine the cutoff for the Metrics 2 and 3 that explicitly considers

aromatic ring interactions, we simulated a coarse-grained contact dimer of two protonated

(low pH) DFAG-OPV3-GAFD peptides in water over the course of 30 ns using the simulation

parameters detailed in Section 2.2.2. We compiled histograms of the distances between each

aromatic ring center of mass and its nearest neighbor in the other molecule comprising the

dimer, and specified our cutoffs as the mean of this distribution r(2)cut = r
(3)
cut = 0.7 nm.

Nesting of metrics. We observe that the metrics are nested such that a pair of peptides
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identified as an aligned cluster (Metric 3) will also be identified as an optical cluster (Metric

2) and a contact cluster (Metric 1), and a pair identified as an optical cluster is also identified

as a contact cluster. The inverse, however, is not true. A pair of peptides identified as a

contact cluster may or may not be an optical or aligned cluster. Accordingly, for any group

of peptides the contact cluster size is constrained to be equal to or greater than the optical

cluster size, which in turn is constrained to be equal to or greater than the aligned cluster

size.

3. RESULTS AND DISCUSSION

3.1 Morphological characterization of hierarchical self-assembly

We have constructed a coarse-grained model of DFAG-OPV3-GAFD π-conjugated oligopep-

tides explicitly parameterized against all-atom simulation data. This efficient model allows

us to directly simulate the spontaneous self-assembly of hundreds of peptides over hundreds

of nanoseconds, allowing us to characterize the molecular-level morphology and kinetics of

early-stage assembly of optically-active aggregates.

3.1.1. Assembly of deprotonated (high pH) molecules is self limiting

It is known from experiment that deprotonated (high pH) DFAG-OPV3-GAFD molecules do

not assemble large aggregates due to electrostatic repulsion between their negatively charged

Asp termini16,17,19, although there is recent experimental59 and computational20 evidence

that the formation of small aggregates is thermodynamically spontaneous due to favorable

dispersion, π-stacking, and hydrophobic interactions. Our simulations of deprotonated pep-

tides at 15 mM corroborate this result, showing the cluster size distributions under each of

the three cluster metrics (cf. Section 2.3) do attain stable equilibrium distributions within

300 ns of simulation (Fig. 4a). This observation corresponds to the self-limiting aggregation

of peptides into small aligned and optical clusters containing up to five monomers, and small
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contact clusters containing up to eight. The high concentration of negative charge within

these small aggregates supplied by the deprotonated Asp termini prohibits further assembly

into larger aggregates.

3.1.2. Assembly of protonated (low pH) molecules is hierarchical and irreversible

We present in Fig. 5 the mass-averaged cluster size of the contact, optical, and aligned

clusters as a function of time for each of the five concentrations considered under protonated

(low pH) conditions. Contact clusters (Metric 1) exhibit irreversible aggregation that leads to

the formation of increasingly large aggregates over the course of our 400 ns production runs.

Aggregation initially occurs by the aggregation of monomers, but at later times proceeds by

the agglomeration of peptide aggregates, and proceeds more rapidly at higher concentrations.

In Fig. 4b we present the time resolved contact cluster size distribution at 15 mM. These

observations are consistent with experimental data showing the irreversible assembly of up

to micron sized aggregates under low pH conditions16–18,59.

Optical clusters (Metric 2) also exhibit irreversible and unbounded aggregation. At 5.0

mM, we observe little difference in the average size of contact and optical clusters, which

indicates that optical clusters are not associating into larger contact clusters through side

chain interactions over the 400 ns simulation time scales. At higher concentrations, the

optical cluster size is substantially smaller than that of the contact clusters, indicating the

presence of higher order association through side chain interactions. We observe an initially

rapid formation rate of optical clusters that yields to a much slower aggregation rate at ∼200

ns and an average cluster size of ∼5-10 molecules, which indicates a cluster size dependent

mechanism of aggregation. Larger optical clusters are both less mobile and have less favorable

surface area through which to form new optical clusters. Optical clusters also form by

rearrangements or “ripening” of contact clusters to form the more energetically favorable

optical clusters. In Fig. 4c we present the time resolved optical cluster size distribution at

15 mM.
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Contrary to the unbounded growth of contact and optical clusters, aligned clusters (Met-

ric 3) do exhibit self-limiting behavior. After ∼200 ns for all concentrations studied, we

observe the emergence of a mass-averaged cluster size of aligned clusters of µaligned
2 ≈ 2. In

Fig. 4d we present the aligned cluster size distribution at 15 mM, which reveals a decreasing

distribution in aligned cluster sizes up to a maximum size of 8. The most probable aligned

cluster size is a monomer, with 30% of peptides existing in this state. Dimers, trimers, and

tetramers account for 25%, 22%, and 11% of peptides, respectively, leaving only 12% as

higher order aligned aggregates.

Our results reveal a hierarchical assembly mechanism at low pH, wherein peptides rapidly

achieve a steady-state distribution of aligned clusters comprised of ordered stacking between

all three aromatic rings in the OPV3 cores. This distribution is dominated by small cluster

sizes, with 88% of peptides in aligned clusters existing as monomers, dimers, trimers, or

tetramers. These aligned clusters form the components of larger optical clusters formed from

proximate interactions between the aromatic cores, but lacking the in-register stacking and

alignment of the aligned clusters. Contrary to the aligned clusters, the optical clusters do not

attain a steady-state cluster size distribution, but continue to increase in size over the entire

simulation, both by agglomeration with other optical clusters and internal rearrangements

in which portions of contact clusters ripen into optical clusters through improved ordering

and stacking of the constituent monomers. Nevertheless, beyond ∼200 ns this growth is

relatively slow, and the mass-averaged optical cluster size in the time window 200-400 ns

is µoptical
2 ≈ 10. These optical clusters, in turn, serve as the building blocks for still larger

contact clusters that are formed by promiscuous and non-specific contacts between optical

cluster side chains and cores. Contact clusters also grow without bound, assembling by

irreversible agglomeration to ultimately subsume all peptides in the system. We present in

Fig. 6 representative snapshots of the latter stages of assembly at each of the concentrations

studied.
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Figure 4: Cluster size distributions in the deprotonated (high pH) and protonated (low
pH) systems at 15 mM. (a) Mass fraction wr of peptides in the deprotonated (high pH)
system that exist in clusters of size r defined according to the three metrics. The mass
fraction distributions under all three metrics cease to evolve within the 300 ns equilibration
period simulation time, indicating that the aggregation process has attained a dynamic
equilibrium, and data are averaged over the 100 ns production run. In the protonated (low
pH) state, the mass fraction distributions for aligned clusters reaches steady state after ∼200
ns, but the optical and contact cluster distributions never reach a terminal distribution and
continue to shift to larger cluster sizes over the course of the entire 1.3 µs production run,
indicating unbounded and irreversible aggregation, although the process is rather slow for
this concentration. (b) Mass fraction distribution of protonated (low pH) contact clusters
averaged over the four time windows 900-910 ns, 1000-1010 ns, 1100-1110 ns, and 1200-1210
ns. (c) Mass fraction distribution of protonated (low pH) optical clusters averaged over
the four time windows 900-910 ns, 1000-1010 ns, 1100-1110 ns, and 1200-1210 ns following
the legend in panel (b). (d) Steady state mass fraction distribution of aligned clusters in
the protonated (low pH) state averaged over the terminal 100 ns of the production run.
Uncertainties in all cases correspond to standard errors estimated by block averaging. Error
bars not explicitly displayed are smaller than symbol size. Lines connecting the points are
provided to guide the eye.
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Figure 5: The mass-averaged cluster size as a function of time according to the three cluster
metrics for the protonated (low pH) system at concentrations of (a) 5.0 mM, (b) 15 mM,
(c) 24 mM, (d) 30 mM, and (e) 44 mM, where all panels follow the legend displayed in
panel (e). Systems were initialized from randomly oriented and randomly placed monomers.
The insets show a zoom on optical and aligned clusters. (f) A representative snapshot of a
contact cluster in which the constituent optical clusters are distinguished by different colors.
All molecular visualizations in this work were constructed using VMD67.
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Figure 6: Representative snapshots of the late-stage (>200 ns) assembly of the protonated
(low pH) peptides at concentrations of (a) 5.0 mM, (b) 15 mM, (c) 24 mM, (d) 30 mM, and
(e) 44 mM. At this time, the aligned cluster size distribution has attained steady state. The
optical cluster size distribution continues to move towards larger cluster sizes relatively slowly
through agglomeration and internal rearrangements of contact clusters. Contact clusters
form by unbounded and irreversible agglomeration, and by this time most of the aggregation
in the system occurs through agglomeration of optical clusters containing >10 peptides. For
ease of viewing, in each panel we have indicated the distinct optical clusters in a different
color, where core beads are represented as spheres, side chains as lines, and water has been
removed for clarity.
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3.1.3. Contact clusters are fractal aggregates

To characterize the morphology of the self-assembling contact clusters of protonated (low

pH) peptides defined according to Metric 1, we estimate the fractal dimensionality of the

system at different scales by computing the correlation dimension. The correlation dimension

D is a measure of the space-filling nature of a system, and is estimated from the correlation

integral C(r)68. For a set of N points in space, the correlation integral is defined as,

C(r) = lim
N→∞

g

N2
, (8)

where g is the number of pairs of points separated by a distance less than r68. The fractal

dimension is related to the correlation integral through the relationship,

C(r) ∼ rD, (9)

which provides a measure of how rapidly new points are accumulated into an expanding

sphere around a tagged point. We numerically estimate the correlation integral for our

system as65,69,

C(r) =
1

N(N − 1)

N∑
i,j=1
i 6=j

H(r− rCOM
ij ), (10)

where rCOM
ij is the distance between the centers of mass of monomers i and j, and H(x) is

the Heaviside step function,

H(x) =


0 x < 0

1 x ≥ 0.

(11)

In Fig. 7a-e, we present the log-log plot of C(r) versus r for the final snapshot of the five

independent runs conducted at each concentration. In each case, we observe approximately

three regimes: the first spanning ∼0.13-1.0 nm, the second ∼1.0-7.4 nm, and the third ∼7.4-

20 nm. The shortest length scale regime approximately corresponds to the characteristic size
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of aligned and optical clusters in the system (cf. Fig. 9a), the medium length scale regime to

smaller contact clusters containing ∼3-5 optical clusters (cf. Fig. 9b), and the longest length

scale regime to large contact clusters which saturates at large r due to the finite size of the

simulation box (cf. Fig. 9c). At the lowest 5 mM and 15 mM concentrations, the second

regime comprises largely the interstitial solvent between isolated aggregates as demonstrated

by the flat nature of C(r), and the third regime characterizes the characteristic separations

between these clusters (cf. Fig. 6a-b). At higher concentrations, the peptides begin to form

a connected network, and C(r) possesses a positive slope at all length scales (cf. Fig. 6c-e).

In Fig. 7f, we present the fractal dimension extracted from linear fits constructed within

each of the three regions as a function of concentration. In the first region, the fractal

dimension is ∼2 for all concentrations studied, corresponding to the growth of small aligned

and optical clusters into slightly elongated ellipses (cf. Fig. 9a). The second region has a

fractal dimension that grows with concentration, from ∼0.5 to ∼1.5 corresponding to the

departure from isolated aligned and optical clusters to the formation of increasingly large

contact clusters. The third region has a fractal dimension of ∼1.5 for all concentrations,

reflecting the formation of a fractal network of branched contact clusters (cf. Fig. 9c).

3.1.4. Contact clusters assemble asymmetrically into elongated ellipsoidal ag-

gregates that display branching behavior

To further characterize and explore the three structural regimes identified in the analysis of

the fractal dimension, we computed the gyration tensor S for each contact cluster defined

according to Metric 1 observed in our simulations as70,

Spq =
1

2R2

R∑
i=1

R∑
j=1

(r(i)p − r(j)p )(r(i)q − r(j)q ), (12)

where p and q index over the three Cartesian coordinates {x, y, z}, i and j index over the

beads of all peptides in the cluster, R = 29r is the total number of beads in the cluster, r is
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Figure 7: Fractal dimension of the hierarchical aggregates as a function of length scale.
(a)-(e) Log-log plots of correlation integral C(r) versus radius r at each concentration. We
demarcate the three regimes that emerge from this analysis by dashed black lines. We render
r dimensionless before taking the logarithm by rescaling by an arbitrary reference distance
of r0 = 1 nm. (f) Fractal dimension D computed from linear fits to each of the three regimes
as a function of concentration.
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the number of molecules in the cluster and there are 29 coarse-grained beads in each molecule

(cf. Fig. 1). The eigenvalues of S correspond to the squared ordered principal moments of

the cluster {ξi(r)}3i=1 that characterize its extent along its principal axes furnished by the

corresponding eigenvectors70. The principal moments are related to the radius of gyration

as Rg =
√
ξ21 + ξ22 + ξ23

70. In performing these calculations, we eliminate any potentially

spurious effects introduced by the periodic walls by excising the cluster from the simulation

box and unwrapping the periodic boundary conditions prior to computation of the gyration

tensor. This procedure will fail for formally infinite aggregates that span the fundamental

simulation cell, but we did not observe any such clusters at the concentrations studied in

this work.

We plot in Fig. 8a the ensemble averaged radii of gyration 〈Rg(r)〉 and principal moments

of the gyration tensor {〈ξi(r)〉}3i=1 as a function of cluster size r averaged over all clusters

observed in our simulations. As expected, 〈Rg(r)〉 and {〈ξi(r)〉}3i=1 all trend upwards with

increasing r. We plot in Fig. 8b the ensemble averaged ratios of the principal moments,

{〈ξi/ξj〉}j>i. Ratios close to unity characterize isotropic aggregates, whereas values far from

unity are indicative of high aspect ratio clusters. In Fig. 8c we plot the ensemble averaged

relative shape anisotropy 〈κ2(r)〉 as a function of cluster size, defined as70,

κ2 =
3

2

ξ41 + ξ42 + ξ43
(ξ21 + ξ22 + ξ23)2

− 1

2
, (13)

which is bounded to the range [0, 1], where κ2 = 0 indicates that the beads in the cluster are

distributed with tetrahedral or higher order symmetry and κ2 = 1 that they are arranged

along a line.

The plots of {〈ξi/ξj〉}j>i and κ2(r) again inform a division into three regimes consistent

with those identified in the fractal dimension analysis in Section 3.1.3, but this time parti-

tioned according to cluster size r rather than observation length scale: Regime I (1 ≤ r < 27),

Regime II (27 ≤ r < 97), and Regime III (r ≥ 97). We present representative cluster snap-

34



Figure 8: Gyration tensor analysis of contact clusters formed by protonated (low pH) pep-
tides as a function of cluster size r averaged over clusters observed in our simulations at all
times and concentrations. (a) Ensemble averaged radius of gyration 〈Rg(r)〉 and principal
moments of the gyration tensor {〈ξi(r)〉}3i=1. (b) Ensemble averaged ratios of the principal
moments of the gyration tensor {〈ξi/ξj〉}j>i. (c) Ensemble averaged relative shape anisotropy
〈κ2(r)〉. The thin lines correspond to mean values computed over all clusters observed in
our simulations at all concentrations, and heavy lines to sliding window smoothing of the
data using a window size of 10 to more clearly show the gross trends in the data. The three
aggregation regimes – Regime I (1 ≤ r < 27), Regime II (27 ≤ r < 97), and Regime III
(r ≥ 97) – are indicated by dashed vertical lines.

shots from each regime in Fig. 9. In Regime I (1 ≤ r < 27), we observe an initially rapid

decrease in all three principal moment ratios and a concomitant decrease in the relative

shape anisotropy 〈κ2(r)〉 from 0.6 to 0.2 over the cluster size range 1 ≤ r < 6. This is
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followed by recovery of 〈κ2(r)〉 from 0.2 to 0.4 and 〈ξ1(r)/ξ3(r)〉 from 2 to 3 over the range

6 ≤ r < 27, while 〈ξ1(r)/ξ2(r)〉 and 〈ξ2(r)/ξ3(r)〉 remain approximately flat at 2 and 1.5,

respectively. Structurally, this corresponds to the aggregation of elongated high aspect ratio

monomers into more spherical optical clusters comprising several monomers, followed by the

aggregation of these spherical clusters into more elongated, ellipsoidal optical and contact

clusters (cf. Fig. 9a). In Regime II (27 ≤ r < 97), the three principal moment ratios and rel-

ative shape anisotropy remain approximately constant. At these sizes the clusters no longer

aggregate in a preferential direction, but begin to isotropically branch preserving the relative

aspect ratios as the cluster size increases (cf. Fig. 9b). In Regime III (r ≥ 97, up to the

maximum cluster size of r = 330 observed in our simulations), 〈ξ1(r)/ξ3(r)〉 declines from 3

to 1.5, 〈ξ1(r)/ξ2(r)〉 from 2 to 1, and 〈ξ2(r)/ξ3(r)〉 remains at 1.5, with a corresponding drop

in 〈κ2(r)〉 from 0.4 to 0.1. This aggregation regime corresponds to the continued formation

of a large-scale self-similar branched network lacking any preferred directionality and with a

fractal dimension of ∼1.5 (cf. Fig. 9c, Fig. 7f).
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Figure 9: Representative contact clusters illustrating the hierarchical assembly process in
each of the three aggregation regimes, (a) Regime I (1 ≤ r < 27), (b) Regime II (27 ≤ r <
97), and (c) Regime 3 (r ≥ 97). Distinct optical clusters within the contact clusters are
distinguished by different colors, and the number of monomers in each image indicated by
the accompanying numeral. Each panel is scaled differently for ease of viewing the clusters
of disparate sizes, but in all cases the end-to-end distance of a fully extended monomer is
∼3.5 nm and the length of each OPV3 core ∼1.5 nm.

37



3.2 Smoluchowski coagulation model describes the kinetics of con-

tact cluster aggregation

Our simulations of the protonated (low pH) peptides provide information about the kinetics

of hierarchical peptide self-assembly over hundreds of nanoseconds. By mining these data to

parameterize a kinetic model of assembly, we can both garner insight into the microscopic

assembly dynamics and extrapolate our predictions to time and length scales beyond the

reach of all-atom or coarse-grained molecular simulation.

The Smoluchowski coagulation model is a general theory describing irreversible aggre-

gation in well-mixed systems71–73 that has been applied to a number of different systems

including planetary aggregation74,75, aerosol droplet coagulation76, and amyloid protofibril

formation77. This model assumes that aggregation is irreversible (i.e., fragmentation is for-

bidden), that the state of the system is fully specified by the cluster size distribution without

differentiating clusters with regards to their particular morphologies, and that the system

can be described as well mixed so that clusters need not be spatially resolved.

We propose that the Smoluchowski coagulation model can provide a quantitative de-

scription of DFAG-OPV3-GAFD contact cluster aggregation kinetics. It is an appropriate

model for this process for several reasons. First, we observe aggregation of these oligopep-

tides at low pH conditions to be effectively irreversible over several hundred nanoseconds (cf.

Fig. 5), making explicit treatment of fragmentation unnecessary. Second, we do not observe

any lag phase in either simulation or experiment17,19,20 suggesting that aggregation proceeds

downhill in free energy and that nucleation-dependent models are unlikely to provide a good

description78. Third, although we have previously used Markov state models to treat the

short-time aggregation dynamics20, Smoluchowski coagulation offers a more physically mo-

tivated model that can be straightforwardly extrapolated to longer length and time scales.

Fourth, we initialize our systems as dispersed monomers meaning that the well-mixed as-

sumption is expected to be a good description over the time scales of our simulations, and
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is consistent with the absence of observed spatial gradients in experiment17. Fifth, any de-

pendence of the aggregation kinetics of the observed morphological changes in the growing

clusters can, if necessary, be straightforwardly captured within the Smoluchowski model as

a cluster size dependent rate constant.

3.2.1. Smoluchowski coagulation model

The continuous time Smoluchowski coagulation equation for systems admitting discrete ag-

gregate sizes is73,

dnr
dt

=
1

2

r−1∑
i=1

Ki,r−ini(t)nr−i(t)−
∞∑
i=1

Kr,inr(t)ni(t), (14)

where t is time, Ki,j is a kernel corresponding to a second order rate constant for coagulation

between aggregates of size i and size j, and nr(t) is the number concentration of aggregates

of size r at time t. Analytical expressions for nr(t) are unavailable for arbitrary kernels,

but solutions are known for the special cases of (i) constant Kij = K 73,79, (ii) additive

Kij = K(i + j)79, and (iii) multiplicative Kij = K(i)K(j) kernels80. For the homogeneous

kernel Kai,aj = aλKi,j, expressions for nr(t) are not known, but the moments and their ratios,

such as the number-averaged and mass-averaged cluster sizes, are available72,77.

As we demonstrate below, the simplest assumption of a constant kernel Kij = K, corre-

sponding to size independent coagulation rate constants, provides good fits to our simulation

data. Under this assumption the solution for nr(t) with arbitrary initial conditions is79,

nr(t) = 4
nr(0)

(KtM0(0) + 2)2
+

(
KtM0(0)

KtM0(0) + 2

) r−1∑
j=1

nr−j(0)nj(t)

M0(0)
, (15)

where nr(0) is the initial number concentration of r-mers and Mi(t) =
∑∞

r=1 r
inr(t) is the

ith moment of the cluster size distribution at time t so that M0(0) =
∑∞

r=1 nr(0) is the sum

of the initial number concentrations of all r-mers. For monodisperse initial conditions this
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simplifies to73,79,

nr(t) = 4
M1

(KtM1 + 2)2

(
KM1t

KM1t+ 2

)r−1
, (16)

where M1(t) =
∑∞

r=1 rnr(t) = M1(0) = M1 is the total concentration of monomers in

solution, and is related to the concentration through Avogadro’s number as c(t) = M1(t)/NA.

The number-averaged cluster size µ1(t) under arbitrary initial conditions is73,79,

µ1(t) =
M1(t)

M0(t)
= µ1(0) +

1

2
KM1t, (17)

and the mass-averaged cluster size µ2(t) under arbitrary initial conditions is73,77,79,

µ2(t) =
M2(t)

M1(t)
= µ2(0) +KM1t, (18)

and following Modler et al. 77 we identify,

tc =
2

KM1

, (19)

as a characteristic coagulation time scale, where it is conventional to retain the factor of 2

in the numerator.

3.2.2. Understanding the success of the constant Smoluchowski kernel

Assuming the constant kernel to be of the form Ki,j = K = αks, we follow Modler et al. 77

to decompose the coagulation rate constants into the product of the sticking probability α,

accounting for the probability of a productive collision, and an intrinsic rate constant ks.

Assuming diffusion controlled aggregation, we can develop an approximate expression for

the intrinsic rate constant by inserting the Stokes-Einstein relation for the diffusivity of a

spherical particle of radius R through a low Reynolds number liquid,

D =
kBT

6πηR
(20)
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into the analytical expression for the rate constant for the collision of two Brownian hard

spheres of size R1 and R2,

ks = 4π(R1 +R2)(D1 +D2), (21)

to yield77,81,82,

ks =
2kBT

3η

(
2 +

R1

R2

+
R2

R1

)
, (22)

where T is the temperature, kB is Boltzmann’s constant, and η is the solvent viscosity. Eqn.

22 provides a means to understand the success of the constant kernel in recapitulating our

simulation data. First, we showed in Section 3.1.3 that contact clusters are fractal objects of

dimensionality D ≈ 1.5, meaning that their characteristic radius R scales weakly with cluster

size r as R ∼ r2/3. Second, although the time resolved contact cluster size distributions in

Fig. 4b are relatively broad, they span no more than an order of magnitude over the course of

our simulation, meaning that at any time instant we are unlikely to observe collisions between

clusters of vastly discrepant sizes. Accordingly, the terms Ri
Rj
∼
(
ri
rj

)2/3
are both expected

to be of order unity, leading us to predict an approximately size-independent intrinsic rate

constant,

ks ≈
8kBT

3η
. (23)

Assuming that the sticking probability α is not a strong function of cluster size, this analysis

provides a theoretical rationalization for the use of a size-independent Smoluchowski coag-

ulation kernel Ki,j = K = αks. Modler et al. 77 have previously demonstrated the validity

of this assumption in the context of amyloid peptides by showing good agreement between

numerical solutions employing size-dependent and size-independent intrinsic rate constants.

3.2.3. Inference of Smoluchowski coagulation rate constant

We now analyze our coarse-grained molecular simulation trajectories to determine the best

fit constant kernel K for the Smoluchowski coagulation model. Appealing to Eqn. 18, we

plot the mass-averaged contact cluster size measured in our simulations as a function of time
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µ2(t) and compute the least squares linear fit, from which we estimate K by dividing the

slope by the total monomer concentration M1. The linear fits at each concentration are

presented in Fig. 10 and the best fit values of K presented in Table 1.

Table 1: Coagulation rate constant K as a function of concentration, estimated
from least squares linear fits of the measured mass-averaged contact cluster size
µ2(t) using Eqn. 18. Uncertainties are estimated from the standard deviation σK
in K computed over the five independent production runs.

Concentration, c (mM) K (ns−1 nm3)
5.0 6± 1
15 5.9± 0.8
24 9± 3
30 8± 1
44 17± 7

Inserting the best fit coagulation rate constant into the analytical Smoluchowski expres-

sions for nr(t) (Eqn. 15) shows good agreement with the number concentration time courses

measured in simulation. We present in Fig. 11, a comparison of the simulation results and

analytical expressions for the number concentrations from monomers to 12-mers in the 24

mM system and provide analogous plots for the other concentrations in Figs. S6-S9. The

agreement for larger aggregates deteriorates somewhat due to both a paucity of simulation

data for large aggregate sizes due to the relative rarity of large aggregates, and finite size

effects wherein the finite number of monomers in the simulations stands in contrast to the

assumption of the Smoluchowski model of an infinite system and monomer supply (Fig. S10).

Nevertheless, that this simple spatially-unresolved model assuming size-invariant coagulation

rate constants is capable of quantitatively recapitulating the number fraction time courses

of the small to medium-sized clusters for which we have good simulation data supports the

Smoluchowski coagulation model as a good description of the aggregation kinetics.
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Figure 10: Mass-averaged cluster size as a function of time µ2(t) measured in simulations at
concentrations (a) 5.0 mM, (b) 15 mM, (c) 24 mM, (d) 30 mM, and (e) 44 mM. Black lines
indicate the least squares linear fits to all five independent runs. The shaded area indicates
the uncertainty in the best fit computed from the standard deviation in the slopes computed
for each individual run. Data from each independent simulation are presented in different
colors using different symbols, and are labeled with the R2 value of the best fit line.
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Figure 11: Comparison of time evolution of cluster number concentrations observed in sim-
ulation with those predicted by the fitted Smoluchowski coagulation equation for the aggre-
gation of protonated (low pH) peptides at 24 mM. Number concentration time courses for
(a-l) monomers through 12-mers. Simulation data are displayed in gray for the five separate
runs. The analytical predictions of the Smoluchowski coagulation model employing the best
fit value of K = 9 ns−1 nm3 (Table 1) are presented as a dashed black line. Red shading
illustrates the sensitivity of the model predictions to K over the range K ± σK , where σK is
the standard deviation of K computed over the five independent production runs. Analogous
plots for the four other concentrations studied are presented in Figs. S6-S9.
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3.2.4. The characteristic coagulation time has a simple concentration depen-

dence

The characteristic coagulation time is inversely proportional to both the coagulation rate

constant and the monomer concentration, tc = 2
KM1

= 2
KcNA

(Eqn. 19). Employing the best

fit values of K in Table 1, the plot of tc as a function of c in Fig. 12 reveals an approximate

power law dependence of the form,

log
(
tc/t

0
c

)
= −γ log

(
c/c0

)
+ log (ζ) , (24)

where t0c = 1 ns and c0 = 1 mM are an arbitrary reference time scale and concentration

to make dimensionless the arguments of the logarithm. Linear least squares regression in

which we handled the observed heteroskedasticity in the data by weighting each data point

in inverse proportion to its variance83 reveal best fit parameters of γ = 1.3 (95% CI: 0.9,

1.7) and ζ = 1000 (95% CI: 400, 3000). A concentration invariant coagulation rate constant

would produce a simple tc ∝ c−1 dependence, and the observed deviation from this scaling

reflects the concentration dependence of K (Table 1).

At peptide concentrations of 0.86 mM (0.1 mg/mL) realized in the directed assembly

of peptide oligomers in microfluidic devices19, our best fit parameters predict a coagulation

time tc = 800 ns (95% CI: 200 ns, 1400 ns), in good agreement within error bars of the 2500

ns (95% CI: 500 ns, 9300 ns) characteristic assembly time scale previously predicted under

these conditions by Thurston et al. 20 using Markov state models fitted to all-atom implicit

solvent calculations.

Finally, we observe the powerful interpretation of Fig. 12 as a calibration curve relat-

ing the concentration c as a macroscopic experimental control parameter to the microscopic

characteristic coagulation time tc. This relationship can be used to infer, for a particular

concentration, the characteristic coagulation time tc and therefore the microscopic Smolu-

chowski model coagulation rate constant through K = 2
tccNA

. The estimate of K provides
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Figure 12: Log-log plot of coagulation time tc as a function of initial monomer concentration.
The dotted red line represents a least squares fit of a power law form tc(c) = ζc−γ where each
data point is weighted in inverse proportion to its variance, from which we estimate γ = 1.3
(95% CI: 0.9, 1.7) and ζ = 1000 (95% CI: 400, 3000). We render tc and c dimensionless prior
to taking logarithms by rescaling by the arbitrary reference time t0c = 1 ns and concentration
c0 = 1 mM.

access to predictions of the microscopic temporal evolution of each cluster size nr(t) and

moments of the cluster size distribution through the analytical solutions in Eqns. 15-19.

3.2.5. Cluster size evolutions exhibit approximate scaling collapse

Under a homogeneous coagulation kernel Kai,aj = aλKi,j – of which the constant kernel is

a special case with λ = 0 – the Smoluchowski model predicts that if nr(t) is a solution to

Eqn. 14, then so is aλ+1

b
nar(bt). This self-similarity leads to the prediction of a scaling form

of the solution valid for long times and large cluster sizes72,73,76,84,

nr(t) ∼ s(t)−2φ(r/s(t)), (25)
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where φ(x) is a master function that will be the same for all nr(t), and s(t) is the ratio of

any two consecutive moments of the cluster size distribution76,

s(t) =
Mi(t)

Mi−1(t)
. (26)

This “scaling hypothesis” states that for long times and large cluster sizes, all number con-

centrations will evolve to a self-similar distribution of the form of Eqn. 25, regardless of

the precise initial conditions, as long as those initial conditions are sufficiently narrow (i.e.,

not power-law-distributed). Although the hypothesis remains unproven for arbitrary kernels

and initial conditions, it has been supported by substantial numerical evidence and is proven

for the particular case of a constant kernel with monodisperse initial conditions of interest

here72,73,76,85.

Adopting s(t) = M2(t)
M1(t)

= µ2(t), if Smoluchowski coagulation serves as a good model for

peptide aggregation, we should expect to see scaling collapse in our data of the form,

nr(t)µ2(t)
2 ∼ φ(r/µ2(t)). (27)

We plot in Fig. 13 nr(t)µ2(t)
2 against (r/µ2(t)) for all contact clusters of size greater than

20 at each concentration, and in Fig. 14 for contact clusters of size 1, 3, 5, 11, 20, and

30 aggregated over all concentrations studied. We exclude clusters smaller than size 20

in Fig. 13 since – as evinced in Fig. 14a-d – the scaling relation is not predicted to hold

for small clusters and/or early times. In testing the scaling hypothesis for our simulation

data, there is an inherent trade-off between analyzing small cluster sizes where we possess

many observations and analyzing large cluster sizes where the scaling relation is expected

to be most valid. Due to a relative paucity of observational data for cluster sizes in excess

of ∼50, we restrict our analysis in Fig. 14 to clusters of a maximum size of 30. That

we observe approximate data collapse onto a master curve φ(r/µ2(t)) for sufficiently large

clusters for which we possess sufficient statistics provides further support for the validity
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of the Smoluchowski coagulation model and self-similarity in the aggregation dynamics at

multiple concentrations. There are two key implications of this result. First, the initial

conditions do not strongly affect the long-time dynamics of assembly. In particular, the

cluster size distributions at long times (t� tc) do not depend on whether the initial system

is comprised of monodisperse monomers as employed in our simulations, or a distribution of

oligomers as a more realistic description of the high-pH aggregation state of the system (cf.

Fig. 4a). Second, the aggregation mechanism does not change as a function of concentration.

Monomer concentration affects the rate of aggregation (cf. Fig. 12), but not its underlying

mechanism over the 5-44 mM concentration range studied in this work.
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Figure 13: Plot of nr(t)µ2(t)
2 against r/µ2(t) at concentrations (a) 5.0 mM, (b) 15 mM, (c)

24 mM, (d) 30 mM, and (e) 44 mM. Data are presented for clusters of size 20 and larger
where the long-time scaling relation Eqn. 27 approximately holds. We observe approximate
data collapse onto a master curve φ(r/µ2(t)). The visually apparent diagonal “streaking”
occurs due to the discrete nature of cluster sizes.
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Figure 14: Plot of nr(t)µ2(t)
2 against r/µ2(t) for clusters observed in simulations at all

concentrations studied of size (a) 1, (b) 3, (c) 5, (d) 11, (e) 20, and (f) 30. We observe
approximate data collapse onto a master curve φ(r/µ2(t)), where the long-time scaling rela-
tion Eqn. 27 serves as a better approximation for larger clusters formed at later times. The
visually apparent diagonal “streaking” occurs due to the discrete nature of cluster sizes.
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3.3 Analytical predictions of Smoluchowski model

Assuming that underlying mechanisms of assembly remain unchanged for larger cluster sizes,

we may extrapolate our Smoluchowski coagulation equation fitted for the aggregation of hun-

dreds of peptides over hundreds of nanoseconds to make predictions of assembly at longer

time and length scales. It is conceivable that additional physical concerns come into play

for sufficiently large cluster sizes that qualitatively change the structure and dynamics of

assembly, but in the absence of data in very large cluster size regimes we quantify the un-

certainties in our extrapolation based on the uncertainty in the coagulation rate constant K

estimated from the least squares fit of the concentration dependent characteristic coagula-

tion time (Fig. 12). In Fig. 15, we present the analytical Smoluchowski predictions for the

time evolution of clusters of size r = 102 (∼10 nm), 103 (∼100 nm), 104 (∼1000 nm), 105

(∼10,000 nm), and 106 (∼100,000 nm) using the analytical solutions for nr(t) in Eqn. 16 at

a concentration of c = 0.86 mM (0.1 mg/mL, M1 = 5× 10−4 nm−3) previously employed in

the directed microfluidic assembly of DFAG-OPV3-GAFD peptides19 and a value of K = 5

ns−1 nm3 (95% CI: 3 ns−1 nm3, 7 ns−1 nm3) estimated from the concentration dependent

extrapolation in Fig. 12. Estimates of the approximate linear dimension of each cluster size

were made from simple extrapolations of the observation that clusters of ∼100 monomers

in our simulations possess typical linear dimensions of ∼10 nm. The confidence intervals

in K were estimated by resampling the tc values plotted in Fig. 12 from Gaussians with

variances matched to the standard deviations in the data and recomputing the least squares

fit from which the value of K at 0.86 mM was extrapolated over 100 rounds of this bootstrap

resampling procedure.

The curves in Fig. 15 represent theoretical predictions of the dynamical evolution of

selected cluster sizes from our extrapolated Smoluchowski coagulation model, all of which

collapse to the same curve, as expected from the scaling hypothesis that holds at long times

and large cluster sizes73. Since it is extremely challenging to experimentally track the dy-
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Figure 15: Analytical Smoluchowski predictions using Eqn. 16 of the number concentrations
nr(t) of aggregates of sizes r = 102, r = 103, r = 104, r = 105, and r = 106 versus time t at
a concentration of c = 0.86 mM (0.1 mg/mL, M1 = 5× 10−4 nm−3). The solutions converge
at long times in line with the predictions of the scaling hypothesis73.

namics of particular cluster sizes, we cannot compare these predictions directly to experiment

but can make experimental contact on a coarser level through the mass-averaged cluster size.

In the directed assembly of aligned DFAG-OPV3-GAFD aggregates in a microfluidic flow

cell at c = 0.86 mM (0.1 mg/mL), Marciel et al. 19 reported the assembly and fluorescent

detection of assemblies of diameter ∼10 µm on time scales of ∼10 s. Using the same approxi-

mate conversion between cluster size and linear dimension as described above, these clusters

are expected to contain O(105) monomers. Rearranging the analytical expression for the

mass-averaged cluster size in Eqn. 18, we can estimate the time required for the coagulation

process to produce a particular mass-averaged cluster size as,

t(c) =
(µ2 − µ2(0))

KM1

=
tc(c)

2
(µ2 − µ2(0)), (28)

where tc(c=0.86 mM) = 800 ns (K(c=0.86 mM) = 5 ns−1 nm3) is extracted from the least

squares fit in Fig. 12, and µ2(0) is the initial mass-averaged cluster size. The experiments

of Marciel et al. 19 triggered assembly by combining an initially high pH stream containing

the peptides with a low pH acid stream to drop the pH and trigger assembly. We ap-
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proximately replicate this initial state by estimating µ2(0) = (3.08 ± 0.03) from the final

hundred nanoseconds of the equilibrated deprotonated simulation to represent the high pH

aggregation state.

Solving Eqn. 28 with µ2 = 105, µ2(0) = 3.08, and tc(c=0.86 mM) = 800 ns, we pre-

dict that the time required for the spontaneous assembly of aggregates of this size to be 40

ms (95% CI: 10 ms, 70 ms). Our estimate is three orders of magnitude slower than that

reported by Marciel et al. 19 , suggesting that there are slow dynamical processes occurring

in the flow cell that are not captured within our Smoluchowski coagulation model. We

hypothesize that these slow processes correspond to flow induced ripening of the contact

clusters through internal rearrangements to form larger and better ordered optical clusters

with π-π stacking of the OPV3 cores to form assemblies possessing fluorescent responses

(cf. Fig. 5). Contact clusters lacking this alignment are not expected to strongly fluoresce,

suggesting that aggregation and fluorescence are not coextensive and that alternative experi-

ential techniques would be required to detect contact cluster formation as a distinct process

from optical cluster formation. Furthermore, the experimentally reported morphologies of

the aligned aggregates under the extensional flow field employed in the microfluidic cell and

under quiescent conditions are known to possess significant structural differences19, indicat-

ing an important coupling of flow to the mechanisms and dynamics of assembly on large

length scales. Together, these findings suggest a need for additional computational work to

make better contact with experimental work by employing electronic structure calculations

to probe the different fluorescent properties of contact and optical clusters, and more highly

coarse-grained mesoscale models capable of probing the effect of flow on peptide assembly

at longer time and length scales.

4. CONCLUSIONS

We have presented a computational study to probe the molecular details of the early-stage

self-assembly of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG-OPV3-GAFD) monomers
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containing an OPV3 (distyrylbenzene) core as a π-conjugated biocompatible oligopeptide

that undergoes pH-triggered self-assembly into β-sheet-like nanostructures with experimentally-

observed optoelectronic functionality. We developed a coarse-grained molecular model for

this system explicitly parameterized against all-atom calculations that recapitulates the con-

figurational statistics of the intramolecular bonded interactions, intra-peptide contact maps,

and potentials of mean force for peptide collapse and dimerization observed in atomistic cal-

culations. This protocol can be straightforwardly extended to develop coarse-grained models

of other π-conjugated molecules with different peptide and core chemistries.

Using our computationally efficient coarse-grained model, we conducted molecular dy-

namics simulations of the assembly of hundreds of peptides over hundreds of nanoseconds.

Morphological characterization shows the initial stages of assembly proceed hierarchically.

Monomers first form oligomers of ≤ 8 peptides with aligned aromatic cores (aligned clus-

ters), which subsequently assemble into larger aggregates of .40 peptides exhibiting strong

associations between the π-conjugated cores (optical clusters). Optical clusters associate

irreversibly via side chain interactions to form large relatively disordered aggregates that we

refer to as contact clusters. Contact clusters initially form into elongated ellipses with fractal

dimension D ≈ 1.5, which begin to display branching behavior at peptide numbers of ∼50-

100. Internal rearrangements with these contact clusters produce increasingly large optical

clusters, but at a far slower rate than that of the formation of the contact clusters them-

selves. Experimental work has shown the importance of flow in ordering the self-assembled

peptide aggregates on large length scales17,19. Our molecular simulations suggest a role

for flow in suppressing branching behavior and network formation to rotationally align the

contact clusters into linear fibrillar bundles with improved π-π stacking and optoelectronic

properties.

Kinetically, we have shown aggregation of contact clusters to be well described by a

Smoluchowki coagulation model as a predictive phenomenological model of non-equilibrium

assembly73. Assuming a size-independent coagulation rate constant, we estimated this single
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fitting parameter from our molecular simulation data to establish analytical expressions for

the time evolution of arbitrary cluster sizes and moments of the cluster size distribution.

We demonstrated using the predicted scaling behavior of the Smoluchowski model that

the aggregation dynamics observed in our simulations are self-similar, indicating that the

long-time assembly behavior depends only weakly on initial conditions and the assembly

mechanism does not change with concentration over the 5-44 mM range studied in this work.

Furthermore, we established a calibration curve to permit estimation of the coagulation rate

constant as a function of concentration, permitting the inexpensive analytical prediction of

the microscopic cluster size evolution using the analytical predictions of the Smoluchowski

model without the need to conduct any additional molecular simulations.

By revealing the molecular details of the hierarchical assembly mechanism over hundreds

of nanoseconds and developing a phenomenological coagulation model of non-equilibrium as-

sembly kinetics, our work provides new fundamental understanding of peptide self-assembly

and a route to rationally engineer π-conjugated peptide chemistry and environmental con-

ditions to tune the morphology, kinetics, and optoelectronic properties of the emergent

supramolecular assemblies. In future work, we will employ our modeling protocol to de-

velop coarse-grained models of other oligopeptide chemistries containing different peptide

sequences or π-conjugated cores (e.g., DXXX-Π-XXXD, where X = {G,A,I,V,F} and Π

includes oligophenylvinylenes, oligothiophenes, and rylene diimides15,18,86), and explicitly

incorporate the effects of flow by conducting non-equilibrium molecular dynamics simula-

tions implementing Lees-Edwards87 or Kraynik-Reinelt88 boundary conditions89. Electronic

structure calculations on representative aligned, optical, and contact clusters observed in

this work will be informative in ascertaining the optoelectronic properties of the aggregates

at each stage of the assembly hierarchy90–93. We are also working to incorporate the Smolu-

chowski coagulation model fitted against our molecular simulation data into a multi-scale

model of peptide assembly within a microfluidic flow cell to enable explicit comparisons with

experimental measurements and provide a predictive model for peptide assembly as a func-
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tion of peptide chemistry and the architecture and operating conditions of the microfluidic

device19.
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