DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiative flux and forcing parameterization error in aerosol-free clear skies

Abstract

This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentially unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. As a result, a dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6]; ORCiD logo [6];  [2];  [7];  [8];  [9];  [7];  [10];  [11];  [12];  [13];  [11]
  1. Univ. of Colorado, Boulder, CO (United States); NOAA/Earth System Research Lab., Boulder, CO (United States)
  2. Atmospheric and Environmental Research, Lexington, MA (United States)
  3. NASA Goddard Space Flight Center, Greenbelt, MD (United States)
  4. Goddard Institute for Space Studies, New York, NY (United States)
  5. Univ. Pierre et Marie Curie, Paris (France); Korea Institute of Atmospheric Prediction Systems, Seoul (Korea)
  6. Univ. of Hamburg, Hamburg (Germany)
  7. Canadian Center Climate Modelling and Analysis, Environment Canada, Victoria, BC (Canada)
  8. Univ. Pierre et Marie Curie, Paris (France)
  9. Goddard Institute for Space Studies, New York, NY (United States); Trinnovim LLC, New York, NY (United States)
  10. Met Office, Exeter (United Kingdom)
  11. NOAA Geophysical Fluid Dynamics Lab., Princeton, NJ (United States)
  12. Centre National de Recherches Meteorologiques-GAME, Toulouse (France)
  13. Tokyo Univ. of Marine Science and Technology, Tokyo (Japan)
Publication Date:
Research Org.:
Univ. of Colorado, Boulder, CO (United States); Atmospheric and Environmental Research, Inc., Lexington, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1342521
Grant/Contract Number:  
SC0012549; SC0012399
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 42; Journal Issue: 13; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; radiation; parameterization; radiative forcing

Citation Formats

Pincus, Robert, Mlawer, Eli J., Oreopoulos, Lazaros, Ackerman, Andrew S., Baek, Sunghye, Brath, Manfred, Buehler, Stefan A., Cady-Pereira, Karen E., Cole, Jason N. S., Dufresne, Jean -Louis, Kelley, Maxwell, Li, Jiangnan, Manners, James, Paynter, David J., Roehrig, Romain, Sekiguchi, Miho, and Schwarzkopf, Daniel M. Radiative flux and forcing parameterization error in aerosol-free clear skies. United States: N. p., 2015. Web. doi:10.1002/2015GL064291.
Pincus, Robert, Mlawer, Eli J., Oreopoulos, Lazaros, Ackerman, Andrew S., Baek, Sunghye, Brath, Manfred, Buehler, Stefan A., Cady-Pereira, Karen E., Cole, Jason N. S., Dufresne, Jean -Louis, Kelley, Maxwell, Li, Jiangnan, Manners, James, Paynter, David J., Roehrig, Romain, Sekiguchi, Miho, & Schwarzkopf, Daniel M. Radiative flux and forcing parameterization error in aerosol-free clear skies. United States. https://doi.org/10.1002/2015GL064291
Pincus, Robert, Mlawer, Eli J., Oreopoulos, Lazaros, Ackerman, Andrew S., Baek, Sunghye, Brath, Manfred, Buehler, Stefan A., Cady-Pereira, Karen E., Cole, Jason N. S., Dufresne, Jean -Louis, Kelley, Maxwell, Li, Jiangnan, Manners, James, Paynter, David J., Roehrig, Romain, Sekiguchi, Miho, and Schwarzkopf, Daniel M. Fri . "Radiative flux and forcing parameterization error in aerosol-free clear skies". United States. https://doi.org/10.1002/2015GL064291. https://www.osti.gov/servlets/purl/1342521.
@article{osti_1342521,
title = {Radiative flux and forcing parameterization error in aerosol-free clear skies},
author = {Pincus, Robert and Mlawer, Eli J. and Oreopoulos, Lazaros and Ackerman, Andrew S. and Baek, Sunghye and Brath, Manfred and Buehler, Stefan A. and Cady-Pereira, Karen E. and Cole, Jason N. S. and Dufresne, Jean -Louis and Kelley, Maxwell and Li, Jiangnan and Manners, James and Paynter, David J. and Roehrig, Romain and Sekiguchi, Miho and Schwarzkopf, Daniel M.},
abstractNote = {This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentially unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. As a result, a dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.},
doi = {10.1002/2015GL064291},
journal = {Geophysical Research Letters},
number = 13,
volume = 42,
place = {United States},
year = {Fri Jul 03 00:00:00 EDT 2015},
month = {Fri Jul 03 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 48 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies
journal, January 2013

  • Alvarado, M. J.; Payne, V. H.; Mlawer, E. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 14
  • DOI: 10.5194/acp-13-6687-2013

Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models: CLIMATE SENSITIVITY IN CMIP5 MODELS
journal, May 2012

  • Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.
  • Geophysical Research Letters, Vol. 39, Issue 9
  • DOI: 10.1029/2012GL051607

THE I3RC: Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres
journal, September 2005

  • Cahalan, Robert F.; Oreopoulos, Lazaros; Marshak, Alexander
  • Bulletin of the American Meteorological Society, Vol. 86, Issue 9
  • DOI: 10.1175/BAMS-86-9-1275

Uncertainties in Carbon Dioxide Radiative Forcing in Atmospheric General Circulation Models
journal, November 1993


Atmospheric radiative transfer modeling: a summary of the AER codes
journal, March 2005

  • Clough, S. A.; Shephard, M. W.; Mlawer, E. J.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 91, Issue 2
  • DOI: 10.1016/j.jqsrt.2004.05.058

Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)
journal, January 2006

  • Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.
  • Journal of Geophysical Research, Vol. 111, Issue D14
  • DOI: 10.1029/2005JD006713

A far-infrared radiative closure study in the Arctic: Application to water vapor
journal, January 2010

  • Delamere, J. S.; Clough, S. A.; Payne, V. H.
  • Journal of Geophysical Research, Vol. 115, Issue D17
  • DOI: 10.1029/2009JD012968

The intercomparison of radiation codes in climate models: An overview
journal, January 1991

  • Ellingson, Robert G.; Fouquart, Yves
  • Journal of Geophysical Research, Vol. 96, Issue D5
  • DOI: 10.1029/90JD01618

Observational determination of surface radiative forcing by CO2 from 2000 to 2010
journal, February 2015

  • Feldman, D. R.; Collins, W. D.; Gero, P. J.
  • Nature, Vol. 519, Issue 7543
  • DOI: 10.1038/nature14240

An efficient, accurate algorithm for calculating CO 2 15 μm band cooling rates
journal, January 1981

  • Fels, Stephen B.; Schwarzkopf, M. D.
  • Journal of Geophysical Research, Vol. 86, Issue C2
  • DOI: 10.1029/JC086iC02p01205

Evaluation of radiation scheme performance within chemistry climate models
journal, January 2011

  • Forster, Piers M.; Fomichev, Victor I.; Rozanov, Eugene
  • Journal of Geophysical Research, Vol. 116, Issue D10
  • DOI: 10.1029/2010JD015361

On the Correlated k -Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres
journal, November 1992


Technical Note: Estimating aerosol effects on cloud radiative forcing
journal, January 2013


A new method for diagnosing radiative forcing and climate sensitivity
journal, January 2004


Discrete Space Theory of Radiative Transfer and its Application to Problems in Planetary Atmospheres
journal, September 1969


Climate model genealogy: Generation CMIP5 and how we got there: CLIMATE MODEL GENEALOGY
journal, March 2013

  • Knutti, Reto; Masson, David; Gettelman, Andrew
  • Geophysical Research Letters, Vol. 40, Issue 6
  • DOI: 10.1002/grl.50256

Climate Model Intercomparisons: Preparing for the Next Phase
journal, March 2014

  • Meehl, Gerald A.; Moss, Richard; Taylor, Karl E.
  • Eos, Transactions American Geophysical Union, Vol. 95, Issue 9
  • DOI: 10.1002/2014EO090001

Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave
journal, July 1997

  • Mlawer, Eli J.; Taubman, Steven J.; Brown, Patrick D.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D14
  • DOI: 10.1029/97JD00237

Development and recent evaluation of the MT_CKD model of continuum absorption
journal, June 2012

  • Mlawer, Eli J.; Payne, Vivienne H.; Moncet, Jean-Luc
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 370, Issue 1968
  • DOI: 10.1098/rsta.2011.0295

Role of spatial and temporal variations in the computation of radiative forcing and GWP
journal, May 1997

  • Myhre, Gunnar; Stordal, Frode
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D10
  • DOI: 10.1029/97JD00148

Importance of instantaneous radiative forcing for rapid tropospheric adjustment
journal, October 2013


MODELING: The Continual Intercomparison of Radiation Codes (CIRC): Assessing Anew the Quality of GCM Radiation Algorithms
journal, March 2010

  • Oreopoulos, Lazaros; Mlawer, Eli
  • Bulletin of the American Meteorological Society, Vol. 91, Issue 3
  • DOI: 10.1175/2009BAMS2732.1

The Continual Intercomparison of Radiation Codes: Results from Phase I: RESULTS FROM CIRC PHASE I
journal, March 2012

  • Oreopoulos, Lazaros; Mlawer, Eli; Delamere, Jennifer
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D6
  • DOI: 10.1029/2011JD016821

An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer
journal, January 2011

  • Paynter, D. J.; Ramaswamy, V.
  • Journal of Geophysical Research, Vol. 116, Issue D20
  • DOI: 10.1029/2010JD015505

Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment
journal, January 2013

  • Randles, C. A.; Kinne, S.; Myhre, G.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2347-2013

Computation of atmospheric cooling rates by exact and approximate methods
journal, January 1991

  • Ridgway, William L.; Arking, Albert
  • Journal of Geophysical Research, Vol. 96, Issue D5
  • DOI: 10.1029/90JD01858

The HITRAN 2008 molecular spectroscopic database
journal, June 2009

  • Rothman, L. S.; Gordon, I. E.; Barbe, A.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 110, Issue 9-10, p. 533-572
  • DOI: 10.1016/j.jqsrt.2009.02.013

The HITRAN2012 molecular spectroscopic database
journal, November 2013

  • Rothman, L. S.; Gordon, I. E.; Babikov, Y.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 130, p. 4-50
  • DOI: 10.1016/j.jqsrt.2013.07.002

Radiative effects of CH 4 , N 2 O, halocarbons and the foreign-broadened H 2 O continuum: A GCM experiment
journal, April 1999

  • Schwarzkopf, M. Daniel; Ramaswamy, V.
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D8
  • DOI: 10.1029/1999JD900003

Adjustments in the Forcing-Feedback Framework for Understanding Climate Change
journal, February 2015

  • Sherwood, Steven C.; Bony, Sandrine; Boucher, Olivier
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 2
  • DOI: 10.1175/BAMS-D-13-00167.1

Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel
journal, July 2013

  • Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 7
  • DOI: 10.1175/BAMS-D-12-00117.1

An Overview of CMIP5 and the Experiment Design
journal, April 2012

  • Taylor, Karl E.; Stouffer, Ronald J.; Meehl, Gerald A.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 4
  • DOI: 10.1175/BAMS-D-11-00094.1

The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance
journal, November 2004

  • Turner, D. D.; Tobin, D. C.; Clough, S. A.
  • Journal of the Atmospheric Sciences, Vol. 61, Issue 22
  • DOI: 10.1175/JAS3300.1

Exponential-sum fitting of radiative transmission functions
journal, August 1977


Radiative Forcing of Quadrupling CO 2
journal, April 2014


Works referencing / citing this record:

The cloud-free global energy balance and inferred cloud radiative effects: an assessment based on direct observations and climate models
journal, August 2018


Eta model simulations using two radiation schemes in clear-sky conditions
journal, January 2017

  • de Andrade Campos, Diêgo; Chou, Sin Chan; Spyrou, Christos
  • Meteorology and Atmospheric Physics, Vol. 130, Issue 1
  • DOI: 10.1007/s00703-017-0500-6

Analysis of Water Vapor Absorption in the Far‐Infrared and Submillimeter Regions Using Surface Radiometric Measurements From Extremely Dry Locations
journal, July 2019

  • Mlawer, E. J.; Turner, D. D.; Paine, S. N.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 14
  • DOI: 10.1029/2018jd029508

Low clouds link equilibrium climate sensitivity to hydrological sensitivity
journal, September 2018


The Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP): experimental design and protocols
journal, January 2017

  • Goldblatt, Colin; Kavanagh, Lucas; Dewey, Maura
  • Geoscientific Model Development, Vol. 10, Issue 11
  • DOI: 10.5194/gmd-10-3931-2017

ARTS, the Atmospheric Radiative Transfer Simulator – version 2.2, the planetary toolbox edition
journal, January 2018

  • Buehler, Stefan A.; Mendrok, Jana; Eriksson, Patrick
  • Geoscientific Model Development, Vol. 11, Issue 4
  • DOI: 10.5194/gmd-11-1537-2018

The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations
journal, January 2019

  • Walters, David; Baran, Anthony J.; Boutle, Ian
  • Geoscientific Model Development, Vol. 12, Issue 5
  • DOI: 10.5194/gmd-12-1909-2019

The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6
journal, January 2016

  • Pincus, Robert; Forster, Piers M.; Stevens, Bjorn
  • Geoscientific Model Development, Vol. 9, Issue 9
  • DOI: 10.5194/gmd-9-3447-2016