DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Identification of a catalytic iron-hydride at the H-cluster of [FeFe]-hydrogenase

Abstract

Hydrogenases couple electrochemical potential to the reversible chemical transformation of H2 and protons, yet the reaction mechanism and composition of intermediates are not fully understood. In this Communication we describe the biophysical properties of a hydride-bound state (Hhyd) of the [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The catalytic H-cluster of [FeFe]-hydrogenase consists of a [4Fe-4S] subcluster ([4Fe-4S]H) linked by a cysteine thiol to an azadithiolate-bridged 2Fe subcluster ([2Fe]H) with CO and CN- ligands. Mossbauer analysis and density functional theory (DFT) calculations show that Hhyd consists of a reduced [4Fe-4S]H+ coupled to a diferrous [2Fe]H with a terminally bound Fe-hydride. The existence of the Fe-hydride in Hhyd was demonstrated by an unusually low Mossbauer isomer shift of the distal Fe of the [2Fe]H subcluster. As a result, a DFT model of Hhyd shows that the Fe-hydride is part of a H-bonding network with the nearby bridging azadithiolate to facilitate fast proton exchange and catalytic turnover.

Authors:
 [1]; ORCiD logo [2];  [1]; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. Carnegie Mellon Univ., Pittsburgh, PA (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1340645
Report Number(s):
NREL/JA-2700-67578
Journal ID: ISSN 0002-7863
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 1; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chlamydomonas reinhardtii; [FeFe]-hydrogenase; electrochemical potential

Citation Formats

Mulder, David W., Guo, Yisong, Ratzloff, Michael W., and King, Paul W. Identification of a catalytic iron-hydride at the H-cluster of [FeFe]-hydrogenase. United States: N. p., 2016. Web. doi:10.1021/jacs.6b11409.
Mulder, David W., Guo, Yisong, Ratzloff, Michael W., & King, Paul W. Identification of a catalytic iron-hydride at the H-cluster of [FeFe]-hydrogenase. United States. https://doi.org/10.1021/jacs.6b11409
Mulder, David W., Guo, Yisong, Ratzloff, Michael W., and King, Paul W. Wed . "Identification of a catalytic iron-hydride at the H-cluster of [FeFe]-hydrogenase". United States. https://doi.org/10.1021/jacs.6b11409. https://www.osti.gov/servlets/purl/1340645.
@article{osti_1340645,
title = {Identification of a catalytic iron-hydride at the H-cluster of [FeFe]-hydrogenase},
author = {Mulder, David W. and Guo, Yisong and Ratzloff, Michael W. and King, Paul W.},
abstractNote = {Hydrogenases couple electrochemical potential to the reversible chemical transformation of H2 and protons, yet the reaction mechanism and composition of intermediates are not fully understood. In this Communication we describe the biophysical properties of a hydride-bound state (Hhyd) of the [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The catalytic H-cluster of [FeFe]-hydrogenase consists of a [4Fe-4S] subcluster ([4Fe-4S]H) linked by a cysteine thiol to an azadithiolate-bridged 2Fe subcluster ([2Fe]H) with CO and CN- ligands. Mossbauer analysis and density functional theory (DFT) calculations show that Hhyd consists of a reduced [4Fe-4S]H+ coupled to a diferrous [2Fe]H with a terminally bound Fe-hydride. The existence of the Fe-hydride in Hhyd was demonstrated by an unusually low Mossbauer isomer shift of the distal Fe of the [2Fe]H subcluster. As a result, a DFT model of Hhyd shows that the Fe-hydride is part of a H-bonding network with the nearby bridging azadithiolate to facilitate fast proton exchange and catalytic turnover.},
doi = {10.1021/jacs.6b11409},
journal = {Journal of the American Chemical Society},
number = 1,
volume = 139,
place = {United States},
year = {Wed Dec 14 00:00:00 EST 2016},
month = {Wed Dec 14 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 101 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center
journal, January 1999


14N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge
journal, January 2009

  • Silakov, Alexey; Wenk, Brian; Reijerse, Eduard
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 31
  • DOI: 10.1039/b905841a

Molecular basis of [FeFe]-hydrogenase function
journal, August 2013

  • Winkler, Martin; Esselborn, Julian; Happe, Thomas
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 8-9
  • DOI: 10.1016/j.bbabio.2013.03.004

Identification and Characterization of the “Super-Reduced” State of the H-Cluster in [FeFe] Hydrogenase: A New Building Block for the Catalytic Cycle?
journal, October 2012

  • Adamska, Agnieszka; Silakov, Alexey; Lambertz, Camilla
  • Angewandte Chemie International Edition, Vol. 51, Issue 46
  • DOI: 10.1002/anie.201204800

EPR and FTIR Analysis of the Mechanism of H 2 Activation by [FeFe]-Hydrogenase HydA1 from Chlamydomonas reinhardtii
journal, April 2013

  • Mulder, David W.; Ratzloff, Michael W.; Shepard, Eric M.
  • Journal of the American Chemical Society, Vol. 135, Issue 18
  • DOI: 10.1021/ja4000257

Hydride Binding to the Active Site of [FeFe]-Hydrogenase
journal, October 2014

  • Chernev, Petko; Lambertz, Camilla; Brünje, Annika
  • Inorganic Chemistry, Vol. 53, Issue 22
  • DOI: 10.1021/ic502047q

New Redox States Observed in [FeFe] Hydrogenases Reveal Redox Coupling Within the H-Cluster
journal, July 2014

  • Adamska-Venkatesh, Agnieszka; Krawietz, Danuta; Siebel, Judith
  • Journal of the American Chemical Society, Vol. 136, Issue 32
  • DOI: 10.1021/ja503390c

Vibrational spectroscopy reveals the initial steps of biological hydrogen evolution
journal, January 2016

  • Katz, S.; Noth, J.; Horch, M.
  • Chemical Science, Vol. 7, Issue 11
  • DOI: 10.1039/C6SC01098A

A Capable Bridging Ligand for Fe-Only Hydrogenase:  Density Functional Calculations of a Low-Energy Route for Heterolytic Cleavage and Formation of Dihydrogen
journal, April 2001

  • Fan, Hua-Jun; Hall, Michael B.
  • Journal of the American Chemical Society, Vol. 123, Issue 16
  • DOI: 10.1021/ja004120i

Bridging-hydride influence on the electronic structure of an [FeFe] hydrogenase active-site model complex revealed by XAES-DFT
journal, January 2013

  • Leidel, Nils; Hsieh, Chung-Hung; Chernev, Petko
  • Dalton Transactions, Vol. 42, Issue 21
  • DOI: 10.1039/c3dt33042g

Inaccessibility of the μ-hydride species in [FeFe] hydrogenases
journal, January 2014

  • Finkelmann, Arndt R.; Stiebritz, Martin T.; Reiher, Markus
  • Chem. Sci., Vol. 5, Issue 1
  • DOI: 10.1039/C3SC51700D

Combining acid–base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase
journal, October 2011

  • Camara, James M.; Rauchfuss, Thomas B.
  • Nature Chemistry, Vol. 4, Issue 1
  • DOI: 10.1038/nchem.1180

Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides
journal, June 2016


Investigations on the Role of Proton-Coupled Electron Transfer in Hydrogen Activation by [FeFe]-Hydrogenase
journal, October 2014

  • Mulder, David W.; Ratzloff, Michael W.; Bruschi, Maurizio
  • Journal of the American Chemical Society, Vol. 136, Issue 43
  • DOI: 10.1021/ja508629m

Spectroelectrochemical Characterization of the Active Site of the [FeFe] Hydrogenase HydA1 from Chlamydomonas reinhardtii
journal, August 2009

  • Silakov, Alexey; Kamp, Christina; Reijerse, Eduard
  • Biochemistry, Vol. 48, Issue 33
  • DOI: 10.1021/bi9009105

Structural and Spectroscopic Features of Mixed Valent Fe II Fe I Complexes and Factors Related to the Rotated Configuration of Diiron Hydrogenase
journal, July 2012

  • Hsieh, Chung-Hung; Erdem, Özlen F.; Harman, Scott D.
  • Journal of the American Chemical Society, Vol. 134, Issue 31
  • DOI: 10.1021/ja304866r

EPR/ENDOR, Mössbauer, and Quantum-Chemical Investigations of Diiron Complexes Mimicking the Active Oxidized State of [FeFe]Hydrogenase
journal, July 2012

  • Silakov, Alexey; Olsen, Matthew T.; Sproules, Stephen
  • Inorganic Chemistry, Vol. 51, Issue 15
  • DOI: 10.1021/ic3013766

Hyperfine interactions and electron distribution in FeIIFeI and FeIFeI models for the active site of the [FeFe] hydrogenases: Mössbauer spectroscopy studies of low-spin FeI
journal, May 2013

  • Stoian, Sebastian A.; Hsieh, Chung-Hung; Singleton, Michael L.
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 18, Issue 6
  • DOI: 10.1007/s00775-013-1005-5

Mössbauer Characterization of the Iron−Sulfur Clusters in Desulfovibrio vulgaris Hydrogenase
journal, March 2001

  • Pereira, Alice S.; Tavares, Pedro; Moura, Isabel
  • Journal of the American Chemical Society, Vol. 123, Issue 12
  • DOI: 10.1021/ja003176+

Electronic Structure of the H Cluster in [Fe]-Hydrogenases
journal, September 1999

  • Popescu, Codrina V.; Münck, Eckard
  • Journal of the American Chemical Society, Vol. 121, Issue 34
  • DOI: 10.1021/ja991243y

A Density Functional Theory Study on the Active Center of Fe-Only Hydrogenase:  Characterization and Electronic Structure of the Redox States
journal, May 2002

  • Liu, Zhi-Pan; Hu, P.
  • Journal of the American Chemical Society, Vol. 124, Issue 18
  • DOI: 10.1021/ja0118690

Targeting Intermediates of [FeFe]-Hydrogenase by CO and CN Vibrational Signatures
journal, May 2011

  • Yu, Lian; Greco, Claudio; Bruschi, Maurizio
  • Inorganic Chemistry, Vol. 50, Issue 9
  • DOI: 10.1021/ic102039z

Refining the Active Site Structure of Iron−Iron Hydrogenase Using Computational Infrared Spectroscopy
journal, April 2008

  • Tye, Jesse W.; Darensbourg, Marcetta Y.; Hall, Michael B.
  • Inorganic Chemistry, Vol. 47, Issue 7
  • DOI: 10.1021/ic7013732

Design and Characterization of Phosphine Iron Hydrides: Toward Hydrogen-Producing Catalysts
journal, July 2015


Mössbauer and computational investigation of a functional [NiFe] hydrogenase model complex
journal, January 2015

  • Kochem, A.; Bill, E.; Neese, F.
  • Chemical Communications, Vol. 51, Issue 11
  • DOI: 10.1039/C4CC09035G

The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy
journal, December 2005

  • Roseboom, Winfried; De Lacey, Antonio L.; Fernandez, Victor M.
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 11, Issue 1
  • DOI: 10.1007/s00775-005-0040-2

Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H⋅⋅⋅H-N Dihydrogen Bond Characterized by Neutron Diffraction
journal, April 2014

  • Liu, Tianbiao; Wang, Xiaoping; Hoffmann, Christina
  • Angewandte Chemie International Edition, Vol. 53, Issue 21
  • DOI: 10.1002/anie.201402090

Works referencing / citing this record:

In Vivo EPR Characterization of Semi-Synthetic [FeFe] Hydrogenases
journal, February 2018

  • Mészáros, Lívia S.; Németh, Brigitta; Esmieu, Charlène
  • Angewandte Chemie, Vol. 130, Issue 10
  • DOI: 10.1002/ange.201710740

Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases
journal, July 2017

  • Winkler, Martin; Senger, Moritz; Duan, Jifu
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms16115

Direct Noncovalent Activation of α,β-Unsaturated Aldehydes for the Stereodivergent Synthesis of Substituted Cyclohexenes
journal, April 2017

  • Xie, Ji-Kang; Wang, Yang; Lin, Jun-Bing
  • Chemistry - A European Journal, Vol. 23, Issue 28
  • DOI: 10.1002/chem.201701315

The plasticity of redox cofactors: from metalloenzymes to redox-active DNA
journal, August 2018


Protonation/reduction dynamics at the [4Fe–4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases
journal, January 2018

  • Senger, Moritz; Mebs, Stefan; Duan, Jifu
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 5
  • DOI: 10.1039/c7cp04757f

A [4Fe–4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly
journal, April 2018


Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases
journal, November 2018


The binuclear cluster of [FeFe] hydrogenase is formed with sulfur donated by cysteine of an [Fe(Cys)(CO) 2 (CN)] organometallic precursor
journal, September 2019

  • Rao, Guodong; Pattenaude, Scott A.; Alwan, Katherine
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 42
  • DOI: 10.1073/pnas.1913324116

A [RuRu] Analogue of an [FeFe]-Hydrogenase Traps the Key Hydride Intermediate of the Catalytic Cycle
journal, March 2018

  • Sommer, Constanze; Richers, Casseday P.; Lubitz, Wolfgang
  • Angewandte Chemie, Vol. 130, Issue 19
  • DOI: 10.1002/ange.201801914

[FeFe]-Hydrogenases: recent developments and future perspectives
journal, January 2018

  • Wittkamp, F.; Senger, M.; Stripp, S. T.
  • Chemical Communications, Vol. 54, Issue 47
  • DOI: 10.1039/c8cc01275j

In Vivo EPR Characterization of Semi-Synthetic [FeFe] Hydrogenases
journal, February 2018

  • Mészáros, Lívia S.; Németh, Brigitta; Esmieu, Charlène
  • Angewandte Chemie International Edition, Vol. 57, Issue 10
  • DOI: 10.1002/anie.201710740

Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity
journal, January 2017

  • Kertess, L.; Wittkamp, F.; Sommer, C.
  • Dalton Transactions, Vol. 46, Issue 48
  • DOI: 10.1039/c7dt03785f

Recent advances in the mechanisms of the hydrogen evolution reaction by non-innocent sulfur-coordinating metal complexes
journal, January 2020

  • Drosou, Maria; Kamatsos, Fotios; Mitsopoulou, Christiana A.
  • Inorganic Chemistry Frontiers, Vol. 7, Issue 1
  • DOI: 10.1039/c9qi01113g

A [RuRu] Analogue of an [FeFe]-Hydrogenase Traps the Key Hydride Intermediate of the Catalytic Cycle
journal, March 2018

  • Sommer, Constanze; Richers, Casseday P.; Lubitz, Wolfgang
  • Angewandte Chemie International Edition, Vol. 57, Issue 19
  • DOI: 10.1002/anie.201801914

[FeFe]-Hydrogenases: recent developments and future perspectives
text, January 2018


In Vivo EPR Characterization of Semi-Synthetic [FeFe] Hydrogenases
journal, February 2018

  • Mészáros, Lívia S.; Németh, Brigitta; Esmieu, Charlène
  • Angewandte Chemie, Vol. 130, Issue 10
  • DOI: 10.1002/ange.201710740

1H NMR Spectroscopy of [FeFe] Hydrogenase: Insight into the Electronic Structure of the Active Site
journal, December 2017

  • Rumpel, Sigrun; Ravera, Enrico; Sommer, Constanze
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b11196

Spectroscopic and Computational Evidence that [FeFe] Hydrogenases Operate Exclusively with CO-Bridged Intermediates
journal, December 2019

  • Birrell, James A.; Pelmenschikov, Vladimir; Mishra, Nakul
  • Journal of the American Chemical Society, Vol. 142, Issue 1
  • DOI: 10.1021/jacs.9b09745

A [4Fe–4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly
journal, April 2018