DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A path to stable low-torque plasma operation in ITER with test blanket modules

Abstract

New experiments in the low-torque ITER Q = 10 scenario on DIII-D demonstrate that n = 1 magnetic fields from a single row of ex-vessel control coils enable operation at ITER performance metrics in the presence of applied non-axisymmetric magnetic fields from a test blanket module (TBM) mock-up coil. With n = 1 compensation, operation below the ITER-equivalent injected torque is successful at three times the ITER equivalent toroidal magnetic field ripple for a pair of TBMs in one equatorial port, whereas the uncompensated TBM field leads to rotation collapse, loss of H-mode and plasma current disruption. In companion experiments at high plasma beta, where the n = 1 plasma response is enhanced, uncorrected TBM fields degrade energy confinement and the plasma angular momentum while increasing fast ion losses; however, disruptions are not routinely encountered owing to increased levels of injected neutral beam torque. In this regime, n = 1 field compensation leads to recovery of a dominant fraction of the TBM-induced plasma pressure and rotation degradation, and an 80% reduction in the heat load to the first wall. These results show that the n = 1 plasma response plays a dominant role in determining plasma stability, and that nmore » = 1 field compensation alone not only recovers most of the impact on plasma performance of the TBM, but also protects the first wall from potentially damaging heat flux. Despite these benefits, plasma rotation braking from the TBM fields cannot be fully recovered using standard error field control. Given the uncertainty in extrapolation of these results to the ITER configuration, it is prudent to design the TBMs with as low a ferromagnetic mass as possible without jeopardizing the TBM mission.« less

Authors:
ORCiD logo [1];  [2];  [3];  [1];  [4];  [5];  [1];  [1];  [1];  [6]; ORCiD logo [4];  [7]; ORCiD logo [4];  [1];  [1];  [4];  [8];  [6];  [1];  [4] more »;  [8];  [1] « less
  1. General Atomics, San Diego, CA (United States)
  2. ITER Organization, St. Paul-lez-Durance Cedex (France)
  3. Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)
  4. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  5. Columbia Univ., New York, NY (United States)
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  7. General Atomics, San Diego, CA (United States); U.S. Dept. of Energy, Washington, D.C. (United States)
  8. Assoc. EURATOM-Tekes (Finland)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); General Atomics, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES); USDOE Office of Nuclear Energy (NE)
Contributing Org.:
General Atomics, San Diego, CA (United States); US DOE, Washington, DC (United States); ITER Org, Route Vinon Sur Verdon, St Paul Les Durance (France); Ecole Polytech Fed Lausanne, Lausanne, (Switzerland); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Columbia Univ, New York, NY (United States); Assoc EURATOM Tekes, Espoo (Finland).; ITER Organization, route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul-lez-Durance Cedex, France Ecole Polytechnique Federale de Lausanne (EPFL), CRPP, CH-1015 Lausanne, Switzerland Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451, USA Columbia University, New York, NY 10027, USA Association EURATOM-Tekes, VTT, FI-02044 VTT, Finland
OSTI Identifier:
1340287
Alternate Identifier(s):
OSTI ID: 1335182; OSTI ID: 1372492; OSTI ID: 1399868
Grant/Contract Number:  
AC05-00OR22725; SC-G903402; FG02-04ER54761; FC02-04ER54698; AC02-09CH11466
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 57; Journal Issue: 3; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; test blanket modules; error fields; ITER; DIII-D; diii-d; error-field; wall

Citation Formats

Lanctot, Matthew J., Snipes, J. A., Reimerdes, H., Paz-Soldan, C., Logan, N., Hanson, J. M., Buttery, R. J., deGrassie, J. S., Garofalo, A. M., Gray, T. K., Grierson, B. A., King, J. D., Kramer, G. J., La Haye, R. J., Pace, D. C., Park, J. -K., Salmi, A., Shiraki, D., Strait, E. J., Solomon, W. M., Tala, T., and Van Zeeland, M. A. A path to stable low-torque plasma operation in ITER with test blanket modules. United States: N. p., 2016. Web. doi:10.1088/1741-4326/57/3/036004.
Lanctot, Matthew J., Snipes, J. A., Reimerdes, H., Paz-Soldan, C., Logan, N., Hanson, J. M., Buttery, R. J., deGrassie, J. S., Garofalo, A. M., Gray, T. K., Grierson, B. A., King, J. D., Kramer, G. J., La Haye, R. J., Pace, D. C., Park, J. -K., Salmi, A., Shiraki, D., Strait, E. J., Solomon, W. M., Tala, T., & Van Zeeland, M. A. A path to stable low-torque plasma operation in ITER with test blanket modules. United States. https://doi.org/10.1088/1741-4326/57/3/036004
Lanctot, Matthew J., Snipes, J. A., Reimerdes, H., Paz-Soldan, C., Logan, N., Hanson, J. M., Buttery, R. J., deGrassie, J. S., Garofalo, A. M., Gray, T. K., Grierson, B. A., King, J. D., Kramer, G. J., La Haye, R. J., Pace, D. C., Park, J. -K., Salmi, A., Shiraki, D., Strait, E. J., Solomon, W. M., Tala, T., and Van Zeeland, M. A. Mon . "A path to stable low-torque plasma operation in ITER with test blanket modules". United States. https://doi.org/10.1088/1741-4326/57/3/036004. https://www.osti.gov/servlets/purl/1340287.
@article{osti_1340287,
title = {A path to stable low-torque plasma operation in ITER with test blanket modules},
author = {Lanctot, Matthew J. and Snipes, J. A. and Reimerdes, H. and Paz-Soldan, C. and Logan, N. and Hanson, J. M. and Buttery, R. J. and deGrassie, J. S. and Garofalo, A. M. and Gray, T. K. and Grierson, B. A. and King, J. D. and Kramer, G. J. and La Haye, R. J. and Pace, D. C. and Park, J. -K. and Salmi, A. and Shiraki, D. and Strait, E. J. and Solomon, W. M. and Tala, T. and Van Zeeland, M. A.},
abstractNote = {New experiments in the low-torque ITER Q = 10 scenario on DIII-D demonstrate that n = 1 magnetic fields from a single row of ex-vessel control coils enable operation at ITER performance metrics in the presence of applied non-axisymmetric magnetic fields from a test blanket module (TBM) mock-up coil. With n = 1 compensation, operation below the ITER-equivalent injected torque is successful at three times the ITER equivalent toroidal magnetic field ripple for a pair of TBMs in one equatorial port, whereas the uncompensated TBM field leads to rotation collapse, loss of H-mode and plasma current disruption. In companion experiments at high plasma beta, where the n = 1 plasma response is enhanced, uncorrected TBM fields degrade energy confinement and the plasma angular momentum while increasing fast ion losses; however, disruptions are not routinely encountered owing to increased levels of injected neutral beam torque. In this regime, n = 1 field compensation leads to recovery of a dominant fraction of the TBM-induced plasma pressure and rotation degradation, and an 80% reduction in the heat load to the first wall. These results show that the n = 1 plasma response plays a dominant role in determining plasma stability, and that n = 1 field compensation alone not only recovers most of the impact on plasma performance of the TBM, but also protects the first wall from potentially damaging heat flux. Despite these benefits, plasma rotation braking from the TBM fields cannot be fully recovered using standard error field control. Given the uncertainty in extrapolation of these results to the ITER configuration, it is prudent to design the TBMs with as low a ferromagnetic mass as possible without jeopardizing the TBM mission.},
doi = {10.1088/1741-4326/57/3/036004},
journal = {Nuclear Fusion},
number = 3,
volume = 57,
place = {United States},
year = {Mon Dec 12 00:00:00 EST 2016},
month = {Mon Dec 12 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The integration of TBM systems in ITER
journal, December 2008


Overview of the ITER TBM Program
journal, August 2012


A fusion development facility on the critical path to fusion energy
journal, July 2011


ITER test blanket module error field simulation experiments at DIII-D
journal, September 2011


Magnetic control of magnetohydrodynamic instabilities in tokamaks
journal, November 2014


Chapter 2: Plasma confinement and transport
journal, December 1999

  • Transport, ITER Physics Expert Group on Confin; Database, ITER Physics Expert Group on Confin; Editors, ITER Physics Basis
  • Nuclear Fusion, Vol. 39, Issue 12
  • DOI: 10.1088/0029-5515/39/12/302

Demonstration of ITER operational scenarios on DIII-D
journal, June 2010


Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation
journal, February 2014


Effects of local toroidal field ripples due to test blanket modules for ITER on radial transport of thermal ions
journal, October 2012


Error Field Amplification and Rotation Damping in Tokamak Plasmas
journal, May 2001


Sustained rotational stabilization of DIII-D plasmas above the no-wall beta limit
journal, May 2002

  • Garofalo, A. M.; Jensen, T. H.; Johnson, L. C.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1446036

Control of Asymmetric Magnetic Perturbations in Tokamaks
journal, November 2007


Observation and correction of non-resonant error fields in NSTX
journal, September 2010


The spectral basis of optimal error field correction on DIII-D
journal, April 2014


Measurement, correction and implications of the intrinsic error fields on MAST
journal, August 2014


Advances towards QH-mode viability for ELM-stable operation in ITER
journal, July 2011


Effect of resonant and non-resonant magnetic braking on error field tolerance in high beta plasmas
journal, September 2009


Bifurcated states of a rotating tokamak plasma in the presence of a static error-field
journal, September 1998

  • Fitzpatrick, Richard
  • Physics of Plasmas, Vol. 5, Issue 9
  • DOI: 10.1063/1.873000

Array magnetics modal analysis for the DIII-D tokamak based on localized time-series modelling
journal, July 2014


A Fusion Nuclear Science Facility for a fast-track path to DEMO
journal, October 2014


Influence of toroidal rotation on transport and stability in hybrid scenario plasmas in DIII-D
journal, May 2008


The impact of 3D fields on tearing mode stability of H-modes
journal, May 2011


Heat loads and shape design of the ITER first wall
journal, December 2010


Simulation of localized fast-ion heat loads in test blanket module simulation experiments on DIII-D
journal, November 2013


The importance of matched poloidal spectra to error field correction in DIII-D
journal, July 2014

  • Paz-Soldan, C.; Lanctot, M. J.; Logan, N. C.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4886795

Neoclassical toroidal viscosity in perturbed equilibria with general tokamak geometry
journal, December 2013

  • Logan, Nikolas C.; Park, Jong-Kyu; Kim, Kimin
  • Physics of Plasmas, Vol. 20, Issue 12
  • DOI: 10.1063/1.4849395

Anomalies in the applied magnetic fields in DIII-D and their implications for the understanding of stability experiments
journal, December 2003


Locked modes in DIII-D and a method for prevention of the low density mode
journal, May 1991


ITER fast ion confinement in the presence of the European test blanket module
journal, August 2015


Fast ion transport during applied 3D magnetic perturbations on DIII-D
journal, June 2015


Works referencing / citing this record:

Innovations in Technology and Science R&D for ITER
journal, January 2019

  • Campbell, David J.; Akiyama, Tsuyoshi; Barnsley, Robin
  • Journal of Fusion Energy, Vol. 38, Issue 1
  • DOI: 10.1007/s10894-018-0187-9

Dynamics of MHD instabilities near a ferromagnetic wall
journal, September 2018


Predicting the rotation profile in ITER
journal, January 2020