DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regioselective atomic layer deposition in metal–organic frameworks directed by dispersion interactions

Abstract

The application of atomic layer deposition (ALD) to metal–organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron X-ray powder diffraction, we visualize how the deposited atoms are localized and redistribute within the MOF during ALD. We demonstrate that the ALD is regioselective, with preferential deposition of oxy-Zn(II) species within the small pores of NU-1000. As a result, complementary density functional calculations indicate that this startling regioselectivity is driven by dispersion interactions associated with the preferential adsorption sites for the organometallic precursors prior to reaction.

Authors:
; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1339610
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 138; Journal Issue: 41; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Gallington, Leighanne C., Kim, In Soo, Liu, Wei-Guang, Yakovenko, Andrey A., Platero-Prats, Ana E., Li, Zhanyong, Wang, Timothy C., Hupp, Joseph, Farha, Omar K., Truhlar, Donald G., Martinson, Alex B. F., and Chapman, Karena W. Regioselective atomic layer deposition in metal–organic frameworks directed by dispersion interactions. United States: N. p., 2016. Web. doi:10.1021/jacs.6b08711.
Gallington, Leighanne C., Kim, In Soo, Liu, Wei-Guang, Yakovenko, Andrey A., Platero-Prats, Ana E., Li, Zhanyong, Wang, Timothy C., Hupp, Joseph, Farha, Omar K., Truhlar, Donald G., Martinson, Alex B. F., & Chapman, Karena W. Regioselective atomic layer deposition in metal–organic frameworks directed by dispersion interactions. United States. https://doi.org/10.1021/jacs.6b08711
Gallington, Leighanne C., Kim, In Soo, Liu, Wei-Guang, Yakovenko, Andrey A., Platero-Prats, Ana E., Li, Zhanyong, Wang, Timothy C., Hupp, Joseph, Farha, Omar K., Truhlar, Donald G., Martinson, Alex B. F., and Chapman, Karena W. Mon . "Regioselective atomic layer deposition in metal–organic frameworks directed by dispersion interactions". United States. https://doi.org/10.1021/jacs.6b08711. https://www.osti.gov/servlets/purl/1339610.
@article{osti_1339610,
title = {Regioselective atomic layer deposition in metal–organic frameworks directed by dispersion interactions},
author = {Gallington, Leighanne C. and Kim, In Soo and Liu, Wei-Guang and Yakovenko, Andrey A. and Platero-Prats, Ana E. and Li, Zhanyong and Wang, Timothy C. and Hupp, Joseph and Farha, Omar K. and Truhlar, Donald G. and Martinson, Alex B. F. and Chapman, Karena W.},
abstractNote = {The application of atomic layer deposition (ALD) to metal–organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron X-ray powder diffraction, we visualize how the deposited atoms are localized and redistribute within the MOF during ALD. We demonstrate that the ALD is regioselective, with preferential deposition of oxy-Zn(II) species within the small pores of NU-1000. As a result, complementary density functional calculations indicate that this startling regioselectivity is driven by dispersion interactions associated with the preferential adsorption sites for the organometallic precursors prior to reaction.},
doi = {10.1021/jacs.6b08711},
journal = {Journal of the American Chemical Society},
number = 41,
volume = 138,
place = {United States},
year = {Mon Oct 03 00:00:00 EDT 2016},
month = {Mon Oct 03 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 69 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Using a structure envelope to facilitate structure solution from powder diffraction data
journal, December 1997

  • Brenner, S.; McCusker, L. B.; Baerlocher, C.
  • Journal of Applied Crystallography, Vol. 30, Issue 6
  • DOI: 10.1107/S0021889897011291

Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst
journal, March 2016

  • Leus, Karen; Dendooven, Jolien; Tahir, Norini
  • Nanomaterials, Vol. 6, Issue 3
  • DOI: 10.3390/nano6030045

Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework
journal, February 2016

  • Li, Zhanyong; Schweitzer, Neil M.; League, Aaron B.
  • Journal of the American Chemical Society, Vol. 138, Issue 6
  • DOI: 10.1021/jacs.5b12515

Synthetic Access to Atomically Dispersed Metals in Metal–Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach
journal, February 2016


Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe
journal, February 2001

  • Martin, Jan M. L.; Sundermann, Andreas
  • The Journal of Chemical Physics, Vol. 114, Issue 8
  • DOI: 10.1063/1.1337864

Structural Transitions of the Metal-Oxide Nodes within Metal–Organic Frameworks: On the Local Structures of NU-1000 and UiO-66
journal, March 2016

  • Platero-Prats, Ana E.; Mavrandonakis, Andreas; Gallington, Leighanne C.
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b00069

Generation and applications of structure envelopes for porous metal–organic frameworks
journal, February 2013

  • Yakovenko, Andrey A.; Reibenspies, Joseph H.; Bhuvanesh, Nattamai
  • Journal of Applied Crystallography, Vol. 46, Issue 2
  • DOI: 10.1107/S0021889812050935

Study of Guest Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density
journal, October 2014

  • Yakovenko, Andrey A.; Wei, Zhangwen; Wriedt, Mario
  • Crystal Growth & Design, Vol. 14, Issue 11
  • DOI: 10.1021/cg500525g

Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation
journal, December 2015

  • Kung, Chung-Wei; Mondloch, Joseph E.; Wang, Timothy C.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 51
  • DOI: 10.1021/acsami.5b06901

Aerogel Templated ZnO Dye-Sensitized Solar Cells
journal, April 2008

  • Hamann, Thomas W.; Martinson, Alex B. F.; Elam, Jeffrey W.
  • Advanced Materials, Vol. 20, Issue 8, p. 1560-1564
  • DOI: 10.1002/adma.200702781

Chemical, thermal and mechanical stabilities of metal–organic frameworks
journal, February 2016


Energy‐adjusted a b i n i t i o pseudopotentials for the first row transition elements
journal, January 1987

  • Dolg, M.; Wedig, U.; Stoll, H.
  • The Journal of Chemical Physics, Vol. 86, Issue 2
  • DOI: 10.1063/1.452288

Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition
journal, June 2015


Energy-adjustedab initio pseudopotentials for the second and third row transition elements
journal, January 1990

  • Andrae, D.; H�u�ermann, U.; Dolg, M.
  • Theoretica Chimica Acta, Vol. 77, Issue 2
  • DOI: 10.1007/BF01114537

Defining the Proton Topology of the Zr6-Based Metal–Organic Framework NU-1000
journal, October 2014

  • Planas, Nora; Mondloch, Joseph E.; Tussupbayev, Samat
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21, p. 3716-3723
  • DOI: 10.1021/jz501899j

C RYSTAL14 : A program for the ab initio investigation of crystalline solids
journal, March 2014

  • Dovesi, Roberto; Orlando, Roberto; Erba, Alessandro
  • International Journal of Quantum Chemistry, Vol. 114, Issue 19
  • DOI: 10.1002/qua.24658

A brief review of atomic layer deposition: from fundamentals to applications
journal, June 2014


Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

A versatile sample-environment cell for non-ambient X-ray scattering experiments
journal, July 2008

  • Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles
  • Journal of Applied Crystallography, Vol. 41, Issue 4
  • DOI: 10.1107/S0021889808020165

Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
journal, March 1972

  • Hehre, W. J.; Ditchfield, R.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 56, Issue 5, p. 2257-2261
  • DOI: 10.1063/1.1677527

Solving Complex Zeolite Structures from Powder Diffraction Data
journal, June 2001

  • McCusker, Lynne B.; Baerlocher, Christian; Grosse-Kunstleve, Ralf
  • CHIMIA, Vol. 55, Issue 6
  • DOI: 10.2533/chimia.2001.497

Works referencing / citing this record:

Thermally induced migration of a polyoxometalate within a metal–organic framework and its catalytic effects
journal, January 2018

  • Buru, Cassandra T.; Platero-Prats, Ana. E.; Chica, Daniel G.
  • Journal of Materials Chemistry A, Vol. 6, Issue 17
  • DOI: 10.1039/c8ta02562b

Stable Metal-Organic Frameworks: Design, Synthesis, and Applications
journal, February 2018


Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports
journal, January 2017

  • Desai, Sai Puneet; Malonzo, Camille D.; Webber, Thomas
  • Faraday Discussions, Vol. 201
  • DOI: 10.1039/c7fd00055c

Metal–Organic Framework Hybrid Materials and Their Applications
journal, August 2018

  • Sosa, Joshua; Bennett, Timothy; Nelms, Katherine
  • Crystals, Vol. 8, Issue 8
  • DOI: 10.3390/cryst8080325

Vapor-Phase Infiltration inside a Microporous Porphyrinic Metal–Organic Framework for Postsynthesis Modification
journal, July 2020


Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000
journal, January 2017

  • Platero-Prats, Ana E.; Li, Zhanyong; Gallington, Leighanne C.
  • Faraday Discussions, Vol. 201
  • DOI: 10.1039/c7fd00110j

Grand Challenges and Future Opportunities for Metal–Organic Frameworks
journal, June 2017

  • Hendon, Christopher H.; Rieth, Adam J.; Korzyński, Maciej D.
  • ACS Central Science, Vol. 3, Issue 6
  • DOI: 10.1021/acscentsci.7b00197

Revisiting the structural homogeneity of NU-1000, a Zr-based metal–organic framework
journal, January 2018

  • Islamoglu, Timur; Otake, Ken-ichi; Li, Peng
  • CrystEngComm, Vol. 20, Issue 39
  • DOI: 10.1039/c8ce00455b