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The Sedov blast wave is of great utility as a verification prob-

lem for hydrodynamic methods. The typical implementation
uses an energized cell of finite dimensions to represent the
energy point source. This approximation can be avoided by
directly finding the effects of the energy source as a bound-
ary condition. The proposed method transforms the Sedov
problem into an outward moving radial piston problem with
a time-varying velocity. A portion of the mesh adjacent to the
origin is removed and the boundaries of this hole are forced
with the velocities from the Sedov solution. This verifica-
tion test is implemented on two types of meshes and conver-
gence is shown. The results from the typical initial condition
method and the new boundary condition method are com-
pared.

Nomenclature
r The radial distance from the origin
rs  The radius of the shock wave at a given time
v The radial velocity of any given point
vy The velocity immediately behind the shock wave at a
given time
t The time since the initialization of the blast wave
Ar The initial radial grid spacing in the radial mesh topol-
ogy
Ax The initial grid spacing in a 2D slice of the box mesh
topology
A The nondimensional ratio of radial position to the radius
of the shock
0 The angle in degrees between the horizontal symmetry
plane and the position vector from the origin to the cell

*Corresponding author. E-mail address: nmorgan@lanl.gov (N. R. Mor-
gan).

centers (for density, pressure, or energy) or the nodes
(for velocity)

p; The cell center density

e; The cell center internal energy

The cell center pressure

The cell mass

The cell volume

A surface area segment of a control volume surface

The velocity of a node in the mesh

Y An equation of state parameter
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1 INTRODUCTION

Analytical and computational explorations of explosion
modelling have been an important area of research for many
decades. Von Neumann [1], Taylor [2], and Sedov [3] all in-
dependently found a set of self-similar equations describing
an idealized form of an explosion. Their simplified models
use an infinitely small point source of energy as a seed. As
long as the energy is large enough, this creates a strong shock
that propagates outwards. Their solutions describe the self-
similar equations for the evolution of state variables as the
shock progresses. Because Sedov’s solution was the most
rigorous of his time, these self-similar equations are referred
to as “Sedov solutions” in this paper.

The Sedov solution can be used to understand many
real-world phenomenon involving blast waves, including the
evolution of supernovas [4], detonation of high explosives,
and expanding laser-heated plasmas [5]. The Sedov blast
wave is also of great value as a verification problem because
of the semi-analytical solution for all relevant state variables.
It is possible to quantify the accuracy of a hydrodynamic ap-
proach at simulating shock waves, radial propagation of en-
ergy, and large variations in the energy. Furthermore, con-



vergence studies can be performed to ensure that a code will
continue to increase in accuracy as the resolution increases.

The traditional set-up of a Sedov blast wave simulation
is an initial condition problem with a finite energy source
uniformly distributed in the cell nearest the origin. The finite
energy source is an approximation of the point source used
with the analytic solution. The approximation of the point
source as a finite source introduces a secondary error into the
simulation. It has generally been assumed that the conver-
gence rates are maintained since the error in approximating
the point source and the error in the numerical discretization
go to zero in the continuum limit. Nevertheless, it has been
hypothesized that some simulation errors might be attributed
to the finite energy source approximation [6] at finite grid
resolutions. This has the possibility of making grid conver-
gence studies difficult, especially if order of the secondary
error is different than the order of the discretization error.

This paper introduces a new method for modeling the
point source that eliminates this secondary error. In order
to avoid using an energized cell of finite size, the computa-
tional domain was modified to remove the cell(s) adjacent to
the origin. The effects of the point source can then be ap-
plied to the exposed nodes as a boundary condition. As the
energy propagates outwards, the nodes on this boundary are
driven by a time-varying velocity boundary condition corre-
sponding to the semi-analytic solution. While the initial con-
dition method would only approximate these velocities near
the origin, this method applies them using the semi-analytic
solution. This makes the Sedov problem equivalent to an out-
ward moving radial piston problem in which a shock wave
emanates from the origin due to an applied velocity bound-
ary condition.

This new approach represents a significant departure
from the typical methodology in at least two regards. First,
the typical setup as an initial condition problem is trans-
formed into a time-dependent boundary condition problem.
The new approach verifies the ability of a hydrodynamic
method to convert kinetic energy into internal energy, similar
to the Noh problem [7]. Second, this approach eliminates the
errors resulting from approximating the energy point source
as an energy source of finite volume. This allows one to
determine whether errors seen in a typical Sedov simula-
tion (i.e., the Sedov problem is run as an initial condition
problem) are due to the approximation of the point source.
One can then analyze how well any particular approach per-
forms independent of the setup errors. This new approach
was tested on a Lagrangian staggered grid hydrodynamic ap-
proach [8—11] and results are presented and compared to the
traditional approach of using a finite energy source.

2 TEST PROBLEM METHODOLOGY

Once the cell(s) containing the origin of the blast wave
has been removed, the appropriate boundary conditions must
be applied to the exposed nodes. The corresponding velocity
at the respective nodes can be found using the semi-analytic
Sedov solution; this methodology is summarized here and
explained in greater detail in the following subsections. Se-
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(b) Radial Mesh

(a) Box Mesh

Fig. 1: The axisymmetric (RZ) meshes used with the new
verification test problem are shown. Cell(s) are removed
near the origin and the velocity boundary conditions are
applied to the nodes exposed on the inner surface. For
both meshes, the horizontal axis is Z and the vertical axis
is R.

dov’s original solution results in a semi-analytic solution that
gives a nondimensional radius, A, and a nondimensional ve-
locity, f. Using this similarity solution, one can then find the
velocity of a particle at any position and at any time. The
kinematic ordinary differential equation (ODE) relating the
position and the velocity must be solved to find the vertex
velocities as a function of time. The end result of this is a set
of time-dependent velocity boundary conditions that can be
used in a hydrodynamic code.

2.1 Mesh Modifications

Two separate types of computational domains are de-
scribed in this paper. The first type corresponds to a “classi-
cal” or initial condition (IC) Sedov problem, where the blast
wave is initiated by an energy source of finite dimensions.
The second corresponds to the outward moving “radial pis-
ton” or boundary condition (BC) Sedov problem, where a
continuous set of cells adjacent to the origin are removed
(Fig. 1.).

For the velocity BC Sedov problem, the exact same
computational domain is used with only one modification. A
portion of the mesh next to the origin is removed; this region
can be of various sizes and shapes. The aforementioned ve-
locity boundary conditions are applied to the nodes exposed
by removing the cells adjacent to the origin. The initial den-
sity and computational discretization are otherwise identical
to the classical Sedov solution. Two examples of this modi-
fied computational domain can be seen in Fig. 1.

2.2 Solution to Sedov’s Equations

Kamm explained a robust method for numerically solv-
ing Sedov’s equations [12], which is summarized in this sub-
section. A more succinct treatment of the underlying equa-
tions and their analytical solution is given in the Landau and
LIfshitz text [13]. The Sedov solution assumes that the fluid
of interest is compressible, inviscid, and governed by the
gamma-law equation of state. The most difficult portion of



the calculation is relating the integral of energy over the do-
main to the state variables inside the shock region. Once
this integral relation is solved, the similarity solution can be
found using a set of algebraic equations. These algebraic
equations can be used to find nondimensional values, among
which are f and A, which are defined as:

f=v/v
A=r/r M

where r is the radial distance from the origin of the blast to
any defined point, ry is the radius of the shock wave, v is the
radial material velocity of the same defined point, and v rep-
resent the radial material velocity immediately following the
shock. Other similarity variables also exist for density and
pressure. These similarity variables are coupled, meaning
each value of f corresponds to exactly one value of A. Be-
cause the similarity solution involves nondimensional mea-
sures of radius and time, a function relating f and A is valid
for all positions and all times. Selecting a specific position
and time corresponds to selecting a specific value of f or
A. Since A is the radial position, it is easiest to use this
as the independent variable and f as a dependent variable.
Once f and A are known for a given point, all the relevant
properties (density, velocity, pressure, or internal energy) can
be computed by multiplying the similarity variables by the
post-shock conditions. The calculation of these similarity
variables was performed using the code presented in Refer-
ence [12].

2.3 Generation of Velocity Boundary Constraints

Once the relation between radius and velocity is deter-
mined, a table of boundary conditions is generated. This
table represents the velocity of each node individually as a
function of time, for all times spanning the duration of the
simulation. Since these boundary conditions are velocities,
they are applied to those nodes exposed by removing the
cell(s) at the origin. The velocity of a node can be rep-
resented as a function of the radial distance and time, or
v = g(r,1), where g is a function. Due to the Lagrangian
motion of the simulation, this node represents a particle that
must be followed throughout the time domain. This can be
done by substituting the nondimensional velocity into the
ODE relating position, velocity, and time:

dr/dt =v(rt) = f(r,t)vs(r) 2)

where f is the nondimensional ratio of velocities for a given
point and time and v; is the radial material velocity imme-
diately following the shock. From this kinematic ODE, the
velocities and positions of individual nodes can be solved. In
order to include these velocities in the hydrodynamic code, a
table of velocity BC values is created. The same time steps
were used for both the ODE solver and the table of velocity
BC:s for consistency purposes. As one can see from Fig. 2,
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Fig. 2: A comparison of material velocities for particles
at three different initial positions as a function of time.
The velocity jump for a position of » = 0.02 cm is about
two orders of magnitude larger than the jump for » = 0.2
cm.

the ODE is a stiff problem due to the sudden change in ve-
locity as the shock wave passes. Several different numerical
ODE solvers were considered, varying from the basic for-
ward Euler method to the fourth-order Runge-Kutta method.

The best results were found using a method similar to
that proposed by Bogacki and Shampine (hereafter referred
to as BS23) [14]. The BS23 method compares a second and
third-order Runge-Kutta method to estimate the error with
each new time step. If the error is above a specified thresh-
old, the step size is reduced until the error falls below the
specified threshold. This method allows adaptive temporal
refinement to be employed and places explicit limitations on
truncation errors. The higher-order RK45 method could also
be used in a similar fashion with even greater temporal accu-
racy.

For the implementation described in Section 3, this table
of velocities is used by the hydrodynamics code. The code
interpolates among the tabular values to find the velocity at
each time step using a cubic spline. The table is also very
finely resolved to minimize any interpolation errors. The fol-
lowing two subsections address the accuracy of calculating
the velocity boundary conditions.

2.4 Convergence of ODE Solvers

Forward Euler and Runge-Kutta methods were investi-
gated using several time stepping-schemes for solving the
ODE in Eq. 2. These solvers were compared using a hole
size of 0.02 cm, since this size has the sharpest discontinu-
ity of all the hole sizes considered (Fig. 2). The relative
error of these solvers is shown in Fig. 3. The relative error
incurred by the ODE solver was found to be highly depen-
dent on the type of time step used. This can easily be seen



by comparing the differences between logarithmic temporal
spacing and the quadratic temporal spacing for the classi-
cal fourth-order Runge-Kutta method. From Fig. 3 it can
be seen that the BS23 method has the smallest error. Even
though this method employs a third-order Runge-Kutta solu-
tion, the adaptive time step size gives it a lower relative error
than of the fourth-order Runge-Kutta schemes. This same
technique could be applied with other higher-order adaptive
algorithms, including RK45, with even greater temporal ac-
curacy. Based on the results shown, a table with 2000 values
or more is recommended for the velocity BC table. The nu-
merical generation of this table adds a maximum possible
relative error on the order of 1E-8 to the solution. This er-
ror falls well below the relative error of the hydrodynamic
approach for reasonable mesh resolutions.

A second test was used to further assess the accuracy of
the BS23 solver. The second test evolves a uniformly spaced
radial mesh to t = 1 ps by solving the ODE in Eq. 2, and a
comparison is made to the semi-analytic Sedov solution for
the density and velocity at this time. Since the mesh is La-
grangian (mass is constant for all time), the final density can
be calculated by dividing the initial cell mass by the final
cell volume. This density is an average density. This solu-
tion solely relies on the solution of the kinematic ODE 2, so
it is a good test of whether these velocity BCs can accurately
predict the final density distribution. The calculated density
profile and velocity profile are plotted versus the analytic so-
lutions in Fig. 4. As seen in the figure, the BS23 method
reproduces the semi-analytic Sedov density and velocity pro-
files at t = 1 ps. It might be helpful to note that there is a cell
that bridges the shock wave. The properties are very differ-
ent on both sides of the cell so the average density in this cell
cannot match the exact properties of the Sedov semi-analytic
solution. This sort of behavior is to be expected.

2.5 Summary of Necessary Steps

The following is a summary of the steps taken to run
a verification test using the new BC verification approach.
An example of typical results is shown in Fig. 5, where the
density fields and meshes for the IC and BC approaches are
shown side by side.

1. Determine the state variables to be used (blast energy,
initial density distribution, initial pressure, and gamma).

2. Remove a section of the mesh adjacent to the origin.

3. Determine the radial distance from the origin to each
vertex on the exposed boundary.

4. Solve the semi-analytic equations described by Kamm
to find the similarity solution relating f and A [12].

5. For each vertex, determine the starting time when the
shock will arrive.

6. Calculate the post-shock conditions as functions of time
using gas dynamics relations.

7. For each vertex, use the initial position, starting time,
post-shock conditions, and solution for f and A to solve
the ODE for r, v, and ¢.

8. Use the time varying radial velocity as a boundary con-
dition.
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Fig. 3: Convergence rates of the four ODE solvers are
presented. The forward Euler with a logarithmic spac-
ing, fourth-order Runge-Kutta with logarithmic spacing,
fourth-order Runge-Kutta with quadratic spacing, and
the BS23 adaptive time-stepping method were studied.
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3 TEST IMPLEMENTATION

The following sections discuss the application of the
new BC verification approach to a Lagrangian hydrodynamic
approach. The setup parameters are described and the errors
in each implementation approach (IC and BC) are presented.
The convergence results and plots are provided in Section 4.

3.1 Description of Lagrangian Hydrodynamic Algo-
rithm

The new BC verification approach is applied to a fi-
nite volume staggered grid hydrodynamics (SGH) approach
[8-11]. The SGH approach solves the governing equations
on two staggered meshes. The conservation of momentum is
solved on a control volume around a node. The density, pres-
sure, internal energy, and other state variables are defined at
the cell centers. The evolution of the internal energy is solved
on the cell boundary using a compatible discretization de-
scribed in [8,9]. In order to better capture the changes in
state variables across the shock, the Godunov-like approach
suggested in [11] was used. With this approach, a multidi-
rectional Riemann-like problem is solved at the cell center.
The inputs to the Riemann problem are velocity, which are
calculated by projecting the nodal values to the cell center
with a linear Taylor-Series expansion. The gradients in the
Taylor-Series are limited [11] to minimize spurious oscilla-
tions near shocks. This approach is second-order accurate
on smooth flows and first-order accurate at shocks. One ad-
vantage of this method is that it is very robust against mesh
instabilities such as hourglass modes and chevron modes.

3.2 Computational Domain and State Variables

The Sedov blast wave can be planar, cylindrical, or
spherical. The problems simulated in this paper are strictly
spherical blast waves. The calculations are performed using
2D RZ axisymmetric coordinates. In order to fully examine
the Sedov verification test, two types of meshes were exam-
ined for both the IC and the BC verification approaches. Fig.
1 shows the two types of axisymmetric meshes, which are
termed box and radial. These terms refer specifically to the
mesh topology. In this paper, a square hole is used for the box
mesh and a circular hole is used for the radial mesh. Three
different hole lengths were considered: 0.02 cm, 0.1 cm, and
0.2 cm. The outer bounds of the computational domain was
setto1.2cmx 1.2 cm.

The ratio of specific heats (gamma) was set to 5/3, but
other values of gamma could be used. The initial density
was set to 1.0 g/cc everywhere. For the IC calculations, the
extensive source internal energy was set to 0.493390 Mbar
g/cc. This energy was chosen so that the shock would be lo-
cated at a radius of 1.0 cm at a time of 1.0 us. The specific
source internal energy used for the IC method is calculated
by dividing by the mass in the source cell. The source en-
ergy must be scaled to account for the symmetry conditions
in the z-direction. The boundary velocity applied in the BC
approach was calculated for an extensive source internal en-
ergy equal to 0.493390 Mbar g/cc.

4 CONVERGENCE OF LAGRANGIAN SGH

The Lagrangian SGH method was observed to converge
at approximately first-order to the exact solution using the
BC verification approach. The calculated density, pressure,
velocity, and internal energy profiles are plotted in Fig. 6 for
3 resolutions using a radial mesh topology. As shown, the
calculations are in reasonable agreement with the analytic
solution and the agreement improves as the mesh resolution
increases. Small overshoots are present in the pressure and
density profiles at the shock front. These small overshoots
are created by errors in the cell volume evolution. The den-
sity of a cell, p, is calculated using

M,
e 3
P:= 7 3)

where M, is the cell mass and V; is the cell volume at some
time . The discrete rate of change of the cell volume is given
by,

1 AV, 1
VZA—t:VZ~u:VZNi~u,, )

i€z

where u,, is the velocity of the nodes and N; is a surface
area segment of the cell surface connected to the node, p.
The summation is over all surface area segements in the cell,
i € z. An excessively large jump in velocity across the cell
(i.e., V,-u) will translate into overshoots in the density field.
Using a more aggressive limiter on the gradients in the ve-
locity reconstruction will smooth the velocity profile, which
will smooth the density field, but this will also degrade the
accuracy. Fig. 6 illustrates that this Lagrangian approach
can capture most of the velocity jump at the shock front in a
single cell, which translates into a small overshoot in density
that affects the pressure field through the equation of state,
p=p(—1e.

Convergence studies were performed using both the ra-
dial and box mesh topologies. The convergence was calcu-
lated using an L1 error norm weighted by the volume of each
cell. Despite the common usage of the L2 error norm, the L1
error norm is usually a more stringent test and is especially
appropriate for problems containing shocks or solutions with
large derivatives. The L1 error norm for a quantity of inter-
est, U, is calculated using the formula:

Y. (VilUj = Uexqer|)

Ly =% 5
v ) ©)

where V; is the volume of the respective control volume (i.e.,
cell or nodal) and R _is the problem domain. This is the same
error normalization used to thoroughly investigate the error
involved in CCH and SGH methods in [15]. All of the con-
vergence plots use this error normalization.

The convergence of Lagrangian SGH L1 errors using the
BC approach is presented in Fig. 7. As demonstrated, the L1
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Fig. 5: The density and mesh are shown for the IC and BC approaches using a box mesh topology

errors shrink monotonically as the cell size decreases. Con-
vergence rates were determined by the common least squares
fit to the assumed single-term power-law form. These con-
vergence rates and the correlation coefficients can be seen in
Tables 1 and 2. The correlation coefficients for the two larger
holes are all above 0.978, signifying a predictable conver-
gence with no extraneous grid-dependent errors. The magni-
tude of the L1 errors in the final solution are a function of the
hole size at the origin. The larger hole had a smaller L1 error
compared to the smaller hole. This difference is attributed to
the large magnitudes of gradients and higher derivatives of
velocity and energy near the origin at very small times. The
relative scales in the velocity for various initial radii can be
seen in Fig. 2. As the blast wave spreads out from the origin,
the velocity behind the shock slows from approximately 100
cm/ps at r = 0.02 cm to approximately 4 cm/us at r = 0.2
cm. Even small relative errors near the origin can lead to
numerical errors that are 1-2 orders of magnitude larger than
errors far from the origin. The convergence rates are similar
for all hole sizes.

In general, grid convergence testing is only valid for res-
olutions dense enough to be within the asymptotic range of
convergence [16]. Atleast two of the coarsest meshes appear
to fall outside this range where the single-term power-law is
valid. The L1 the error did not decrease significantly at the
coarsest mesh resolutions for the radial mesh topology with
a hole size of r = 0.02 cm (see Fig. 8). It is not too surpris-
ing that significant resolution is required to capture an initial
velocity of order 100 cm/us. Once the resolution exceeds the
threshold (appearing just beyond 1/2 of the hole size) the L1
error begins to decrease at about the same convergence rate
as the other hole sizes, with correlation coefficients of 0.993
and 0.996 for the density and pressure errors respectively on
a radial mesh. Including the coarsest two resolutions makes
the correlation through the L1 error data to become 0.935

Table 1: Comparison of the L1 density error as a function
of various hole sizes (for the BC Method)

Box Mesh Radial Mesh
Hole Size Order R? Order R?
0.02cm 077 0989 093  0.993
0.10cm 080 0993 1.10 0.978
020cm 085 0999 1.08  0.994

Table 2: Comparison of the L1 pressure error as a func-
tion of various hole sizes (for the BC Method)

Box Mesh Radial Mesh
Hole Size Order R? Order R?
0.02 cm 079 0989 1.00 0.996
0.10 cm 082 0995 1.18 0.988
0.20 cm 0.83 0999 1.06 0.996

and 0.950 for the density and pressure errors. These lower
correlation coefficients suggest that a single-term power-law
does not completely describe the convergence rate for small
hole sizes at coarse mesh resolutions.

4.1 Results from Radial and Box Mesh Topologies
The BC verification test was used to quantity the numer-
ical errors and rate of converge of a Lagrangian SGH ap-
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Fig. 6: The plots of density, pressure, velocity, and internal energy for various mesh resolutions are provided using a
radial mesh. These results were generated using the new BC verification approach. The calculations are approaching
the analytic solution as the mesh resolution increases. Convergence plots are provided in Figs. 7 and 8.

proach. The error regression data is plotted in Figs. 7 and
8. In these plots, the “initial edge length” (the abscissa in the
graphs) represents different quantities in the box and radial
meshes (Fig. 1). For the box mesh, it is simply the initial
grid spacing, dx. For the radial mesh, it is the grid spac-
ing along the radial cell divisions (as opposed to the angular
spacing) and is denoted as dr. Despite the similarity in these
two scales, the distribution of cells volumes will generally
not be the identical, even for dx = dr. Therefore, the errors
are not expected to be the same even at the same initial edge
length.

The results of this verification test can be used to explore
the errors inherent in a numerical scheme. For example, Fig.
9 shows the absolute errors in the box mesh topology as a
function of both the radial position and the angle, where 0 is
the angle in degrees between the horizontal symmetry plane

and the position vector from the origin to the cell centers (for
density, pressure, or energy) or the nodes (for velocity). Ac-
cording to this definition, & = 0° corresponds to the horizon-
tal axis and 6 = 90° corresponds to the vertical axis. From
this plot, it can be seen that there is a definite dependence
upon 6.

5 Comparison between the IC the BC Approaches

A plot of the deformed mesh and the density distribution
was shown for both the IC (old) and the BC (new) verifica-
tion approaches in Fig. 5. The L1 errors for the IC and BC
approaches are plotted in Figure 10 using both radial and
box mesh topologies. The results from the BC approach cor-
respond to a hole size of 0.2 cm. For the IC approach, the
errors are very similar for a box and a radial mesh topol-
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ogy. The Lagrangian SGH approach using the IC and BC
approaches is converging at a rate close to 1, which is the
expected convergence rate [11, 15]. However, the magnitude
of the numerical errors are slightly higher with the BC ap-
proach.

The absolute value of errors for the radial mesh and box
mesh are plotted in Figures 11 and 12 respectively as a func-
tion of the radius to help understand the larger error with
the BC approach. Error plots are provided for density, pres-
sure, velocity, and internal energy. The cusps in the plots
correspond to places where the numerical solution crossed
the exact solution. From these figures it can be observed that

the errors in density and energy are close in value for both
the IC and the BC approaches near the origin. However, the
results from using the IC and BC approaches differ in how
the energy and density propagates through the mesh. Fur-
ther away from the origin, the BC method results in larger
errors than those from the IC approach. It should be noted
that these errors are not attributed to the verification test it-
self, since any errors involved in the setup of the test are
many orders of magnitude smaller than the errors in the re-
sults. The errors are instead attributed to the hydrodynamic
method. The larger errors seen in this BC test are consistent
with other velocity-driven verification test problems, such as
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Table 3: Characteristics of the least squares regressions
for the L1 density error for the IC and the BC method are
presented. A hole size 0.2 cm is used for the BC method.

Setup Order R?

IC, Box Mesh 0.91 0.994
IC, Radial Mesh ~ 0.74 0.995
BC, Box Mesh 0.85 0.999
BC, Radial Mesh  1.08 0.994

Noh [7]. Hydrodynamic methods can have problems con-
verting kinetic energy to internal energy. The verification test
proposed in this paper serves to illuminate such weaknesses.
This test also allows researchers to check the ability of an ap-
proach to respond to rapid changes in boundary conditions.
The same principles shown in this paper could be extended to
other verification tests to check the response of an approach
to various types of dynamic boundary conditions.

6 CONCLUSION

A new approach for the Sedov verification test was pre-
sented. The approach models the Sedov blast wave as an out-
ward moving radial piston problem with spatially and tempo-
rally varying velocity boundary conditions. This corresponds

Table 4: Characteristics of the least squares regressions
for the L1 pressure error for the IC and the BC method
are presented. A hole size 0.2 cm is used for the BC
method.

Setup Order R?

IC, Box Mesh 0.85 0995
IC, Radial Mesh  0.92  0.997
BC, Box Mesh 0.83 0.999
BC, Radial Mesh  1.06 0.996

to a shift from an initial condition (IC) problem, where en-
ergy is deposited in a cell, to a boundary condition (BC)
problem where the boundaries are moved. The applied ve-
locity boundary conditions correspond to the velocity from
the Sedov semi-analytical solution, so this new approach ac-
curately captures the effect of the energy point source. The
test problem is implemented by excluding a portion of the
mesh near the origin (termed a hole) and then applying the
time-varying velocity boundary conditions to the nodes on
the inner surface of the mesh.

The new approach was implemented and used to ver-
ify a Lagrangian Godunov-like staggered grid hydrodynamic
method [11]. Convergence studies were performed using the
new BC verification approach on two types of meshes - a box
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mesh and a radial mesh respectively. For a box mesh, con-
vergence rates in the L1 norm were observed between 0.77
and 0.85 for density, and between 0.79 and 0.83 for pres-
sure. For a radial mesh, convergence rates in the L1 norm
were observed between 0.93 and 1.10 for density, and be-
tween 1.00 and 1.18 for pressure. The radial mesh had better
convergence rates than a box mesh. The convergence rates
from the BC approach were compared to those from the IC
approach. For a polar mesh, the BC approach had a better
rate of convergence than the IC approach. For a box mesh,
the BC approach had convergence rates slightly less than the
IC approach.

The new BC approach offers another way to verify a
hydrodynamic method using a classical test problem. This
test can be used to verify that the secondary errors in the IC
Sedov test, introduced through the use of an energized re-
gion of finite size, are relatively small. Furthermore, this test
also stands as an independent measure of a hydrodynamic
method’s ability to capture time-dependent velocity bound-
ary conditions. The boundary condition approach presented
in this paper could potentially be applied to Eulerian verifi-
cation test problems. The concept of converting initial con-
dition test problems to boundary driven problems could po-
tentially be applied to a wider range of verification tests.
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