DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

Abstract

Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [3];  [3]
  1. Univ. of Michigan, Ann Arbor, MI (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Helmholtz Zentrum Dresden-Rossendorf, Dresden (Germany)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Univ. of Michigan, Ann Arbor, MI (United States)
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1338285
Alternate Identifier(s):
OSTI ID: 1256145
Grant/Contract Number:  
NA0002956; FWP 100182
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 119; Journal Issue: 21; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

MacDonald, M. J., Vorberger, J., Gamboa, E. J., Drake, R. P., Glenzer, S. H., and Fletcher, L. B.. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials. United States: N. p., 2016. Web. doi:10.1063/1.4953028.
MacDonald, M. J., Vorberger, J., Gamboa, E. J., Drake, R. P., Glenzer, S. H., & Fletcher, L. B.. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials. United States. https://doi.org/10.1063/1.4953028
MacDonald, M. J., Vorberger, J., Gamboa, E. J., Drake, R. P., Glenzer, S. H., and Fletcher, L. B.. Tue . "Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials". United States. https://doi.org/10.1063/1.4953028. https://www.osti.gov/servlets/purl/1338285.
@article{osti_1338285,
title = {Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials},
author = {MacDonald, M. J. and Vorberger, J. and Gamboa, E. J. and Drake, R. P. and Glenzer, S. H. and Fletcher, L. B.},
abstractNote = {Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.},
doi = {10.1063/1.4953028},
journal = {Journal of Applied Physics},
number = 21,
volume = 119,
place = {United States},
year = {Tue Jun 07 00:00:00 EDT 2016},
month = {Tue Jun 07 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Interiors of Giant Planets Inside and Outside the Solar System
journal, October 1999


Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures
journal, September 2013

  • Coppari, F.; Smith, R. F.; Eggert, J. H.
  • Nature Geoscience, Vol. 6, Issue 11
  • DOI: 10.1038/ngeo1948

Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2
journal, September 2015

  • Gleason, A. E.; Bolme, C. A.; Lee, H. J.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9191

Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
journal, March 2016

  • Kraus, D.; Ravasio, A.; Gauthier, M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10970

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

High-density carbon ablator experiments on the National Ignition Facility
journal, May 2014

  • MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876611

New experimental platform to study high density laser-compressed matter
journal, November 2014

  • Gauthier, M.; Fletcher, L. B.; Ravasio, A.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4896175

Ultrabright X-ray laser scattering for dynamic warm dense matter physics
journal, March 2015


Shock launching in silicon studied with use of pulsed x-ray diffraction
journal, June 1987


Subnanosecond x-ray diffraction from laser-shocked crystals
journal, September 1989

  • Wark, Justin S.; Whitlock, Robert R.; Hauer, Allan A.
  • Physical Review B, Vol. 40, Issue 8
  • DOI: 10.1103/PhysRevB.40.5705

Shock-Wave Exploration of the High-Pressure Phases of Carbon
journal, December 2008


Melting temperature of diamond at ultrahigh pressure
journal, November 2009

  • Eggert, J. H.; Hicks, D. G.; Celliers, P. M.
  • Nature Physics, Vol. 6, Issue 1
  • DOI: 10.1038/nphys1438

Strength effects in diamond under shock compression from 0.1 to 1 TPa
journal, January 2010


The strength of single crystal copper under uniaxial shock compression at 100 GPa
journal, January 2010


Material strength determination in the shock compressed state using x-ray diffraction measurements
journal, June 2011

  • Turneaure, Stefan J.; Gupta, Y. M.
  • Journal of Applied Physics, Vol. 109, Issue 12
  • DOI: 10.1063/1.3597817

In situ x-ray diffraction measurements of the c / a ratio in the high-pressure ε phase of shock-compressed polycrystalline iron
journal, April 2011


The elastic-plastic response of aluminum films to ultrafast laser-generated shocks
journal, January 2011

  • Whitley, V. H.; McGrane, S. D.; Eakins, D. E.
  • Journal of Applied Physics, Vol. 109, Issue 1
  • DOI: 10.1063/1.3506696

Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter
journal, October 2013


Ramp compression of diamond to five terapascals
journal, July 2014

  • Smith, R. F.; Eggert, J. H.; Jeanloz, R.
  • Nature, Vol. 511, Issue 7509
  • DOI: 10.1038/nature13526

Isentropic compression experiments on the Sandia Z accelerator
journal, May 2000


Experimental configuration for isentropic compression of solids using pulsed magnetic loading
journal, September 2001

  • Hall, C. A.; Asay, J. R.; Knudson, M. D.
  • Review of Scientific Instruments, Vol. 72, Issue 9, p. 3587-3595
  • DOI: 10.1063/1.1394178

Magnetically driven isentropic compression experiments on the Z accelerator
journal, January 2001

  • Reisman, D. B.; Toor, A.; Cauble, R. C.
  • Journal of Applied Physics, Vol. 89, Issue 3, Article No. 1625
  • DOI: 10.1063/1.1337082

Laser-Driven Plasma Loader for Shockless Compression and Acceleration of Samples in the Solid State
journal, February 2004


Experimental results of tantalum material strength at high pressure and high strain rate
conference, January 2012

  • Park, Hye-Sook; Barton, Nathan; Belof, Jonathan L.
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.3686536

The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device
journal, May 1993

  • Singh, Anil K.
  • Journal of Applied Physics, Vol. 73, Issue 9
  • DOI: 10.1063/1.352809

Prediction of Debye-Scherrer diffraction patterns in arbitrarily strained samples
journal, May 2014

  • Higginbotham, Andrew; McGonegle, David
  • Journal of Applied Physics, Vol. 115, Issue 17
  • DOI: 10.1063/1.4874656

Shock compression of diamond crystal
journal, April 1983


ABINIT: First-principles approach to material and nanosystem properties
journal, December 2009


Large-scale ab initio calculations based on three levels of parallelization
journal, April 2008


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Texture and anisotropy
journal, July 2004


Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets
journal, August 2015

  • McGonegle, David; Milathianaki, Despina; Remington, Bruce A.
  • Journal of Applied Physics, Vol. 118, Issue 6
  • DOI: 10.1063/1.4927275

Matter under extreme conditions experiments at the Linac Coherent Light Source
journal, April 2016

  • Glenzer, S. H.; Fletcher, L. B.; Galtier, E.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 49, Issue 9
  • DOI: 10.1088/0953-4075/49/9/092001