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Abstract 

The frequency dependent  Electrochemical Strain Microscopy (ESM) response of mixed ionic-

electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard 

law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves 

and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is 

numerically explored. The 2D maps of the strain and concentration distributions across the 

mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The 

obtained numerical results can be applied to quantify the ESM response of Li-based solid 

electrolytes, materials with resistive switching and electroactive ferroelectric polymers, which 

are of potential interest for flexible and high-density non-volatile memory devices. 
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1. Introduction 

 The nanoscale properties of mixed conductors such as Li-based cathodes with mobile 

ions and electrons as free carriers, memristive materials such as titanates and manganites with 

mobile oxygen vacancies, and ionically-conductive ferroelectrics are intriguing and very 

important for fundamental research and numerous applications [1, 2, 3, 4, 5]. Energy storage and 

conversion now underpin multiple aspects of modern civilization, whereas non-volatile resistive 

memories hold the promise of beyond CMOS technologies. Beyond these applications, synthetic 

electroactive polymers are of great importance for a number of research fields including 

biocompatible tissue engineering and organic electronics [6, 7, 8].  

Beyond the energy applications, electromechanical properties of mixed conductors are of 

particular interest. The coupling between electrical and mechanical phenomena is one of the 

fundamental processes manifested in physical objects ranging from ferroelectrics to biometric 

and biological systems [9]. Electromechanics refers to a broad class of phenomena in which 

mechanical deformation is induced by an external electric field, or, conversely, electric charge 

separation is generated by the application of an external force. In most materials, 

electromechanical activity is directly related to the structure and functionality which is important 

not only for applications, but also for material characterization. In polar compounds, local 

piezoelectric properties are strongly affected by polarizability, structural defects and mechanical 

properties. The progress in fundamental studies and technological applications of these materials 

depends on the ability to test their structural and functional properties at the nanoscale. 

 Progress in understanding nanoscale electromechanical phenomena has been achieved 

with the emergence of voltage-modulated scanning probe microscopy (SPM) techniques such as 
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Piezoresponse Force Microscopy [10, 11, 12, 13, 14, 15, 16 17, 18, 19, 20, 21] (PFM) and 

Electrochemical Strain Microscopy (ESM) [22, 23, 24, 25, 26, 27]. In PFM, the biased scanning 

probe microscopy tip creates an electric field in the small volume of material and further detects 

bias-induced piezoelectric surface deformation [10-21]. In ESM, the biased tip acts as a moving, 

electrocatalytically active probe exploring local electrochemical activity. Similarly to PFM, the 

probe concentrates an electric field in a nanometer-scale volume of material. The electric field 

alters the local electrochemical potential of the mobile (e.g. lithium) ions on the surface. This 

changes the local concentration of mobile ions by migration (field-driven) and diffusion 

(concentration gradient-driven) mechanisms. The associated changes in molar volume [28, 29] 

results in local electrochemical strains, and the resultant dynamic surface deformation is detected 

by SPM at the 2–5 pm level. For lithium-based materials, ESM can detect volume changes 

corresponding to complete the lithiation and delithiation on a single atomic layer, or ~5-10% 

changes in the lithium concentration within the ~20-nm region [22-27]. Experimentally, ESM 

was shown to resolve electrochemical activity in complex battery, fuel cell, and electroresistive 

materials with sub – 10 nm resolution, resulting in intense interest to this technique from 

scanning probe and electrochemical communities. However, applications of ESM necessitate 

quantitative understanding of local electromechanical responses as a necessary step to its 

emergence as quantitative local electrochemical probe.  

The ESM signal formation mechanisms were extensively studied in linear approximation 

[30, 31, 32, 33]. The linear models explored the strain response due to Vegard strain and 

flexoelectric [30] effects and describe adequately its frequency spectrum. To explain the 

formation of the ESM hysteresis loops, one-dimensional [31] and two-dimensional analytical 

models [32] of linearized diffusion kinetics, and 2D analytical models that consider linearized 
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drift-diffusion kinetics [33], were developed and were shown to yield the elliptic loop shapes 

with the "coercive" voltage (defined from the condition of zero response) determined by the 

applied bias. However, the origins of experimentally-observed ferroelectric-like hysteresis loops 

remain largely unexplained. 

Here, we report self-consistent 2D-modeling of the local mechano-electro-chemical 

response of solid electrolytes utilizing kinetic theory and taking into account the steric effects for 

ions (or vacancies) [34, 35], thus including the most common form of the nonlinearity inherent 

to the system. To obtain further insight into the mechanisms of ESM image formation, we have 

developed a 2D analytical model of nonlinear drift-diffusion kinetics in ESM. Numerical finite 

element (FE) modeling for different frequencies and bias voltage amplitudes was performed in a 

2D axially symmetric geometry. The obtained 2D maps provide the concentration and strain 

distributions with an account of the steric effects for the donor Vegard mechanism and 

electrostriction. These studies provide first insight into the role of non-linear mechanisms and 

exclusion effects play in ESM, opening pathway for realistic quantitative models. 

 

2. The problem statement and basic equations 

 Here, we assume the decoupling approximation and ignore contributions of the strain to 

the ionic transport. The surface of the sample is assumed to be perfectly smooth without any 

irregularities or roughness. Note, that the aforementioned approximation works adequately for 

the calculations of solid electrolytes ESM responses, but for the extension of theory to 

electroactive polymers more nonlinear effects (such as a nonlinear electrostriction), the high 

order electro-mechanical couplings should be included. 
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 In the case of a tip axial symmetry and homogeneous mixed ionic-electronic conductor 

all physical quantities depend only on the distance z from the tip-surface interface and polar 

radius r (Fig.1). Mobile positively charged point defects, and oxygen vacancies or cations, are 

further considered as donors for the free electrons.  

 The redistribution of mobile charge carriers creates the internal electric field E, where 

components zEz ∂ϕ∂−=  and rEr ∂ϕ∂−=  are defined by the electric potential, ϕ. The 

potential can be determined self-consistently from the Poisson equation in cylindrical 

coordinates: 

( ) ( )( )ϕ−ϕ−=










∂
ϕ∂

+
∂
ϕ∂

+
∂
ϕ∂

εε + nNZe
zrrr dd2

2

2

2

0
1                                (1) 

Here ε0=8.85×10−12 F/m the dielectric permittivity of vacuum; ε  is a dielectric permittivity of 

the mixed ionic-electronic conductor (MIEC), that is regarded as isotropic, electron density is n, 

donor concentrations +
dN , e=1.6×10−19 C which is the electron charge, and dZ  is the donor 

charge which is equal to zero for the uncharged vacancies or isovalent impurities. The electric 

potential satisfies the fixed boundary conditions at the electrodes, ),( trU
hz
=ϕ

=
, 0

0
=ϕ

=z
, 

0=ϕ
=Rr

, which corresponds to the MIEC film of thickness h.  

A periodic voltage U is applied to the top electrode. Here, we adopt the Gaussian form , 

( ) ( )trrUtrU ω−= sinexp),( 2
0

2
0  to model the localized field and assume that the tip’s lateral size 

r0 is much smaller than the size of the computation cell R, i.e. Rr <<0 . We carefully checked to 

see if our numerical results are similar for different radially-symmetric well-localized potential 

distributions at the MIEC surface z=h, but only the surface area of the potential drop is the same 

and equal to Rr <<0  as used in the manuscript (e.g. for Gaussian, stretched exponential and 
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shielded disk-surface contact). The choice Gaussian distribution is chosen both for simplicity, 

and for close matching to experimental situation where the tip potential is screened by surface 

electrochemical charges. Note that more realistic cases including sphere geometry for the probe 

will necessitate the surface screening phenomena be taken into account as well. Also the 

potential drops, and its fixing at the surface cannot be directly related with a realistic tip shape in 

an arbitrary case -to do this, a self-consistent modeling of the three-layer problem is required. 

But even in this case much is dependant on the surface screening by the sluggish charges. The 

Gaussian function gives results close to the model situation of a disk radius r0 in a perfect 

contact with a "shielded" surface under zero electric potential. 

 The continuity equation for the donor concentration +
dN  is: 

0)(11
=





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The donor current dJ  has radial and normal components which are proportional to the gradients 

of the carrier electrochemical potentials levels dζ  as ( )rNeZJ dddd
d
r ∂ζ∂η−= +  and 

( )zNeZJ dddd
d
z ∂ζ∂η−= + , where dη  is the ion’s/vacancy’s mobility coefficient which is 

regarded as constant. The boundary conditions for the donors are ion-blocking 0
0
=

=zdJ , 

0=
=hzdJ , 0=

=RrdJ . 

 The electrochemical potential level dζ  is given by [36]: 









−

+ϕ+σ−−=ζ +

+

dd

d
Bdij

d
ijdd NN

N
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Here dE  is the donor level, elastic stress tensor is ijσ , T is the absolute temperature, Bk  is the 

Boltzmann constant, d
ijW  is the Vegard strain tensor (another name for elastic dipole). Hereafter, 
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the Vegard tensor is assumed to be diagonal, i.e. ij
d

ij WW δ=  ( ijδ  is delta Kroneker symbol). The 

absolute values of W for ABO3 compounds can be estimated as W ∝ (1 − 50) Å3 [37, 38]. The 

maximum possible concentration of donors is 0
dN  defines the steric effects in the system and 

limits the donor accumulation in the vicinity of film surfaces [34, 35]. For numerical 

estimates 30 −≡ aNk , where 3a  is the maximum volume allowed per donor centre.  

 The continuity equation for electrons is:  

0)(11
=


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The electron current has radial and normal components which are ( )rneJ ee
e
r ∂ζ∂η=  and 

( )zneJ ee
e
z ∂ζ∂η=  respectively, eη  is the electron mobility coefficient, eζ  is the electro-

chemical potential. The boundary conditions for electrons are taken in the linearized Chang-Jaffe 

(CJ) [39] form, ( )( ) 0
00 =−ξ−

=zb
e
z nnJ , ( )( ) 0=−ξ+

=hzbh
e
z nnJ , 0=

=RreJ , where h,0ξ  is the 

positive rate constant related with the surface recombination velocity. The CJ condition contains 

the continuous transition from the “open” electrode ( ∞→ξ h,0  ⇒ 0nn = ) to the interface limited 

kinetics ( ∞<ξ< h,00 ). “Completely blocking” electrodes are defined by the condition 0,0 =ξ h .  

 The continuous approximation for the electron concentration in the conduction band can 

be described by the following expression for electro-chemical potential [36]: 

( )
ϕ−







 ϕ
+≈ζ − e

N
nFTkE

C
BCe

1
2/1 ,                               (5) 

valid for parabolic band model. The electro-chemical potential eζ  tends to the Fermi energy 

level FE  in equilibrium, CE  is the bottom of the conduction band, 1
2/1
−F  is the function inverse to 
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the Fermi integral ( ) ( )∫
∞

ξ−ζ+
ζζ

π
=ξ

0
21 exp1

2 dF ; effective density of states in the conduction band 

2/3

22

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C , and the electron effective mass is nm . Electron density can be calculated 

from Eq. (5) as ( )( )TkEeFNn BCeC −ζ+ϕ= 21 . Note, that the deformation potential effect, 

(analog of the Vegard effect for electrons), is neglected in Eq. (5) for the sake of simplicity. 

Using the electrochemical potential ed ,ζ , dependent concentration of donors, 

( )ddddd eZWEfNN ζ−ϕ+σ−−=+ 0 , and electrons, ( )( )TkEeFNn BCeC −ζ+ϕ= 21 , one can 

express the potentials as the functions of donor and electron chemical potentials 

σ−ζ−ϕ=µ WeZ ddd  and ee e ζ+ϕ=µ  as ( )dddd EfNN −µ=+ 0 and ( )( )TkEFNn BCeC −µ= 21 . 

Here ( ) ( )( ) 1exp1 −+= Tkxxf B  is the Fermi-Dirac distribution function. The spur of the stress 

tensor (that is invariant) is introduced as ϕϕσ+σ+σ=σ rrzz .  

Coupled Eqs. (2) and (4) have the following form:  
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 The electrochemical strain can be further introduced via the Hooke’s law for a chemically 

active elastic solid media, which relates the concentration deviation from the average 

( ) ( )( )+++ −=δ ddd NtNtN ,, rr , mechanical stress tensor σij, and elastic strain uij through the 

equation 

pmlpkmijkl
n

q
ijmnmqklijkldijij EEQ

x
E

FsNWu χχε+
∂

∂
χε+σ+δ= + 2

00 .                        (8) 
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Here sijkl is the tensor of elastic compliances, klmnF  is a flexoelectric effect tensor, ijklQ  is 

electrostriction tensor, electric polarization mkmk EP χε= 0  for the considered linear dielectrics, 

and ijW  is the Vegard expansion tensor. 

 The typical intrinsic resonance frequencies of a material are in the GHz range, which is 

well above the practically important limits of ion dynamics and the AFM-based detection of 

localized mechanical vibrations. This allows the use of quasi-static approximation for modeling 

of mechanical phenomena, namely we solve the general equation of mechanical equilibrium 

0=∂σ∂ jij x  in the quasi-static case. This leads to the equation for mechanical displacement 

vector ui inside the film: 
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EE
Q

xx
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x
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xx
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Here cijkl is the tensor of elastic stiffness. The boundary condition on the free surface of the film 

(z = 0) is the absence of normal stresses, ( ) 0,03 ==σ tzj . The surface z=h is clamped to a rigid 

substrate and the displacement components are zero, 0=
=hzku .  

 

3. Electrostriction contribution to the ESM response in 1D case 

 Below we estimate the electrostriction contribution to the ESM response in the one-

dimensional (1D) approximation, for bulk polarization only. The 2D case will be explored 

separately. To estimate, we consider several important components of the ESM response in the 

1D case: the Vegard one, electrostriction and their superposition. The 1D approximation can be 

justified for the case when Debye length dh  of the MIEC is much smaller then the tip-surface 

contact radius r0; however, these estimates can be expected to hold in general case when 
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characteristic length is the tip radius. For the case of the mixed ionic-semiconductor film of 

thickness h placed in a planar capacitor under the application of ac and dc voltages 

superposition, ( )tVV acdc ω+ sin , we calculated all the above mentioned contributions to the 

displacement of the film surface as explained in Appendix A of Suppl. Mat.[40] Vegard 

contribution is proportional to the integral, ∫ +δ
h

d dzNW
0

, that is identically zero for the case of 

ion-blocking electrodes. Electrostriction contribution is proportional to the integral of 

polarization squire, ( ) ∫=
h

Q dztzPQtu
0

2
3333 ),( , flexoelectric effect contribution is 

( ) ( )),0(),( 33333 tPthPFtuF −= , and the polarization is approximated as 

( ) ( )( )tEzEtzPtzP acdc
W ω+χε+≈ sin)(,),( 330 . Here ( ) ( )tzNehtzP ddW ,, δ=  is the electric analog of 

the Vegard elastic dipole, χ  is a static relative susceptibility. Edc is the slowly changing 

component of the electric field induced by tip bias, whereas Eac is the fast component. We note 

that for typical ionic systems the mobilities are sufficiently lower so that at excitation frequencies 

ω of about 100 kHz the Eac component can be evaluated as for a dielectric, neglecting ionic 

motion. For the cases of linear Debye screening (or no screening) of the ac component and the 

abrupt junction approximation for space-charge density induced by the dc component, the total 

mechanical displacement becomes: 

( ) ( ) ( )tutuutuQ ω+ω+= ωω 2cossin 2
33

0
33                           (10) 

The "linear" coefficient is ( ) ( ) hVVQVPQu acdcacW
2

0330333 2 χε+χε=ω  for the case of no screening 

for ac component. In this limit, namely when the screening length ∞→dh , the ac component of 

flexoelectric contribution tends to zero, because the electric field becomes z-independent, 
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hVE acac = , i.e. ( ) ( ) ( )
( ) ( ) 0sin

sinh
cosh1

)0()( 0330333303 →ω






 −
χε=−χε=

∞→dhd

d

d
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F t
hh

hh
h
V

FEhEFu . 

So we can neglect the flexo-term of ac ESM response in the dielectric limit. Numerical estimates 

proved that for typical flexoelectric coefficient ~33F 1V the term appeared relatively small for 

χ~4, 2D ESM geometry at voltages noticeably smaller than 1V (considered here); the case of 

higher voltages will be explored elsewhere. 

The relative contributions of electrostriction and Vegard effect to the linear dynamic 

piezoelectric coefficient are ( ) ( )hVQPQdVdud dcWac
2

033033333 2 χε+χε== ωω . For typical values of 

parameters Q33=0.05 m4/C2, PW=8×10−3 C/m2 (e=1.6×10−19 C, hd=5×10-9m, dNδ =1025m−3), χ~4, 

ε0=8.85×10−12 F/m, Vdc=5 V, h~10 nm. The estimation gives WPQ χε0332  ~ 0.03 pm/V and 

( ) ( )hVQ dc
2

033 χε ~0.03 pm/V. Note that rather high electrostrictive response calculated earlier at 

1 – 4 V [33] corresponds to χ~300. 

So in a 1D-approximation both contributions are proportional to the electrostriction 

coefficient and appear much smaller than typical experimental detection limits ~1 pm/V. This 

allows us to concentrate further attention on the Vegard strains contribution into the ESM 

response at low voltages less than 1 V. 

 

4. Results and discussion 

All calculations were performed in the COMSOL multiphysics package using the “PDE” 

and “Solid Mechanics” modules with parameters listed in the Tables B1-B2 of Appendix B in 

Suppl. Mat []. Numerical solution of Eqs.(6)-(7) was performed in the dimensionless variables 

listed in the appendix. For brevity we introduce only the main dimensionless variables and 
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parameters in the main text, namely dimensionless cylindrical coordinates, depth DLzz =~  and 

polar radius DLrr =~ , film thickness DLhh =
~  and computation cell size DLRR =~ , time 

ettt =~ ; where LD is a characteristic screening length. 

Strong accumulation for both donors and electrons occurs in the corresponding regions 

adjacent to electrodes. However, we can see from the comparison of Figs 2a and 2b the maximal 

concentration of electrons are several times more than the maximal concentration of donors, 

despite the fact that initial concentration for both types of charge carriers was the same. This 

asymmetry arises due to steric interactions for donors, while electrons are regarded as size-less. 

In the case of donor-blocking and electron-blocking electrodes, the total concentration of charge 

carriers in the domain remains constant, while only the local redistribution of carrier 

concentration occurs. This corresponds to the periodic successive generation and annihilation of 

dynamic ionic-electron quasi-dipoles and also the formation and reorientation of the 

corresponding polarization. For the case of the low voltage local extrema of the donor 

concentration, it always appears in the same regions regardless of the sign of applied voltage; 

however this differs for the case of electrons, where the number of local extrema are different for 

different time moments. 

The redistribution of donors and electrons leads to the emergence of stress and strain 

fields. The obtained elastic strains originate from a donor’s motion. Radial ( rrσ ) and azimuthal 

( ϕϕσ ) components have a similar distribution, which in turn are highly correlated with the donor 

concentration distribution (compare Figs 2a,b and 3a,b). The normal stress component zzσ , 

displays a more uniform distribution compared to rrσ  and ϕϕσ . Generally, the strongest strain 

appears in the regions with the largest donor concentration gradients (directly under the probe). 
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Comparison of the surface deformation in Fig.3a and 3b, 3c and 3d for two different time 

moments =t~ 10, 20 illustrate the nonlinearity of the ESM response; indeed the absolute values 

of the local extrema are different during the first and second half of the applied voltage. The first 

extremum (directly under the probe) does not change its absolute value and position; however 

the second extremum changes not only the absolute value, but also its position.  

The electric potential increases monotonically with z~ , however for a few moments 

( 10~ =t ) local redistribution of the charge carriers cause relatively small extrema (see Fig. 4a). 

The changes in ed tt  ratio do not impact the potential depth distribution.  

The −z~ distribution of donor concentration is illustrated in Figure 4b. Naturally, by 

applying voltage to the top electrode the donors move to the grounded electrode (see donor 

concentration in the Fig. 4a). By increasing the applied voltage amplitude, the concentration of 

donors near the corresponding electrodes increases, reaching the values numerous times larger 

than the initial one. More interestingly, local extrema of concentration appear, which can be 

interpreted as dynamic charge waves. As it can be seen from Figure 4b the donor charge wave in 

the z~ -direction consists of two local extrema: one is a local maximum and the other one is the 

local minimum with several times higher absolute value. Note, that the charge waves for the 

donors and electrons (shown in the Appendix B, Suppl. Mat. 40) have a different scale. The 

electron charge waves are more flattened, and their amplitude stays almost constant with 

changing of applied voltage.  

Figure 5 shows that the structure of charge waves can be more complicated in the radial 

direction. In particular, it demonstrates the appearance of several local extrema. In general, the 

donor concentration dependence with radius is quite complicated, while for electrons such 

dependence has no more than one local extremum that moves toward the opposite electrode with 



 14 

a constant amplitude. The dependence of concentration on the radial coordinate changes 

drastically in the region adjacent to the bottom electrode. Here, the concentration dependence 

from the radius for electrons have no local extrema, while the donor concentration have only one 

extremum. 

All figures are plotted for the ratio 10≡ed tt . The same dependencies are calculated for 

the 210=ed tt and 310=ed tt  and are shown in the Appendix B, Suppl. Mat. [40] The general 

trend is that by decreasing the ed tt  parameter one leads to a more pronounced local extrema for 

donors and do not impact the extrema for electron's dependencies. The crests become wider and 

have larger amplitude, and are shifted more from the electrode. By increasing the ed tt  one will 

lead to an opposite change.  

 

 

4. Summary 

The self-consistent modeling of dynamic Electrochemical Strain Microscopy for axially 

symmetric 2D mixed ionic-electronic conductors was performed in the COMSOL Multiphysics 

package. The 2D map of strain and concentration distributions across a sample and bias-induced 

surface displacements were obtained. Results show significant impact of nonlinear effects on the 

ESM image formation mechanisms (i.e. appearance of the charge waves and nonlinear 

deformation of the surface). It was found that Vegard mechanism plays a key role in the 

mechanisms of the ESM image formation at low voltages ≤1V, but electrostriction contribution 

should dominate with a voltage increase. 
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Captions to Figures 

 

Figure 1. (a) Typical geometry for ESM study of mixed ionic-electronic conductor (MIEC). 

Electrical and mechanical boundary conditions are labeled. (b) The time dependence of the 

applied voltage. 

 

Figure 2. Dimensionless donor (a) and electron (b) concentrations, and the stress invariant 

ϕϕσ+σ+σ=σ rrzz  (c) for time moments 20,10~ =t . Due to the axial symmetry only the semi-

slice of the cylinder is shown. Ratio 10≡ed tt . Electrodes are donor- and electron-blocking. 

Applied voltage is 1V, mLD
9108.2 −⋅= , ste

5108 −⋅= . 

 

Figure 3. Dimensionless stress tensor rrσ≈σϕϕ
~~  (a) and zzσ~  (b) components for time moments 

20,10~ =t . The shape profile deviation from the empty rectangle shows its deformation, scaled 

with factor 3104× . Other parameters are the same as in figure 2. 

 

Figure 4. (a) Depth distributions of dimensionless potential, Tke Bϕ=ϕ~ , along the axes 0~ =r  

and (b) donor concentration, 0~
dd NNN += , calculated for donor-blocking and electron-blocking 

electrodes at different moments of time =t~ 0, 5, 10, 15, 18 (curves 1, 2, 3, 4 and 5) and 0~ =r .  
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Figure 5. Radial distributions of dimensionless electron and donor concentrations, 0~
dNnn =  

and 0~
dd NNN += , at different moments of time =t~ 0, 5,10,15,18 (curves 1, 2, 3, 4 and 5). Ratio 

10≡ed tt , 0~ =z  (a, b) and hz ~~ =  (c, d). 

 


