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Abstract

The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-
electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard
law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves
and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is
numerically explored. The 2D maps of the strain and concentration distributions across the
mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The
obtained numerical results can be applied to quantify the ESM response of Li-based solid
electrolytes, materials with resistive switching and electroactive ferroelectric polymers, which
are of potential interest for flexible and high-density non-volatile memory devices.
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1. Introduction

The nanoscale properties of mixed conductors such as Li-based cathodes with mobile
ions and electrons as free carriers, memristive materials such as titanates and manganites with
mobile oxygen vacancies, and ionically-conductive ferroelectrics are intriguing and very
important for fundamental research and numerous applications [* 2 % 5]. Energy storage and
conversion now underpin multiple aspects of modern civilization, whereas non-volatile resistive
memories hold the promise of beyond CMOS technologies. Beyond these applications, synthetic
electroactive polymers are of great importance for a number of research fields including
biocompatible tissue engineering and organic electronics [® 7 8].

Beyond the energy applications, electromechanical properties of mixed conductors are of
particular interest. The coupling between electrical and mechanical phenomena is one of the
fundamental processes manifested in physical objects ranging from ferroelectrics to biometric
and biological systems [®]. Electromechanics refers to a broad class of phenomena in which
mechanical deformation is induced by an external electric field, or, conversely, electric charge
separation is generated by the application of an external force. In most materials,
electromechanical activity is directly related to the structure and functionality which is important
not only for applications, but also for material characterization. In polar compounds, local
piezoelectric properties are strongly affected by polarizability, structural defects and mechanical
properties. The progress in fundamental studies and technological applications of these materials
depends on the ability to test their structural and functional properties at the nanoscale.

Progress in understanding nanoscale electromechanical phenomena has been achieved

with the emergence of voltage-modulated scanning probe microscopy (SPM) techniques such as



Piezoresponse Force Microscopy [1°, 11, 12 13 14 15 16 17 18 19 20 211 (PEM) and
Electrochemical Strain Microscopy (ESM) [?2, 2, 24 25 26 271 In PFM, the biased scanning
probe microscopy tip creates an electric field in the small volume of material and further detects
bias-induced piezoelectric surface deformation [10-21]. In ESM, the biased tip acts as a moving,
electrocatalytically active probe exploring local electrochemical activity. Similarly to PFM, the
probe concentrates an electric field in a nanometer-scale volume of material. The electric field
alters the local electrochemical potential of the mobile (e.g. lithium) ions on the surface. This
changes the local concentration of mobile ions by migration (field-driven) and diffusion
(concentration gradient-driven) mechanisms. The associated changes in molar volume [?8, %]
results in local electrochemical strains, and the resultant dynamic surface deformation is detected
by SPM at the 2-5 pm level. For lithium-based materials, ESM can detect volume changes
corresponding to complete the lithiation and delithiation on a single atomic layer, or ~5-10%
changes in the lithium concentration within the ~20-nm region [22-27]. Experimentally, ESM
was shown to resolve electrochemical activity in complex battery, fuel cell, and electroresistive
materials with sub — 10 nm resolution, resulting in intense interest to this technique from
scanning probe and electrochemical communities. However, applications of ESM necessitate
quantitative understanding of local electromechanical responses as a necessary step to its
emergence as quantitative local electrochemical probe.

The ESM signal formation mechanisms were extensively studied in linear approximation
[30, 3%, 32 331 The linear models explored the strain response due to Vegard strain and
flexoelectric [30] effects and describe adequately its frequency spectrum. To explain the
formation of the ESM hysteresis loops, one-dimensional [31] and two-dimensional analytical

models [32] of linearized diffusion kinetics, and 2D analytical models that consider linearized



drift-diffusion kinetics [33], were developed and were shown to yield the elliptic loop shapes
with the "coercive" voltage (defined from the condition of zero response) determined by the
applied bias. However, the origins of experimentally-observed ferroelectric-like hysteresis loops
remain largely unexplained.

Here, we report self-consistent 2D-modeling of the local mechano-electro-chemical
response of solid electrolytes utilizing kinetic theory and taking into account the steric effects for
ions (or vacancies) [34, 35], thus including the most common form of the nonlinearity inherent
to the system. To obtain further insight into the mechanisms of ESM image formation, we have
developed a 2D analytical model of nonlinear drift-diffusion kinetics in ESM. Numerical finite
element (FE) modeling for different frequencies and bias voltage amplitudes was performed in a
2D axially symmetric geometry. The obtained 2D maps provide the concentration and strain
distributions with an account of the steric effects for the donor Vegard mechanism and
electrostriction. These studies provide first insight into the role of non-linear mechanisms and

exclusion effects play in ESM, opening pathway for realistic quantitative models.

2. The problem statement and basic equations
Here, we assume the decoupling approximation and ignore contributions of the strain to
the ionic transport. The surface of the sample is assumed to be perfectly smooth without any
irregularities or roughness. Note, that the aforementioned approximation works adequately for
the calculations of solid electrolytes ESM responses, but for the extension of theory to
electroactive polymers more nonlinear effects (such as a nonlinear electrostriction), the high

order electro-mechanical couplings should be included.



In the case of a tip axial symmetry and homogeneous mixed ionic-electronic conductor
all physical quantities depend only on the distance z from the tip-surface interface and polar
radius r (Fig.1). Mobile positively charged point defects, and oxygen vacancies or cations, are
further considered as donors for the free electrons.

The redistribution of mobile charge carriers creates the internal electric field E, where

components E, =-0d¢/oz and E, =—ogp/or are defined by the electric potential, ¢. The

potential can be determined self-consistently from the Poisson equation in cylindrical

coordinates:

o’ 1op oo .
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Here £0=8.85x10712 F/m the dielectric permittivity of vacuum; ¢ is a dielectric permittivity of
the mixed ionic-electronic conductor (MIEC), that is regarded as isotropic, electron density is n,
donor concentrations N, e=1.6x10"'° C which is the electron charge, and Z, is the donor
charge which is equal to zero for the uncharged vacancies or isovalent impurities. The electric

potential satisfies the fixed boundary conditions at the electrodes, ¢| , =U(r,t), ¢| =0,
(plr:R =0, which corresponds to the MIEC film of thickness h.

A periodic voltage U is applied to the top electrode. Here, we adopt the Gaussian form,
u(r,t) :erxp(— rz/roz)sin(oat) to model the localized field and assume that the tip’s lateral size
ro is much smaller than the size of the computation cell R, i.e. r, << R. We carefully checked to

see if our numerical results are similar for different radially-symmetric well-localized potential
distributions at the MIEC surface z=h, but only the surface area of the potential drop is the same

and equal to r, <<R as used in the manuscript (e.g. for Gaussian, stretched exponential and



shielded disk-surface contact). The choice Gaussian distribution is chosen both for simplicity,
and for close matching to experimental situation where the tip potential is screened by surface
electrochemical charges. Note that more realistic cases including sphere geometry for the probe
will necessitate the surface screening phenomena be taken into account as well. Also the
potential drops, and its fixing at the surface cannot be directly related with a realistic tip shape in
an arbitrary case -to do this, a self-consistent modeling of the three-layer problem is required.
But even in this case much is dependant on the surface screening by the sluggish charges. The
Gaussian function gives results close to the model situation of a disk radius ro in a perfect

contact with a "shielded" surface under zero electric potential.

The continuity equation for the donor concentration N is:

+ d d
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The donor current J, has radial and normal components which are proportional to the gradients
of the carrier electrochemical potentials levels (, as J°=-ezZmn,N;(d¢,/or) and
I =—-ezm,N; (08¢, /oz), where m, is the ion’s/vacancy’s mobility coefficient which is
regarded as constant. The boundary conditions for the donors are ion-blocking JdL:o =0,

Jolpn =0, Jg] =0

r=R

The electrochemical potential level ¢, is given by [*]:

d d

N+
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Here E, is the donor level, elastic stress tensor is o, T is the absolute temperature, kg is the

Boltzmann constant, Wijd is the Vegard strain tensor (another name for elastic dipole). Hereafter,



the Vegard tensor is assumed to be diagonal, i.e. Wijd =W3; (9; is delta Kroneker symbol). The
absolute values of W for ABO3 compounds can be estimated as [W|oc (1 — 50) A% [¥, %], The

maximum possible concentration of donors is N defines the steric effects in the system and
limits the donor accumulation in the vicinity of film surfaces [34, 35]. For numerical
estimates N = a®, where a® is the maximum volume allowed per donor centre.

The continuity equation for electrons is:

@_l 1a(rJr)+aJZ 0 (@)
ot elr or 0z

The electron current has radial and normal components which are J¢ =en,n(e¢, /or) and

J: =en,n(0¢,/oz) respectively, m, is the electron mobility coefficient, ¢, is the electro-
chemical potential. The boundary conditions for electrons are taken in the linearized Chang-Jaffe
(CY) 1] form, (3¢ —g,(n-n,)|  =0,(35+&,(-n,)| , =0, I, =0, where &, is the

positive rate constant related with the surface recombination velocity. The CJ condition contains

the continuous transition from the “open” electrode (&,, — = n=n,) to the interface limited

Kinetics (0 < &, <o0). “Completely blocking” electrodes are defined by the condition&,,, =0.

The continuous approximation for the electron concentration in the conduction band can

be described by the following expression for electro-chemical potential [36]:

Ce m Ec +KkgT Flylz[r:\s(p))_e@a (%)

C

valid for parabolic band model. The electro-chemical potential £, tends to the Fermi energy

level E. inequilibrium, E; is the bottom of the conduction band, F,; is the function inverse to



\/_dg ; effective density of states in the conduction band

\/—J1+9Xp c-¢)

the Fermi integral F,,(¢)

m. kT . . .
N :( 2” ;2 j , and the electron effective mass is m,. Electron density can be calculated
T

from Eq. (5) as n=N.Fy,((lep+, —E.)/ksT). Note, that the deformation potential effect,
(analog of the Vegard effect for electrons), is neglected in Eq. (5) for the sake of simplicity.
Using the electrochemical potential (.., dependent concentration of donors,
Ny =NJf(-E, -Wo +eZ,0-C,), and electrons, n=N.F,((ep+&, —E.)/ksT), one can
express the potentials as the functions of donor and electron chemical potentials
s =€Z,0-C, ~Wo and p, =ep+G, as NJ = NSf(u, —E,)and n=N¢Fy, (1, —Ec)/kT).
Here f(x)=(L+exp(x/k,T))" is the Fermi-Dirac distribution function. The spur of the stress
tensor (that is invariant) is introduced as 6 =, + 5, + 0,

Coupled Egs. (2) and (4) have the following form:

ot ror or 0z 0z
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The electrochemical strain can be further introduced via the Hooke’s law for a chemically

0f(we—Ey) 10 (mdf(“d _E,) 26201, —Wc)j_a(ndf(“d _g,) 26201 _Wc)j=o (6)

active elastic solid media, which relates the concentration deviation from the average
SN (r,t)=(Ng(r,t)- N ), mechanical stress tensor oy, and elastic strain uj through the

equation

N oE
U =W Ny +S3440 1 + €6Xmg Fijinn #4' SSQijkIkaXIp EnE,- (8)



Here siji is the tensor of elastic compliances, F,  is a flexoelectric effect tensor, Qy, is

Imn

electrostriction tensor, electric polarization P, =¢,y,,E, for the considered linear dielectrics,

and W is the Vegard expansion tensor.

The typical intrinsic resonance frequencies of a material are in the GHz range, which is
well above the practically important limits of ion dynamics and the AFM-based detection of
localized mechanical vibrations. This allows the use of quasi-static approximation for modeling
of mechanical phenomena, namely we solve the general equation of mechanical equilibrium

dc;, /axj =0 in the quasi-static case. This leads to the equation for mechanical displacement

vector uj inside the film:

-0. (9)
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Here cij is the tensor of elastic stiffness. The boundary condition on the free surface of the film

(z=0) is the absence of normal stresses, o, J.(z =0,t)=0. The surface z=h is clamped to a rigid

substrate and the displacement components are zero, ukl =0.

z=h

3. Electrostriction contribution to the ESM response in 1D case
Below we estimate the electrostriction contribution to the ESM response in the one-
dimensional (1D) approximation, for bulk polarization only. The 2D case will be explored
separately. To estimate, we consider several important components of the ESM response in the
1D case: the Vegard one, electrostriction and their superposition. The 1D approximation can be

justified for the case when Debye length h, of the MIEC is much smaller then the tip-surface

contact radius ro; however, these estimates can be expected to hold in general case when



characteristic length is the tip radius. For the case of the mixed ionic-semiconductor film of
thickness h placed in a planar capacitor under the application of ac and dc voltages

superposition, V. +V. sin(wt), we calculated all the above mentioned contributions to the

displacement of the film surface as explained in Appendix A of Suppl. Mat.[*’] Vegard

h
contribution is proportional to the integral, WJ'ESN 4dz , that is identically zero for the case of
0

ion-blocking electrodes. Electrostriction contribution is proportional to the integral of

h
polarization  squire, u?(t)=Q33IP32(z,t)dz, flexoelectric ~ effect  contribution is
0

uf(t)=F,(R, (h)-P,(O,1)), and  the  polarization  is  approximated  as
P(2,t) ~ By (z,t)+ &% (E* (2) + E*sin(wt)). Here B, (z,t)=eh,8N, (z,t) is the electric analog of
the Vegard elastic dipole, y is a static relative susceptibility. Eqc is the slowly changing
component of the electric field induced by tip bias, whereas Exc is the fast component. We note
that for typical ionic systems the mobilities are sufficiently lower so that at excitation frequencies
o of about 100 kHz the Eac component can be evaluated as for a dielectric, neglecting ionic
motion. For the cases of linear Debye screening (or no screening) of the ac component and the
abrupt junction approximation for space-charge density induced by the dc component, the total

mechanical displacement becomes:
u(t) = ug + usin(wt )+ u® cos(2wt) (10)
The "linear" coefficient is ug = 2Qu,e,% Py V.. + Qus(eox )’ (Vo V. )/h for the case of no screening

for ac component. In this limit, namely when the screening length h, — oo, the ac component of

flexoelectric contribution tends to zero, because the electric field becomes z-independent,

10
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So we can neglect the flexo-term of ac ESM response in the dielectric limit. Numerical estimates

proved that for typical flexoelectric coefficient F,, ~1V the term appeared relatively small for

x~4, 2D ESM geometry at voltages noticeably smaller than 1V (considered here); the case of
higher voltages will be explored elsewhere.

The relative contributions of electrostriction and Vegard effect to the linear dynamic
piezoelectric coefficient aredg = dug /dV,, = 2Que,xRy + Qus(eox )’ (V. /). For typical values of
parameters Q33=0.05 m*/C?, Pw=8x10"3 C/m? (e=1.6x10"*° C, hg=5x10°m, 8N, =10"m3), x~4,
£0=8.85x1072 F/m, V4.=5V, h~10 nm. The estimation gives 2Q,.e,xP, ~ 0.03 pm/V and

Qus(e0x )’ (V. /n)~0.03 pm/V. Note that rather high electrostrictive response calculated earlier at

1 -4V [33] corresponds to x~300.

So in a 1D-approximation both contributions are proportional to the electrostriction
coefficient and appear much smaller than typical experimental detection limits ~1 pm/V. This
allows us to concentrate further attention on the Vegard strains contribution into the ESM

response at low voltages less than 1 V.

4. Results and discussion
All calculations were performed in the COMSOL multiphysics package using the “PDE”
and “Solid Mechanics” modules with parameters listed in the Tables B1-B2 of Appendix B in
Suppl. Mat []. Numerical solution of Eqgs.(6)-(7) was performed in the dimensionless variables

listed in the appendix. For brevity we introduce only the main dimensionless variables and

11



parameters in the main text, namely dimensionless cylindrical coordinates, depth 7 =z/L, and
polar radius ¥ =r/L,, film thickness h =h/L, and computation cell size R=R/L, , time

t

t/t, ; where Lp is a characteristic screening length.

Strong accumulation for both donors and electrons occurs in the corresponding regions
adjacent to electrodes. However, we can see from the comparison of Figs 2a and 2b the maximal
concentration of electrons are several times more than the maximal concentration of donors,
despite the fact that initial concentration for both types of charge carriers was the same. This
asymmetry arises due to steric interactions for donors, while electrons are regarded as size-less.
In the case of donor-blocking and electron-blocking electrodes, the total concentration of charge
carriers in the domain remains constant, while only the local redistribution of carrier
concentration occurs. This corresponds to the periodic successive generation and annihilation of
dynamic ionic-electron quasi-dipoles and also the formation and reorientation of the
corresponding polarization. For the case of the low voltage local extrema of the donor
concentration, it always appears in the same regions regardless of the sign of applied voltage;
however this differs for the case of electrons, where the number of local extrema are different for
different time moments.

The redistribution of donors and electrons leads to the emergence of stress and strain

fields. The obtained elastic strains originate from a donor’s motion. Radial (c,,) and azimuthal
(o,,) components have a similar distribution, which in turn are highly correlated with the donor
concentration distribution (compare Figs 2a,b and 3a,b). The normal stress component o,,,
displays a more uniform distribution compared to o, and o, . Generally, the strongest strain

appears in the regions with the largest donor concentration gradients (directly under the probe).
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Comparison of the surface deformation in Fig.3a and 3b, 3c and 3d for two different time
moments t =10, 20 illustrate the nonlinearity of the ESM response; indeed the absolute values
of the local extrema are different during the first and second half of the applied voltage. The first
extremum (directly under the probe) does not change its absolute value and position; however
the second extremum changes not only the absolute value, but also its position.

The electric potential increases monotonically with Z, however for a few moments
(t =10) local redistribution of the charge carriers cause relatively small extrema (see Fig. 4a).

The changes in t, /t, ratio do not impact the potential depth distribution.

The 7 —distribution of donor concentration is illustrated in Figure 4b. Naturally, by
applying voltage to the top electrode the donors move to the grounded electrode (see donor
concentration in the Fig. 4a). By increasing the applied voltage amplitude, the concentration of
donors near the corresponding electrodes increases, reaching the values numerous times larger
than the initial one. More interestingly, local extrema of concentration appear, which can be
interpreted as dynamic charge waves. As it can be seen from Figure 4b the donor charge wave in
the 7 -direction consists of two local extrema: one is a local maximum and the other one is the
local minimum with several times higher absolute value. Note, that the charge waves for the
donors and electrons (shown in the Appendix B, Suppl. Mat. *°) have a different scale. The
electron charge waves are more flattened, and their amplitude stays almost constant with
changing of applied voltage.

Figure 5 shows that the structure of charge waves can be more complicated in the radial
direction. In particular, it demonstrates the appearance of several local extrema. In general, the
donor concentration dependence with radius is quite complicated, while for electrons such

dependence has no more than one local extremum that moves toward the opposite electrode with
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a constant amplitude. The dependence of concentration on the radial coordinate changes
drastically in the region adjacent to the bottom electrode. Here, the concentration dependence
from the radius for electrons have no local extrema, while the donor concentration have only one

extremum.

All figures are plotted for the ratio t, /t, =10. The same dependencies are calculated for
the t,/t, =10%and t,/t, =10° and are shown in the Appendix B, Suppl. Mat. “I The general

trend is that by decreasing the t, /t, parameter one leads to a more pronounced local extrema for

donors and do not impact the extrema for electron's dependencies. The crests become wider and

have larger amplitude, and are shifted more from the electrode. By increasing the t, /t, one will

lead to an opposite change.

4. Summary
The self-consistent modeling of dynamic Electrochemical Strain Microscopy for axially
symmetric 2D mixed ionic-electronic conductors was performed in the COMSOL Multiphysics
package. The 2D map of strain and concentration distributions across a sample and bias-induced
surface displacements were obtained. Results show significant impact of nonlinear effects on the
ESM image formation mechanisms (i.e. appearance of the charge waves and nonlinear
deformation of the surface). It was found that Vegard mechanism plays a key role in the
mechanisms of the ESM image formation at low voltages <1V, but electrostriction contribution

should dominate with a voltage increase.
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Captions to Figures

Figure 1. (a) Typical geometry for ESM study of mixed ionic-electronic conductor (MIEC).
Electrical and mechanical boundary conditions are labeled. (b) The time dependence of the

applied voltage.

Figure 2. Dimensionless donor (a) and electron (b) concentrations, and the stress invariant

c=0,+0, +o,, (c) for time momentst =10,20. Due to the axial symmetry only the semi-
slice of the cylinder is shown. Ratio t,/t, =10. Electrodes are donor- and electron-blocking.

Applied voltage is 1V, L, =2.8-10°m, t, =8-10°s.

Figure 3. Dimensionless stress tensor SW ~ G, (a)and &,, (b) components for time moments
t =10,20. The shape profile deviation from the empty rectangle shows its deformation, scaled

with factor 4x10°. Other parameters are the same as in figure 2.

Figure 4. (a) Depth distributions of dimensionless potential, ¢ =e/k,T , along the axes ¥ =0

and (b) donor concentration, N = N /N, calculated for donor-blocking and electron-blocking

electrodes at different moments of time t =0, 5, 10, 15, 18 (curves1,2,3,4and5)and T =0,
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Figure 5. Radial distributions of dimensionless electron and donor concentrations, il =n/Ng
and N =N /N7 at different moments of time T =0, 5,10,15,18 (curves 1, 2, 3, 4 and 5). Ratio

ty/t, =10, =0 (a,b)and Z=h (c, d)
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