DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase

Abstract

N-terminal acetylation (Nt-acetylation), carried out by N-terminal acetyltransferases (NATs), is a conserved and primary modification of nascent peptide chains. Naa60 (also named NatF) is a recently identified NAT found only in multicellular eukaryotes. This protein was shown to locate on the Golgi apparatus and mainly catalyze the Nt-acetylation of transmembrane proteins, and it also harbors lysine Nε -acetyltransferase (KAT) activity to catalyze the acetylation of lysine ε-amine. Here, we report the crystal structures of human Naa60 (hNaa60) in complex with Acetyl-Coenzyme A (Ac-CoA) or Coenzyme A (CoA). The hNaa60 protein contains an amphipathic helix following its GNAT domain that may contribute to Golgi localization of hNaa60, and the β7-β8 hairpin adopted different conformations in the hNaa60(1-242) and hNaa60(1-199) crystal structures. Remarkably, we found that the side-chain of Phe 34 can influence the position of the coenzyme, indicating a new regulatory mechanism involving enzyme, co-factor and substrates interactions. Moreover, structural comparison and biochemical studies indicated that Tyr 97 and His 138 are key residues for catalytic reaction and that a non-conserved β3-β4 long loop participates in the regulation of hNaa60 activity.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1];  [1]
  1. Peking Univ. Health Science Center, Beijing (China)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Basic Research Program of China; Ministry of Science and Technology of the People's Republic of China; National Science Foundation of China; USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1336818
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES

Citation Formats

Chen, Ji-Yun, Liu, Liang, Cao, Chun-Ling, Li, Mei-Jun, Tan, Kemin, Yang, Xiaohan, and Yun, Caihong. Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase. United States: N. p., 2016. Web. doi:10.1038/srep31425.
Chen, Ji-Yun, Liu, Liang, Cao, Chun-Ling, Li, Mei-Jun, Tan, Kemin, Yang, Xiaohan, & Yun, Caihong. Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase. United States. https://doi.org/10.1038/srep31425
Chen, Ji-Yun, Liu, Liang, Cao, Chun-Ling, Li, Mei-Jun, Tan, Kemin, Yang, Xiaohan, and Yun, Caihong. Tue . "Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase". United States. https://doi.org/10.1038/srep31425. https://www.osti.gov/servlets/purl/1336818.
@article{osti_1336818,
title = {Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase},
author = {Chen, Ji-Yun and Liu, Liang and Cao, Chun-Ling and Li, Mei-Jun and Tan, Kemin and Yang, Xiaohan and Yun, Caihong},
abstractNote = {N-terminal acetylation (Nt-acetylation), carried out by N-terminal acetyltransferases (NATs), is a conserved and primary modification of nascent peptide chains. Naa60 (also named NatF) is a recently identified NAT found only in multicellular eukaryotes. This protein was shown to locate on the Golgi apparatus and mainly catalyze the Nt-acetylation of transmembrane proteins, and it also harbors lysine Nε -acetyltransferase (KAT) activity to catalyze the acetylation of lysine ε-amine. Here, we report the crystal structures of human Naa60 (hNaa60) in complex with Acetyl-Coenzyme A (Ac-CoA) or Coenzyme A (CoA). The hNaa60 protein contains an amphipathic helix following its GNAT domain that may contribute to Golgi localization of hNaa60, and the β7-β8 hairpin adopted different conformations in the hNaa60(1-242) and hNaa60(1-199) crystal structures. Remarkably, we found that the side-chain of Phe 34 can influence the position of the coenzyme, indicating a new regulatory mechanism involving enzyme, co-factor and substrates interactions. Moreover, structural comparison and biochemical studies indicated that Tyr 97 and His 138 are key residues for catalytic reaction and that a non-conserved β3-β4 long loop participates in the regulation of hNaa60 activity.},
doi = {10.1038/srep31425},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {Tue Aug 23 00:00:00 EDT 2016},
month = {Tue Aug 23 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

NatF Contributes to an Evolutionary Shift in Protein N-Terminal Acetylation and Is Important for Normal Chromosome Segregation
journal, July 2011


PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

Emerging Functions for N-Terminal Protein Acetylation in Plants
journal, October 2015


Amphipathic helices and membrane curvature
journal, October 2009


N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects
journal, June 2015


Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination
journal, September 1998

  • Brünger, A. T.; Adams, P. D.; Clore, G. M.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 54, Issue 5
  • DOI: 10.1107/S0907444998003254

Regulation of the p300 HAT domain via a novel activation loop
journal, March 2004

  • Thompson, Paul R.; Wang, Dongxia; Wang, Ling
  • Nature Structural & Molecular Biology, Vol. 11, Issue 4
  • DOI: 10.1038/nsmb740

NatF Contributes to an Evolutionary Shift in Protein N-Terminal Acetylation and Is Important for Normal Chromosome Segregation
journal, July 2011


Molecular basis for N-terminal acetylation by the heterodimeric NatA complex
journal, August 2013

  • Liszczak, Glen; Goldberg, Jacob M.; Foyn, Håvard
  • Nature Structural & Molecular Biology, Vol. 20, Issue 9
  • DOI: 10.1038/nsmb.2636

Protein N-terminal acetyltransferases: when the start matters
journal, April 2012

  • Starheim, Kristian K.; Gevaert, Kris; Arnesen, Thomas
  • Trends in Biochemical Sciences, Vol. 37, Issue 4
  • DOI: 10.1016/j.tibs.2012.02.003

Protein N-terminal acetyltransferases in cancer
journal, March 2012


Protein N-terminal acetyltransferases: when the start matters
journal, April 2012

  • Starheim, Kristian K.; Gevaert, Kris; Arnesen, Thomas
  • Trends in Biochemical Sciences, Vol. 37, Issue 4
  • DOI: 10.1016/j.tibs.2012.02.003

Developmental roles of protein N-terminal acetylation
journal, June 2015


Scaling and assessment of data quality
journal, December 2005

  • Evans, Philip
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 1, p. 72-82
  • DOI: 10.1107/S0907444905036693

An Organellar Nα-Acetyltransferase, Naa60, Acetylates Cytosolic N Termini of Transmembrane Proteins and Maintains Golgi Integrity
journal, March 2015


Regulation of the p300 HAT domain via a novel activation loop
journal, March 2004

  • Thompson, Paul R.; Wang, Dongxia; Wang, Ling
  • Nature Structural & Molecular Biology, Vol. 11, Issue 4
  • DOI: 10.1038/nsmb740

Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog
journal, August 2013

  • Liszczak, Glen; Marmorstein, Ronen
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 36
  • DOI: 10.1073/pnas.1310365110

N-Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals
journal, January 2010


GCN5-Related N-Acetyltransferases: A Structural Overview
journal, June 2000

  • Dyda, Fred; Klein, David C.; Hickman, Alison Burgess
  • Annual Review of Biophysics and Biomolecular Structure, Vol. 29, Issue 1
  • DOI: 10.1146/annurev.biophys.29.1.81

Histone acetyltransferase complexes: one size doesn't fit all
journal, April 2007

  • Lee, Kenneth K.; Workman, Jerry L.
  • Nature Reviews Molecular Cell Biology, Vol. 8, Issue 4
  • DOI: 10.1038/nrm2145

Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes.
journal, January 1993


Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activation
journal, March 1996


N-Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals
journal, January 2010


HKL -3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes
journal, July 2006

  • Minor, Wladek; Cymborowski, Marcin; Otwinowski, Zbyszek
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 8
  • DOI: 10.1107/S0907444906019949

Structure and ligand of a histone acetyltransferase bromodomain
journal, June 1999

  • Dhalluin, Christophe; Carlson, Justin E.; Zeng, Lei
  • Nature, Vol. 399, Issue 6735
  • DOI: 10.1038/20974

Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

An N-terminal Amphipathic Helix Binds Phosphoinositides and Enhances Kalirin Sec14 Domain-mediated Membrane Interactions
journal, April 2015

  • Miller, Megan B.; Vishwanatha, Kurutihalli S.; Mains, Richard E.
  • Journal of Biological Chemistry, Vol. 290, Issue 21
  • DOI: 10.1074/jbc.m115.636746

Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide
journal, September 1999

  • Rojas, Jeannie R.; Trievel, Raymond C.; Zhou, Jianxin
  • Nature, Vol. 401, Issue 6748
  • DOI: 10.1038/43487

The biological functions of Naa10 – from amino-terminal acetylation to human disease
posted_content, April 2015


Application of a Fluorescent Histone Acetyltransferase Assay to Probe the Substrate Specificity of the Human p300/CBP-Associated Factor
journal, December 2000

  • Trievel, Raymond C.; Li, Feng-Yen; Marmorstein, Ronen
  • Analytical Biochemistry, Vol. 287, Issue 2
  • DOI: 10.1006/abio.2000.4855

Structure of a Ternary Naa50p (NAT5/SAN) N-terminal Acetyltransferase Complex Reveals the Molecular Basis for Substrate-specific Acetylation
journal, September 2011

  • Liszczak, Glen; Arnesen, Thomas; Marmorstein, Ronen
  • Journal of Biological Chemistry, Vol. 286, Issue 42
  • DOI: 10.1074/jbc.m111.282863

Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog
journal, August 2013

  • Liszczak, Glen; Marmorstein, Ronen
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 36
  • DOI: 10.1073/pnas.1310365110

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

GCN5-Related N-Acetyltransferases: A Structural Overview
journal, June 2000

  • Dyda, Fred; Klein, David C.; Hickman, Alison Burgess
  • Annual Review of Biophysics and Biomolecular Structure, Vol. 29, Issue 1
  • DOI: 10.1146/annurev.biophys.29.1.81

The Molecular Basis for Histone H4- and H2A-Specific Amino-Terminal Acetylation by NatD
journal, February 2015


The biological functions of Naa10 — From amino-terminal acetylation to human disease
journal, August 2015


The Molecular Basis for Histone H4- and H2A-Specific Amino-Terminal Acetylation by NatD
journal, February 2015


Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3
journal, April 2014

  • Nath, Sangeeta; Dancourt, Julia; Shteyn, Vladimir
  • Nature Cell Biology, Vol. 16, Issue 5
  • DOI: 10.1038/ncb2940

Emerging Functions for N-Terminal Protein Acetylation in Plants
journal, October 2015


PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules
journal, June 1996

  • van Aalten, D. M. F.; Bywater, R.; Findlay, J. B. C.
  • Journal of Computer-Aided Molecular Design, Vol. 10, Issue 3
  • DOI: 10.1007/bf00355047

Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes
journal, March 1993


Human Naa50p (Nat5/San) Displays Both Protein N α - and N ϵ -Acetyltransferase Activity
journal, September 2009

  • Evjenth, Rune; Hole, Kristine; Karlsen, Odd A.
  • Journal of Biological Chemistry, Vol. 284, Issue 45
  • DOI: 10.1074/jbc.M109.001347

Molecular basis for N-terminal acetylation by the heterodimeric NatA complex
journal, August 2013

  • Liszczak, Glen; Goldberg, Jacob M.; Foyn, Håvard
  • Nature Structural & Molecular Biology, Vol. 20, Issue 9
  • DOI: 10.1038/nsmb.2636

Structure and ligand of a histone acetyltransferase bromodomain
journal, June 1999

  • Dhalluin, Christophe; Carlson, Justin E.; Zeng, Lei
  • Nature, Vol. 399, Issue 6735
  • DOI: 10.1038/20974

N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects
journal, June 2015


Protein N-terminal acetyltransferases in cancer
journal, March 2012


Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

Amphipathic helices and membrane curvature
journal, October 2009


Histone acetyltransferase complexes: one size doesn't fit all
journal, April 2007

  • Lee, Kenneth K.; Workman, Jerry L.
  • Nature Reviews Molecular Cell Biology, Vol. 8, Issue 4
  • DOI: 10.1038/nrm2145

Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes
journal, March 1993


Works referencing / citing this record:

Molecular determinants of the N-terminal acetyltransferase Naa60 anchoring to the Golgi membrane
journal, February 2017

  • Aksnes, Henriette; Goris, Marianne; Strømland, Øyvind
  • Journal of Biological Chemistry, Vol. 292, Issue 16
  • DOI: 10.1074/jbc.m116.770362