DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils

Abstract

Increasing temperatures in northern high latitudes are causing permafrost to thaw, making large amounts of previously frozen organic matter vulnerable to microbial decomposition. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studies from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterloggedmore » systemsreleasingCO2 andCH4 for a given amount of C.« less

Authors:
 [1];  [2];  [1];  [3];  [4];  [5];  [6];  [5];  [7];  [6];  [7];  [7];  [7];  [8];  [9];  [10];  [3];  [7];  [7];  [11] more »;  [7];  [5];  [12];  [7];  [13];  [14];  [15];  [16] « less
  1. University of Florida
  2. New Zealand Forest Reserach Institute, Rotorua, New Zealand
  3. University of Eastern Finland
  4. University of Florida, Gainesville
  5. University of South Bohemia, Czech Republic
  6. University of Exeter, UK
  7. ORNL
  8. Michigan State University, East Lansing
  9. University of Hamburg, Germany
  10. University of California, Irvine
  11. National Park Service
  12. Marine Biological Laboratory
  13. University of Alaska Fairbanks
  14. University of Guelph, Canada
  15. U.S. Geological Survey, Menlo Park, CA
  16. U.S. Geological Survey, Boulder, CO
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1336567
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature Climate Change
Additional Journal Information:
Journal Volume: 6; Journal Issue: 10; Journal ID: ISSN 1758-678X
Country of Publication:
United States
Language:
English

Citation Formats

Schadel, Christina, Bader, Martin K. F., Schuur, Edward, Biasi, Christina, Bracho, Rosvel, Capek, Petr, De-Baets, Sarah, Diakova, Katerina, Ernakovich, Jessica G, Estop-Aragones, Cristian, Graham, David E, Hartley, Iain P, Iversen, Colleen M, Kane, Evan, Knoblauch, Christian, Lupascu, Massimo, Martikainen, Pertti, Natali, Susan M, Norby, Richard J, O'Donnell, Jon, Roy Chowdhury, Taniya, Santruckova, Hana, Shaver, Gaius, Sloan, Victoria L, Treat, Claire, Turetsky, M. R., Waldrop, Mark P., and Wickland, Kim. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. United States: N. p., 2016. Web. doi:10.1038/nclimate3054.
Schadel, Christina, Bader, Martin K. F., Schuur, Edward, Biasi, Christina, Bracho, Rosvel, Capek, Petr, De-Baets, Sarah, Diakova, Katerina, Ernakovich, Jessica G, Estop-Aragones, Cristian, Graham, David E, Hartley, Iain P, Iversen, Colleen M, Kane, Evan, Knoblauch, Christian, Lupascu, Massimo, Martikainen, Pertti, Natali, Susan M, Norby, Richard J, O'Donnell, Jon, Roy Chowdhury, Taniya, Santruckova, Hana, Shaver, Gaius, Sloan, Victoria L, Treat, Claire, Turetsky, M. R., Waldrop, Mark P., & Wickland, Kim. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. United States. https://doi.org/10.1038/nclimate3054
Schadel, Christina, Bader, Martin K. F., Schuur, Edward, Biasi, Christina, Bracho, Rosvel, Capek, Petr, De-Baets, Sarah, Diakova, Katerina, Ernakovich, Jessica G, Estop-Aragones, Cristian, Graham, David E, Hartley, Iain P, Iversen, Colleen M, Kane, Evan, Knoblauch, Christian, Lupascu, Massimo, Martikainen, Pertti, Natali, Susan M, Norby, Richard J, O'Donnell, Jon, Roy Chowdhury, Taniya, Santruckova, Hana, Shaver, Gaius, Sloan, Victoria L, Treat, Claire, Turetsky, M. R., Waldrop, Mark P., and Wickland, Kim. Fri . "Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils". United States. https://doi.org/10.1038/nclimate3054. https://www.osti.gov/servlets/purl/1336567.
@article{osti_1336567,
title = {Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils},
author = {Schadel, Christina and Bader, Martin K. F. and Schuur, Edward and Biasi, Christina and Bracho, Rosvel and Capek, Petr and De-Baets, Sarah and Diakova, Katerina and Ernakovich, Jessica G and Estop-Aragones, Cristian and Graham, David E and Hartley, Iain P and Iversen, Colleen M and Kane, Evan and Knoblauch, Christian and Lupascu, Massimo and Martikainen, Pertti and Natali, Susan M and Norby, Richard J and O'Donnell, Jon and Roy Chowdhury, Taniya and Santruckova, Hana and Shaver, Gaius and Sloan, Victoria L and Treat, Claire and Turetsky, M. R. and Waldrop, Mark P. and Wickland, Kim},
abstractNote = {Increasing temperatures in northern high latitudes are causing permafrost to thaw, making large amounts of previously frozen organic matter vulnerable to microbial decomposition. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studies from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systemsreleasingCO2 andCH4 for a given amount of C.},
doi = {10.1038/nclimate3054},
journal = {Nature Climate Change},
number = 10,
volume = 6,
place = {United States},
year = {Fri Jan 01 00:00:00 EST 2016},
month = {Fri Jan 01 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 248 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Report from the International Permafrost Association: state of permafrost in the first decade of the 21st century
journal, January 2008

  • Brown, Jerry; Romanovsky, Vladimir E.
  • Permafrost and Periglacial Processes, Vol. 19, Issue 2
  • DOI: 10.1002/ppp.618

Field information links permafrost carbon to physical vulnerabilities of thawing: C AND N VULERABLITIES OF THAWING
journal, August 2012

  • Harden, Jennifer W.; Koven, Charles D.; Ping, Chien-Lu
  • Geophysical Research Letters, Vol. 39, Issue 15
  • DOI: 10.1029/2012GL051958

Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes
journal, July 2013

  • Torre Jorgenson, M.; Harden, Jennifer; Kanevskiy, Mikhail
  • Environmental Research Letters, Vol. 8, Issue 3
  • DOI: 10.1088/1748-9326/8/3/035017

Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone
journal, August 2013

  • Johnson, Kristofer D.; Harden, Jennifer W.; David McGuire, A.
  • Environmental Research Letters, Vol. 8, Issue 3
  • DOI: 10.1088/1748-9326/8/3/035028

Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle
journal, September 2008

  • Schuur, Edward A. G.; Bockheim, James; Canadell, Josep G.
  • BioScience, Vol. 58, Issue 8
  • DOI: 10.1641/B580807

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Soil organic carbon pools in the northern circumpolar permafrost region: SOIL ORGANIC CARBON POOLS
journal, June 2009

  • Tarnocai, C.; Canadell, J. G.; Schuur, E. A. G.
  • Global Biogeochemical Cycles, Vol. 23, Issue 2
  • DOI: 10.1029/2008GB003327

Potential carbon release from permafrost soils of Northeastern Siberia
journal, December 2006


Abrupt increase in permafrost degradation in Arctic Alaska
journal, January 2006

  • Jorgenson, M. Torre; Shur, Yuri L.; Pullman, Erik R.
  • Geophysical Research Letters, Vol. 33, Issue 2
  • DOI: 10.1029/2005GL024960

Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
journal, October 2013

  • Schädel, Christina; Schuur, Edward A. G.; Bracho, Rosvel
  • Global Change Biology, Vol. 20, Issue 2
  • DOI: 10.1111/gcb.12417

Persistence of soil organic matter as an ecosystem property
journal, October 2011

  • Schmidt, Michael W. I.; Torn, Margaret S.; Abiven, Samuel
  • Nature, Vol. 478, Issue 7367
  • DOI: 10.1038/nature10386

Methane fluxes show consistent temperature dependence across microbial to ecosystem scales
journal, March 2014

  • Yvon-Durocher, Gabriel; Allen, Andrew P.; Bastviken, David
  • Nature, Vol. 507, Issue 7493
  • DOI: 10.1038/nature13164

Methane dynamics regulated by microbial community response to permafrost thaw
journal, October 2014

  • McCalley, Carmody K.; Woodcroft, Ben J.; Hodgkins, Suzanne B.
  • Nature, Vol. 514, Issue 7523
  • DOI: 10.1038/nature13798

Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
journal, November 2012

  • Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12071

Variation in methane production pathways associated with permafrost decomposition in collapse scar bogs of Alberta, Canada: VARIATION IN METHANE PRODUCTION
journal, October 2007

  • Prater, James L.; Chanton, Jeffrey P.; Whiting, Gary J.
  • Global Biogeochemical Cycles, Vol. 21, Issue 4
  • DOI: 10.1029/2006GB002866

A pan-Arctic synthesis of CH 4 and CO 2 production from anoxic soil incubations
journal, March 2015

  • Treat, Claire C.; Natali, Susan M.; Ernakovich, Jessica
  • Global Change Biology, Vol. 21, Issue 7
  • DOI: 10.1111/gcb.12875

Acclimatization of soil respiration to warming in a tall grass prairie
journal, October 2001

  • Luo, Yiqi; Wan, Shiqiang; Hui, Dafeng
  • Nature, Vol. 413, Issue 6856
  • DOI: 10.1038/35098065

Long-term warming restructures Arctic tundra without changing net soil carbon storage
journal, May 2013

  • Sistla, Seeta A.; Moore, John C.; Simpson, Rodney T.
  • Nature, Vol. 497, Issue 7451
  • DOI: 10.1038/nature12129

Permafrost degradation stimulates carbon loss from experimentally warmed tundra
journal, March 2014

  • Natali, Susan M.; Schuur, Edward A. G.; Webb, Elizabeth E.
  • Ecology, Vol. 95, Issue 3
  • DOI: 10.1890/13-0602.1

Boreal carbon loss due to poleward shift in low-carbon ecosystems
journal, May 2013


A potential loss of carbon associated with greater plant growth in the European Arctic
journal, June 2012

  • Hartley, Iain P.; Garnett, Mark H.; Sommerkorn, Martin
  • Nature Climate Change, Vol. 2, Issue 12
  • DOI: 10.1038/nclimate1575

Reduction in areal extent of high-latitude wetlands in response to permafrost thaw
journal, June 2011

  • Avis, Christopher A.; Weaver, Andrew J.; Meissner, Katrin J.
  • Nature Geoscience, Vol. 4, Issue 7
  • DOI: 10.1038/ngeo1160

Diagnosing Present and Future Permafrost from Climate Models
journal, August 2013


Disappearing Arctic Lakes
journal, June 2005


The Meta-Analysis of Response Ratios in Experimental Ecology
journal, June 1999


Fixed effects and variance components estimation in three-level meta-analysis: Three-level meta-analysis
journal, March 2011

  • Konstantopoulos, Spyros
  • Research Synthesis Methods, Vol. 2, Issue 1
  • DOI: 10.1002/jrsm.35

Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen
journal, March 2013


Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands
journal, May 2021


Persistence of soil organic matter as an ecosystem property
text, January 2011

  • Schmidt, M. W. I.; Torn, M. S.; Abiven, S.
  • Nature Publishing Group
  • DOI: 10.5167/uzh-51257

Fixed Effects and Variance Components Estimation in Three-Level Meta-Analysis
journal, January 2011


Works referencing / citing this record:

Short and Long-Term Controls on Active Layer and Permafrost Carbon Turnover Across the Arctic
journal, February 2018

  • Faucherre, Samuel; Jørgensen, Christian Juncher; Blok, Daan
  • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 2
  • DOI: 10.1002/2017jg004069

Geomorphic Controls on Floodplain Soil Organic Carbon in the Yukon Flats, Interior Alaska, From Reach to River Basin Scales
journal, March 2018

  • Lininger, K. B.; Wohl, E.; Rose, J. R.
  • Water Resources Research, Vol. 54, Issue 3
  • DOI: 10.1002/2017wr022042

Effects of forest fires on the permafrost environment in the northern Da Xing'anling (Hinggan) mountains, Northeast China
journal, July 2019

  • Li, Xiaoying; Jin, Huijun; He, Ruixia
  • Permafrost and Periglacial Processes, Vol. 30, Issue 3
  • DOI: 10.1002/ppp.2001

Methane and Biogenic Volatile Organic Compound Emissions in Eastern Siberia
book, January 2019


Redox and temperature-sensitive changes in microbial communities and soil chemistry dictate greenhouse gas loss from thawed permafrost
journal, July 2017

  • Ernakovich, Jessica G.; Lynch, Laurel M.; Brewer, Paul E.
  • Biogeochemistry, Vol. 134, Issue 1-2
  • DOI: 10.1007/s10533-017-0354-5

Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality
journal, March 2019


Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton
journal, November 2017


Exploring near-surface ground ice distribution in patterned-ground tundra: correlations with topography, soil and vegetation
journal, August 2019


Using Persistent Scatterer Interferometry to Map and Quantify Permafrost Thaw Subsidence: A Case Study of Eboling Mountain on the Qinghai-Tibet Plateau
journal, October 2018

  • Chen, Jie; Liu, Lin; Zhang, Tingjun
  • Journal of Geophysical Research: Earth Surface, Vol. 123, Issue 10
  • DOI: 10.1029/2018jf004618

Organic Carbon and Nitrogen Stocks Along a Thermokarst Lake Sequence in Arctic Alaska
journal, May 2019

  • Fuchs, Matthias; Lenz, Josefine; Jock, Suzanne
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 5
  • DOI: 10.1029/2018jg004591

Nutrient Release From Permafrost Thaw Enhances CH 4 Emissions From Arctic Tundra Wetlands
journal, June 2019

  • Lara, Mark J.; Lin, David H.; Andresen, Christian
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 6
  • DOI: 10.1029/2018jg004641

Increasing Organic Carbon Biolability With Depth in Yedoma Permafrost: Ramifications for Future Climate Change
journal, July 2019

  • Heslop, J. K.; Winkel, M.; Walter Anthony, K. M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 7
  • DOI: 10.1029/2018jg004712

Pathways for Ecological Change in Canadian High Arctic Wetlands Under Rapid Twentieth Century Warming
journal, May 2019

  • Sim, T. G.; Swindles, G. T.; Morris, P. J.
  • Geophysical Research Letters, Vol. 46, Issue 9
  • DOI: 10.1029/2019gl082611

Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau
journal, October 2016

  • Chen, Leiyi; Liang, Junyi; Qin, Shuqi
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13046

Stability of peatland carbon to rising temperatures
journal, December 2016

  • Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.
  • Nature Communications, Vol. 7, Article No. 13723
  • DOI: 10.1038/ncomms13723

Decadal soil carbon accumulation across Tibetan permafrost regions
journal, May 2017

  • Ding, Jinzhi; Chen, Leiyi; Ji, Chengjun
  • Nature Geoscience, Vol. 10, Issue 6
  • DOI: 10.1038/ngeo2945

Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon
journal, August 2019


Wildfire as a major driver of recent permafrost thaw in boreal peatlands
journal, August 2018


Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency
journal, September 2018


Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements
journal, April 2019


Methane production as key to the greenhouse gas budget of thawing permafrost
journal, March 2018

  • Knoblauch, Christian; Beer, Christian; Liebner, Susanne
  • Nature Climate Change, Vol. 8, Issue 4
  • DOI: 10.1038/s41558-018-0095-z

Large loss of CO2 in winter observed across the northern permafrost region
journal, October 2019

  • Natali, Susan M.; Watts, Jennifer D.; Rogers, Brendan M.
  • Nature Climate Change, Vol. 9, Issue 11
  • DOI: 10.1038/s41558-019-0592-8

Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks
journal, July 2018


Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release
journal, September 2018


Direct observation of permafrost degradation and rapid soil carbon loss in tundra
journal, July 2019


Carbon release through abrupt permafrost thaw
journal, February 2020

  • Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.
  • Nature Geoscience, Vol. 13, Issue 2
  • DOI: 10.1038/s41561-019-0526-0

Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw
journal, May 2017

  • Voigt, Carolina; Marushchak, Maija E.; Lamprecht, Richard E.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 24
  • DOI: 10.1073/pnas.1702902114

Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018

  • McGuire, A. David; Lawrence, David M.; Koven, Charles
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719903115

Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems
journal, September 2016

  • Loranty, Michael M.; Lieberman-Cribbin, Wil; Berner, Logan T.
  • Environmental Research Letters, Vol. 11, Issue 9
  • DOI: 10.1088/1748-9326/11/9/095008

Missing pieces to modeling the Arctic-Boreal puzzle
journal, February 2018

  • Fisher, Joshua B.; Hayes, Daniel J.; Schwalm, Christopher R.
  • Environmental Research Letters, Vol. 13, Issue 2
  • DOI: 10.1088/1748-9326/aa9d9a

Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst
journal, August 2018

  • Estop-Aragonés, Cristian; Czimczik, Claudia I.; Heffernan, Liam
  • Environmental Research Letters, Vol. 13, Issue 8
  • DOI: 10.1088/1748-9326/aad5f0

Key indicators of Arctic climate change: 1971–2017
journal, April 2019

  • Box, Jason E.; Colgan, William T.; Christensen, Torben Røjle
  • Environmental Research Letters, Vol. 14, Issue 4
  • DOI: 10.1088/1748-9326/aafc1b

Exploring the oxygen sensitivity of wetland soil carbon mineralization
journal, January 2019

  • Chapman, Samantha K.; Hayes, Matthew A.; Kelly, Brendan
  • Biology Letters, Vol. 15, Issue 1
  • DOI: 10.1098/rsbl.2018.0407

Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem
journal, April 2020


Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide
journal, December 2016

  • Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.
  • Global Change Biology, Vol. 23, Issue 8
  • DOI: 10.1111/gcb.13563

Nonlinear CO 2 flux response to 7 years of experimentally induced permafrost thaw
journal, March 2017

  • Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo
  • Global Change Biology, Vol. 23, Issue 9
  • DOI: 10.1111/gcb.13661

Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog
journal, July 2017

  • Gill, Allison L.; Giasson, Marc-André; Yu, Rieka
  • Global Change Biology, Vol. 23, Issue 12
  • DOI: 10.1111/gcb.13806

Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
journal, February 2019

  • Voigt, Carolina; Marushchak, Maija E.; Mastepanov, Mikhail
  • Global Change Biology, Vol. 25, Issue 5
  • DOI: 10.1111/gcb.14574

Drainage enhances modern soil carbon contribution but reduces old soil carbon contribution to ecosystem respiration in tundra ecosystems
journal, February 2019

  • Kwon, Min Jung; Natali, Susan M.; Hicks Pries, Caitlin E.
  • Global Change Biology, Vol. 25, Issue 4
  • DOI: 10.1111/gcb.14578

Negative feedback processes following drainage slow down permafrost degradation
journal, July 2019

  • Göckede, Mathias; Kwon, Min Jung; Kittler, Fanny
  • Global Change Biology, Vol. 25, Issue 10
  • DOI: 10.1111/gcb.14744

Critical Zone Science in the Anthropocene: Opportunities for biogeographic and ecological theory and praxis to drive earth science integration
journal, July 2019

  • Minor, Jesse; Pearl, Jessie K.; Barnes, Mallory L.
  • Progress in Physical Geography: Earth and Environment, Vol. 44, Issue 1
  • DOI: 10.1177/0309133319864268

Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
journal, January 2016

  • Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa
  • Biogeosciences, Vol. 13, Issue 24
  • DOI: 10.5194/bg-13-6669-2016

Quantifying uncertainties of permafrost carbon–climate feedbacks
journal, January 2017


Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra
journal, January 2018

  • Zheng, Jianqiu; RoyChowdhury, Taniya; Yang, Ziming
  • Biogeosciences, Vol. 15, Issue 21
  • DOI: 10.5194/bg-15-6621-2018

Young people's burden: requirement of negative CO 2 emissions
journal, January 2017

  • Hansen, James; Sato, Makiko; Kharecha, Pushker
  • Earth System Dynamics, Vol. 8, Issue 3
  • DOI: 10.5194/esd-8-577-2017

Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model
journal, January 2019


Soil moisture and hydrology projections of the permafrost region – a model intercomparison
journal, January 2020

  • Andresen, Christian G.; Lawrence, David M.; Wilson, Cathy J.
  • The Cryosphere, Vol. 14, Issue 2
  • DOI: 10.5194/tc-14-445-2020

Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements
text, January 2019

  • Yumashev, Dmitry; Hope, Chris; Schaefer, Kevin
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.39713

Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release
text, January 2018

  • Gasser, T.; Kechiar, M.; Ciais, P.
  • Nature Publishing Group
  • DOI: 10.48350/155695

Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
posted_content, June 2016

  • Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa
  • Biogeosciences Discussions
  • DOI: 10.5194/bg-2016-234

Toward a statistical description of methane emissions from arctic wetlands
journal, January 2017


Organic Carbon and Nitrogen Stocks Along a Thermokarst Lake Sequence in Arctic Alaska
journal, May 2019

  • Fuchs, Matthias; Lenz, Josefine; Jock, Suzanne
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 5
  • DOI: 10.1029/2018jg004591

Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency
journal, September 2018


Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements
journal, April 2019


Negative feedback processes following drainage slow down permafrost degradation
journal, July 2019

  • Göckede, Mathias; Kwon, Min Jung; Kittler, Fanny
  • Global Change Biology, Vol. 25, Issue 10
  • DOI: 10.1111/gcb.14744