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Abstract This paper describes an approach that seeks to
parallelize the spatial search associated with computational
contact mechanics. In contact mechanics, the purpose of
the spatial search is to find “nearest neighbors,” which is
the prelude to an imprinting search that resolves the inter-
actions between the external surfaces of contacting bod-
ies. In particular, we are interested in the contact global
search portion of the spatial search associated with this oper-
ation on domain-decomposition-based meshes. Specifically,
we describe an implementation that combines standard
domain-decomposition-based MPI-parallel spatial search
with thread-level parallelism (MPI-X) available on ad-
vanced computer architectures (those with GPU coproces-
sors). Our goal is to demonstrate the efficacy of the MPI-X
paradigm in the overall contact search.

Standard MPI-parallel implementations typically use a
domain decomposition of the external surfaces of bodies
within the domain in an attempt to efficiently distribute com-
putational work. This decomposition may or may not be
the same as the volume decomposition associated with the
host physics. The parallel contact global search phase is then
employed to find and distribute surface entities (nodes and
faces) that are needed to compute contact constraints be-
tween entities owned by different MPI ranks without further
inter-rank communication. Key steps of the contact global
search include computing bounding boxes, building surface
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entity (node and face) search trees and finding and dis-
tributing entities required to complete on-rank (local) spatial
searches.

To enable source-code portability and performance
across a variety of different computer architectures, we im-
plemented the algorithm using the Kokkos hardware ab-
straction library. While we targeted development towards
machines with a GPU accelerator per MPI rank, we also re-
port performance results for OpenMP with a conventional
multi-core compute node per rank.

Results here demonstrate a 47% decrease in the time
spent within the global search algorithm, comparing the ref-
erence ACME algorithm with the GPU implementation, on
an 18M face problem using 4 MPI ranks. While further work
remains to maximize performance on the GPU, this result il-
lustrates the potential of the proposed implementation.

Keywords Partial differential equations · finite element
analysis · contact problems · spatial searching

Mathematics Subject Classification (2000) 65Y05 ·
65Y25 · 68P10 · 74M15

1 Introduction

1.1 Overview

Treatment of contacting material surfaces within a mechan-
ics simulation is one of the more time consuming activities
in a typical engineering calculation. Within such a calcula-
tion, one often needs to analyze the behavior of multiple de-
forming bodies that are moving with respect to each other,
such as can occur when modeling fragment witness-plate
interactions, as well as problems where only a single, self-
contacting surface is of interest.
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Examples of contact include the thermomechanical be-
havior of nuclear reactor fuel coming into contact with its
protective cladding [1], vehicle crash simulation, tire per-
formance simulation, projectile calculations, chip behavior
during machining, and many others. In most of these appli-
cations, calculations of the underlying physics is expensive
and the addition of contact significantly increases this ex-
pense. Thus, the development of efficient computing strate-
gies for contact problems is quite important. The evolution
of computer architectures is driving a need to develop mul-
tithreaded and coprocessor-based configurations that work
within MPI-based applications to provide higher degrees of
parallelism to support ever more complex analyses.

Our goal is to study the combination of MPI-level and
thread-based parallelism within an existing contact library,
that includes correctness and performance tests to allow us
to ensure that regression in the overall capability does not
occur as new algorithms are introduced. We directly focus
on the parallel, domain-decomposed, contact global search.
In this paper, we define contact global search as the paral-
lel portion of the spatial search phase of contact detection.
Spatial search (also called the proximity search) provides
a list of entities in the neighborhood of another entity. The
imprinting (fine) search associated with contact detection,
where the actual interactions between entities is determined,
is not considered here. We hypothesize that the algorithms
developed here may be useful in supporting the imprinting
search, however.

Section 1.2 motivates and describes this study. To be rep-
resentative and to provide near term impact, we took the ap-
proach of modifying an existing contact library that is used
in analysis codes on massively parallel architectures. The
ACME library [2], described in Section 2, was selected due
to its availability and familiarity with its use inside Sandia.
Profiling the current behavior of ACME on a test problem
(Section 2.1) was used to assess the run-time significance of
contact global search within a typical analysis application.

In Section 3 we examine ACME’s contact global search
algorithm for on-rank, thread-based parallelism opportuni-
ties. We feel that ACME provides a realistic framework for
this discovery process. Our experiences suggest that other
contact libraries support traditional parallelism in a similar
fashion to ACME; thus we expect that the approach studied
here would be transferable to those libraries. We implement
an MPI plus on-rank threading algorithm (MPI+X) that ex-
ploits on-rank parallelism within the contact global search.
To enable code portability and consider performance porta-
bility between machine architectures, we use the Kokkos
manycore abstraction library in our implementation. Source-
level and compile-time options are used to select among
different low level implementations of on-node parallelism,
such as CUDA when a GPU is available and OpenMP
for conventional multicore processor nodes and the Xeon

Phi. Although we primarily targeted machines supporting
CUDA/GPUs, we report performance results that also in-
clude for OpenMP with a conventional multicore compute
node per rank (Section 4).

1.2 Background and General Approach

The need to accurately predict the location and evolution of
contacts between multiple surfaces undergoing large relative
motions can be critical to a calculation. Consider a billiards
problem; the transient relationship between two balls, the
location of the contact point when they touch, and the ve-
locity (and resultant force) that they impart on each other
completely govern the outcome of the interaction. Accuracy
of the result may be the difference between simulating a ta-
ble clearing shot versus no balls sunk. Add the complexity of
large deformations and self-contact (i.e. a surface contacting
itself), and it is clear that simulation of contact mechanics
can be an expensive proposition.

A contact simulation typically begins with identifying
the discrete entities that make up the external surfaces of the
bodies being simulated, to determine the sets of entities that
could potentially contact each other. In many cases, partic-
ularly in the case of a finite element simulation, the bodies
are meshed using volume elements. The surfaces of these
bodies are then represented by the external faces and nodes
of the volume mesh.

The contact search operation amounts to determining
which of the external discrete entities (nodes, element edges,
and faces) of one body might come into contact with the en-
tities of the second body, during the current time step1 of
the simulation code. This determination is not typically well
posed in the sense that the position of the entities on each
of the bodies is known at the beginning of the time step, but
they might not be known at the end of the time step. For the
purposes of this paper, we will assume that the entities move
in a simple way during a time step and traverse the next high-
est dimension in space; i.e., a node traces out a curve as it
moves in time, an edge traces out a quadrilateral region, and
a face sweeps out a volume as it advances during a time step.

The goal of the contact search is then to determine which
of the swept areas and volumes intersect within a given sim-
ulation time step. To perform this intersection search effi-
ciently a spatial search is first performed. In this step one
will often place these swept regions into ε-inflated, axis-
aligned bounding boxes (c.f. Figure 1), and then employ
a binary or tree search to determine which of the bound-
ing boxes potentially intersect. The use of a k-D tree search

1 Most of this discussion regarding the search operation is indepen-
dent of whether the simulation is transient or quasi-static. We choose
to use the term time step rather than load step here, but they may be
used interchangeably unless otherwise noted.
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Fig. 1 An ε-inflated axis-aligned bounding box is aligned with the x
and y axes, and encloses the entity in question with at least an ε sepa-
ration between the outside surface of the entity and the inside surfaces
of the bounding box.

scheme is a popular spatial searching approach (c.f. [3]). At-
taway et al, [4] present more details on the construction of
bounding boxes for contact search in dynamics applications,
where the potentially contacting entities move within a time
step. As noted earlier the imprinting search which finally re-
solves the precise contact pairs is not discussed here.

Typically, the number of bounding boxes N that need to
be searched each time step can be quite large, as they corre-
spond to the entities that lie on the external boundaries of the
meshed bodies. Given an efficient tree search, one can typ-
ically determine the intersection candidates in O(N log(N))

operations, where log(N) operations are needed to scan the
tree for each item in the set of N items participating. One
usually desires to perform this tree search operation in par-
allel to reduce run time. Secondly, the underlying compu-
tational mechanics simulation is also run in parallel, often
using a domain decomposition method to distribute the fi-
nite elements evenly on the available processor ranks (the
primary decomposition) in an MPI-parallel system. The sur-
face entities will inherit the underlying finite element de-
composition structure, but this typically does not result in
a properly load-balanced contact spatial search decomposi-
tion. Indeed, for an arbitrary finite element decomposition it
is likely that some subset of the active processors will pos-
sess a considerable number of boundary entities that need
to participate in the spatial search, and some ranks will have
none. The parallel spatial search using such a decomposition
will not perform well due to this imbalance and the fact that
not all of the allocated processors are used for the contact
operations.

There are two potential approaches to parallelizing the
spatial search at the MPI level:

– Re-partition the surface entities to obtain a balanced sec-
ondary decomposition and perform the spatial search us-
ing that decomposition, or

– Use the primary decomposition for the on-rank spa-
tial search and “ghost” potential contact entities from

“nearby” processor ranks and just accepting a degree of
load imbalance during this local search operation. Note
that this imbalance can be reduced somewhat by using a
spatial decomposition (e.g., recursive coordinate bisec-
tion, RCB) rather than a graph based decomposition for
the finite element mesh partitioning.

Clearly, the decision to use a primary vs. secondary de-
composition approach amounts to considering the tradeoff
between parallel efficiency and entity communications, and
is problem and decomposition dependent. The secondary
decomposition approach, while well balanced for the con-
tact operations, requires a large amount of inter-rank data
communication each time step if the primary and secondary
decompositions are significantly different.

In the primary decomposition approach, the load balance
associated with the on-rank spatial search is generally not
ideal (as it is driven by the volume decomposition). Here,
ghosting is used to copy entities that are spatially close to
a given processor’s entity set to that processor, such that no
further inter-processor communications are needed to com-
plete the on-rank search operation. While the load balance
may be poor, generally much less inter-processor commu-
nication is needed relative to the secondary decomposition
approach.

The “best” method to use is typically problem and hard-
ware dependent, as one desires to minimize the “wall clock”
time spent in the search operation. The search includes the
time needed for the parallel search plus the communications
time needed to set up and recover from the search. One can
envision problems where a secondary decomposition is ideal
from an overall performance standpoint, and one can also
envision the opposite scenario where ghosting would be su-
perior.

The goal of this work is to demonstrate the extension
of a standard parallel contact search execution model to
use manycore processing within an MPI rank. In order to
explore on-rank parallelism, our desire was to focus on
a mature, representative, MPI-parallel contact library with
an existing set of regression (both correctness and perfor-
mance) test problems. The Algorithms for Contact in a Mul-
tiphysics Environment (ACME) library [2] meets those cri-
teria. ACME implements entity migration between proces-
sors, domain decomposition, and load balancing using the
Trilinos Zoltan communications library [5].

We concentrated on the contact global search function
as this is often the most time consuming aspect of an anal-
ysis employing contact. Further, we consider the primary
decomposition approach outlined above and do not address
the use of the secondary decomposition technique. To fur-
ther the effort, we profiled the behavior of ACME within
the ALEGRA shock hydrodynamics application on a bench-
mark problem; see Section 2.1. The profiling results re-
vealed that much of the work in contact global search is
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spent calculating the entities and data that must be ghosted
from one MPI rank to another. Thus, we focused on accel-
erating the ghosting search operations performed within an
MPI rank in ACME. Our strategy is based on the philosophy
that most of the work within a rank can be performed on a
coprocessor; given the degree of parallelism that might be
available in the future, a significant degree of parallel load
imbalance between any two MPI ranks may become a sec-
ondary consideration. Stated another way, if floating point
operations within a rank are very efficient (the “FLOPS are
free” philosophy), MPI parallelism becomes a less impactful
source of performance.

This presentation begins with Section 2, which describes
the details of the MPI-based contact global search imple-
mentation in ACME that serves as the reference implemen-
tation. Section 3 summarizes the structure of the ghosting
search and how we chose to structure it for GPU execution.
Significant restructuring was performed to improve the data
movement between the (“host”) processor and GPU copro-
cessor. We modified the ghosting search approach to sup-
port efficient calculations of intersections between two sets
of axis-aligned bounding boxes (AABBs), as this operation
is performed three times in the overall approach. Many con-
tact search algorithms are based on the use of a k-D tree.
Unfortunately, k-D tree construction can be problematic on
on GPU architectures as insufficient parallelism exists at the
top of the tree [6]. Thus, an algorithm specifically designed
for spatial searching on GPUs uesd here. We chose Karras’s
Morton code linearized bounding volume hierarchy (BVH)
construction algorithm and parallel AABB BVH overlap
search method [6,7]. Finally, in order to provide sufficient
parallelism in the remainder of the on-rank work, we sub-
stantially restructured the last part of the ghosting algorithm
where the AABB intersection operations are performed.

1.3 Kokkos for Portability

There are multiple models that support multiple threads of
execution within a single MPI rank. The combination of
MPI with such a model referred to as an MPI+X approach.
Example “+X” software environments include OpenMP,
Pthreads, CUDA, OpenCL, CilkPlus, Threading Building
Blocks, and Microsoft’s Task Parallel Library [8–14]. Ex-
amples of hardware that supports these environments in-
clude conventional multicore CPU chips, Intel’s Xeon Phi,
and GPUs or FPGAs used as coprocessors. CUDA is an ex-
ample of a programming model that is closely tied to GPU
coprocessor hardware models.

Sandia’s Kokkos library [15–17] provides a program-
ming abstraction layer intended to enable developers to
write source code that is portable across multiple execu-
tion environments. It is implemented as a layered collec-
tion of templated C++ libraries that provide a thread-parallel

programming model. Compile-time options select the spe-
cific underlying programming model (CUDA, OpenMP, or
PThreads) that is used in the generated code. Further, one
desire is that Kokkos provide performance portability; it is
designed to give a significant fraction of the performance
that would be obtained if the code for a given algorithm was
written specifically for the architecture in question [17].

Kokkos includes parallel for, parallel reduce, and par-
allel scan control structures, as presented in Section 3.1.
The semantics of these abstractions in Kokkos are similar to
other libraries [13,10,18], and thus they will not be defined
here. Several additional features of Kokkos address code
portability. To support CUDA, Kokkos explicitly includes
the concept of multiple memory and execution spaces. Tem-
plate specialization is used to generate C++ code for the de-
sired execution model. For example, the Kokkos::View class
provides an abstraction for multi-dimensional arrays that in-
cludes a template parameter that specifies the memory space
where the data resides (regular “host” memory or in the
GPU’s memory space). An additional template parameter
controls data layout, which is used to optimize memory ac-
cesses inside interior loops contained within the body of a
parallel loop (e.g., a parallel for). The Kokkos::DualView
class can be used to manage a pair of Views with match-
ing data layouts, providing a convenient mechanism for syn-
chronization of data between different memory spaces.

The target for this study was a MPI+GPU environ-
ment. However, using Kokkos we were able to create a
single-source implementation that produced executables for
OpenMP, PThreads, or CUDA. This allowed us to pursue
development and debugging of thread-safe implementations
of our approach on conventional multi-core systems. Debug-
ging the alternate implementations focused on issues with
copying information between memory spaces. Initial devel-
opment was performed on a MPI+GPU platform, a Cray
XK7 with NVIDIA K20x GPUs using one GPU per MPI
rank. Performance data was obtained on a partition of San-
dia’s Shannon testbed with NVIDIA K80 GPUs, using one
Sandy Bridge core and one GPU per MPI rank.

Section 3 describes the modifications to the contact
global search algorithm that were performed. Various paral-
lel programming idioms were applied to support the incor-
poration of the parallel BVH-construction algorithm devel-
oped by Karras. We restructured the ghosting algorithm to
increase parallel performance. The use of Kokkos supports
a comparison of the performance of the ghosting search al-
gorithm between GPU and conventional multicore archi-
tectures. Section 4 presents this data, using the OpenMP
model for the multicore case. We conclude with sugges-
tions on how additional performance improvements might
be achieved, and other directions for future work.
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2 Ghosting for Contact Global Search

We chose the existing ACME contact library to serve as a
reference for this work. In this section, we describe the pro-
filing performed on ACME to provide a performance base-
line, and to focus efforts on the highest priority sections of
the code to address. Finally, we summarize the ACME con-
tact global search problem and the redesign activities we
pursued.

2.1 Contact Global Search in ACME

Algorithms for Contact in a Multiphysics Environment
(ACME) is a mature, widely used multibody contact library
developed at Sandia National Laboratories [2]. The library
implements various algorithms to i) search for potential in-
teractions between body surfaces represented by analytic
and discretized topological entities and ii) determine inter-
action forces needed to prevent penetration or other viola-
tion of surface integrity. The typical application of ACME is
to support other software that simulates bodies in contact by
forming and integrating equations of motion. ACME is writ-
ten in terms of geometry and possible interactions between
discrete surface entities and representations (nodes on the
surface of a body and faces that connect nodes to represent
the body’s surface). The ACME code base amounts to ap-
proximately 90,000 lines of C++ code contained in include,
implementation, and driver files.

ACME contains a set of 89 correctness tests, of which
roughly half are designed to execute in parallel using MPI
on four processors. During this study, the “correctness” of
the evolving code base was verified by running these tests
prior to committing changes to the source repository, to en-
sure that code modifications do not alter the basic features,
reliability, and capabilities of the library as it was modified.

We developed a set of six performance tests to guide the
development process. These tests are based on computing
the time required to calculate the contact constraint system
between bricks in a wall (Figure 2). The performance test
problems range from 16K to 18M surface elements (faces).
Note that the mesh needed for the full physics simulation
includes many more volume elements but this number is not
relevant to the contact search and so we chose to report re-
sults in terms of the number of element faces that define the
contact surface.

We selected the 4458K surface face problem as a point
of discussion for many of the profiling results, as it is of
large enough size to give good repeatability in the timing
calculations. We focused on using a primary decomposi-
tion obtained by the Zoltan [5] recursive coordinate bisec-
tion (RCB) algorithm. This is a good performance strategy
for the “brick wall” test problems as RCB gives an even de-
composition across brick boundaries, where a graph-based

Fig. 2 “Brick Wall” performance test problem geometry. Here, the
ALEGRA code is used to simulate a pressure pulse in front of the wall
that imparts a force on the bricks and displaces them as seen in the
diagram.

algorithm would not as the mesh connectivity graph of each
brick is isolated from its neighbors.

To help understand the distribution of work in the setup
of ACME and the layout of the work performed each time
step, Sandia’s ALEGRA [19] code was used together with
gprof [20] to obtain a profile of a dynamics calculation in-
volving the brick wall problem. The ALEGRA code uses
ACME for contact detection and enforcement. This profil-
ing result was used to isolate the sections of ACME that
involve functions executed more than once during a given
simulation (i.e., those operations performed each time step
of the simulation). The ACME driver was then used to re-
produce the decomposition used in this ALEGRA problem,
up to the point of assembling the contact constraints into the
host code’s finite element data structures.

A key excerpt from the profiling graph is shown in
Figure 3. The most time-consuming section of the code
was the contact search module of the code, which encom-
passes both the contact global search and the imprinting
search. This module was responsible for 34% of the over-
all run time of the ALEGRA simulation. Within that mod-
ule, the most expensive operation was the contact global
search, which calculates the face ghosting operations needed
to support the node-face contact model. Given that 18%
of the time is spent within this ghosting function, we first
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focused on it for the conversion to Kokkos coprocessor
execution. The specific function that implements ghosting
is named ContactSearch::DoGhosting New NodeFace;
we will refer to it as the contact ghosting function through-
out the sequel.

3	
  

ContactSearch::Create_Search_Topology 
18+% Effort 

ContactSearch::DoGhosting_New_NodeFace 
18% Effort 

ContactSearch::GlobalSearch 
34% Effort 

Fig. 3 Overall effort spent in the immediate children methods of
ContactSearch::GlobalSearch, as a percentage of total execution
time of the ACME driver.

2.2 Ghosting for Contact Global Search

We now describe the algorithm used by ACME for contact
global search, with emphasis on determining which entities
to ghost. Figure 4 shows the structure of the ACME ap-
proach. At the highest level, it uses a global search to locate
off-rank nodes and faces that are needed to support an on-
rank (local) search. It is this specific algorithm that we adapt
in later sections to exploit on-rank parallelism.

The first phase of the algorithm is to construct bounding
boxes on each rank from the lists of the nodes and faces
on that rank. Specifically, it creates a list of ε-inflated axis
aligned bounding boxes (AABBs) for each of these entities.
Let bn denote an ε-inflated axis aligned bounding box for a
node, and bk

n is the box for the kth node on the rank. The set
of bounding boxes for all the nodes k on a given rank is,

Bn = {b1
n,b

2
n, . . . ,b

K
n }. (1)

Furthermore, each rank constructs two additional ε-inflated
bounding boxes, each large enough to contain all the nodes

ContactNodeBlock	
  
	
  

node	
  mini-­‐topology	
  list	
  

ContactFaceBlock	
  
	
  

face	
  mini-­‐topology	
  list	
  

Construct	
  Bounding	
  Boxes	
  

Compute	
  Communica:on	
  Partners	
  
and	
  Ghos:ng	
  Candidates	
  

Communicate	
  Node	
  
Boxes	
  (MPI)	
  

Search	
  Local	
  Faces	
  against	
  Remote	
  
Nodes	
  

Export	
  Ghost	
  Data	
  
(Zoltan_Help_Migrate)	
  

Communicate	
  Rank	
  
Bounding	
  Boxes	
  

(MPI)	
  

Fig. 4 Functional layout of the operations performed inside the contact
ghosting function, ContactSearch::DoGhosting New NodeFace.

and faces on the rank, respectively. For brevity, we some-
times refer to these AABBs as the rank bounding boxes. The
all-nodes bounding box (that is the rank bounding box for all
nodes on a given rank) is

Bn = bbox(∪bk
n). (2)

For the faces on the rank, the ε-inflated bounding boxes for
the faces are denoted,

B f = {b1
f ,b

2
f , . . . ,b

K
f }, (3)

and the rank’s all-faces bounding box is,

B f = bbox(∪bk
f ). (4)

The next phase in the ghosting algorithm is to communi-
cate rank bounding boxes. This is an all-to-all (MPI) com-
munication of each rank’s all-nodes and all-faces bounding
boxes Bn and B f . The result of this operation is that each
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rank knows the physical extents of all of the other ranks’
all-node and all-face bounding boxes.

Each rank now has the information needed to indepen-
dently and consistently compute its communication partners
for the rest of the ghosting algorithm. Specifically, in the
compute communication partners and ghosting candidates
phase, each rank r will determine

i) the set of ranks Qrcv from where r will receive a set of
node bounding boxes,

ii) the set of ranks Qsnd to where r will send a set of node
bounding boxes,

iii) and for each rank q ∈ Qrcv, the set of local face bound-
ing boxes for which it will need to check for overlaps
against the node bounding boxes to be received by r
from rank q

as outlined in the subsequent text.
For the remainder of the ghosting algorithm, we expect

each rank to need to exchange data with relatively few other
ranks. Until the final phase, the data exchanged will be lists
of bounding boxes. Knowledge of the communication part-
ners is important as such information will allow pairwise
MPI communication rather than requiring a MPI Alltoallv
operation.

The first step of the compute communication partners
and ghosting candidates phase is for each rank r to create
a bounding volume hierarchy (BVH), or search tree, of the
all-nodes bounding boxes {Bq

n} and a BVH of the all-faces
bounding boxes {Bq

f } from the other ranks q 6= r. If Br
f over-

laps Bq
n then q ∈ Qr

rcv; this completes step (i). If Br
n overlaps

Bq
f then q ∈ Qr

snd; which completes step(ii).

Each rank then uses the BVH of {Bq
n} against its own

local face boxes B f to determine which of the bk
f overlap

which Bq
n for the remote rank q. Similarly, each rank does

the same for Bn and the BVH of {Bq
f }: find which bk

n overlap

which Bq
f . The node boxes bk

n on the local rank that overlap
the remote rank q’s all-faces bounding box B f are added
to the node box ghosting list Lq

gns for that rank q, as each
such node is a candidate to interact with a face that might
be ghosted over from rank q. Similarly, the overlapping face
boxes bk

f on the rank are stored in its face box ghost list
Lq

gfs. The faces whose boxes are in Lq
gfs are candidates to be

ghosted over to rank q.
The communicate node boxes phase involves an MPI

send operation, where the members of the node box ghost-
ing lists Lq

gns created above are sent to the respective re-
mote ranks q ∈ Qsnd. The incoming node boxes from a rank
q ∈ Qrcv are placed in the received node box ghost list Lq

gnr.
The final computational phase is to search local faces

against remote nodes. Here, each rank loops over each re-
mote rank q and compares the list of node boxes Lq

gnr re-
ceived from q with the face box ghost list Lq

gfs. For each

non-empty Lq
gnr, a BVH of Lq

gnr is computed and used to ac-
celerate this overlap search. If an incoming node box in Lq

gnr
is found to overlap with a face box in Lq

gfs, then the face that
spawned the face box is marked for ghosting and is added
to a ghosted entity list Lq

ges, to be sent via to the destination
rank q.

Once all the ranks complete the construction of their Lges
lists, the export and migrate ghost data phase completes the
ghosting by performing the data marshaling, data movement
between ranks, and data de-marshaling.

Fig. 5 Data flow between main memory and the communications net-
work on a conventional MPI-parallel system.

As the MPI+X model can include multiple memory
spaces on each MPI rank, we want to first review the MPI-
based communication phases in the ghosting algorithm. The
first of these is an all-to-all exchange of each rank’s all-
nodes and all-faces bounding boxes. In the second, each
rank sends Lq

gns to rank q for each q for which any bk
n ∈ Bn

overlaps Bq
f . The third is the actual ghosting operation,

where the on rank faces boxed by the {bk
f } that overlap

with a ghosted node box received from rank q are copied
to rank q, in effect “ghosting” these faces on rank q. Fig-
ure 5 illustrates the data flow during these communication
operations. Here, the entity bounding boxes (nodes and/or
faces) exist as objects in main memory. These objects are
assembled into communication buffers, and sent over the
inter-processor communications network using MPI. Once
received by the target processor, the buffers are unpacked to
form ghosted entities in the main memory of the target rank.

Within ACME, significant optimization of the above
search and MPI communications path has occurred over
years of use and performance optimization activities. As we
proceed to develop new approaches for the search and data
communications model by moving to a multicore imple-
mentation, all performance comparisons will be performed
against the optimized ACME implementation.

3 Manycore Parallelization of Contact Global Search

We now discuss our development of the manycore-ready ap-
proach to transform the MPI+serial contact ghosting func-
tion just described. Again, the primary decomposition ap-
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proach is used with entities ghosted to each processor so
that the local search may be performed without further inter-
processor communication.

3.1 Parallel Programming Idioms

We first review several programming idioms that are useful
for implemented threaded parallel algorithms. We will em-
ploy these terms in our description of on-rank parallelization
of the contact ghosting function.

The concepts of parallel for, parallel reduce, and par-
allel scan [21–24,13] are becoming increasingly common
in parallel programming practice, as they are featured in
a number of threading libraries and extension languages
[18,13,16] 2. The description here most closely follows the
terminology used in the literature and documentation on
Kokkos [16,25] and Threading Building Blocks [13,26].

The parallel for construct is similar to a traditional for
statement

for (int iw = 0; iw < worksize; iw++) {
/* Loop Body */ }

but additionally specifies that the increments of work done
by executions of the loop body should be performed asyn-
chronously without regard to any dependencies. The loop
body can be encapsulated by a function object, or functor,
whose inline member function 3

void operator() (int iw) const { /* work */ }

performs the work increment iw when called with iw as its
argument. 4 The variables used in the loop body but declared
outside of it need to be bound to member variables of the
functor in its declaration.

parallel for(worksize, functor inst);

then applies a functor instance, functor inst, in a thread par-
allel fashion.

parallel reduce incorporates parallel for semantics but
additionally enables computation of a summary result from
results computed by the individual applications of the func-
tor. This summarizing computation is known as a reduction

2 While OpenMP does support parallel reduce by providing a re-
duction construct that can be combined with parallel for, it does not
provide similar support for parallel scan. An implementation of a par-
allel prefix scan algorithm for OpenMP must be provided externally.

3 Note that in the Kokkos API the functor’s work increment is given
by an integer instead of a range to permit parallel for to compile into
a kernel launch on a GPU.

4 Both Kokkos and TBB APIs for parallel for, parallel reduce, and
parallel scan support the use of C++11 lambda objects in place of func-
tors. In certain situations, this use of lambda objects can improve the
readability of code. We find the functor-based APIs are easier to de-
scribe at the current stage of C++11 feature adoption, and in their full
form they are more general.

with the summary result variable called the reduction vari-
able. A binary reduction operator is used to combine results,
and the reduction variable is first initialized to the identity
value (zero for addition and one for multiplication). Con-
ceptually, when expressed in serial terms, the reduction has
the form:

for (int iw = 0; iw < worksize; iw++) {
varred = opred(varred, resultiw); }

where varred is the reduction variable and resultiw is the re-
sult of some operation associated with work increment iw.

For parallel reduce the reduction operator opred must be
both associative and commutative—for example: addition,
max, or min. In both TBB and Kokkos, the functor provides
init(.) and join(..) member functions for the initialization and
reduction operation on the reduction variable. The functor’s
operator has the signature

void operator() (int i, value type &valred) const;

The parallel reduce implementation calls this operator to
get each work increment’s contribution to the reduction
value and uses join(..) to perform the reductions.

parallel reduce(worksize, functor inst, varred);

invokes the functor member functions to perform the work
asynchronously and carry out a parallel reduction algorithm.

parallel prefix scan, or parallel scan, is a generalization
of prefix sum. The inclusive prefix sum of a sequence of
numbers {ai} is the sequence {∑i

j=0 a j}. The exclusive pre-
fix sum excludes the j = i case from each summation. Con-
ceptually prefix scan generalizes from numbers to arbitrary
data type and to any associative binary operation on that data
type. The Kokkos parallel scan API is similar in structure
to the parallel for and parallel reduce API. An application
code functor is responsible for providing member functions
that the parallel scan implementation calls to execute the
“loop body” work and carry out the parallel prefix scan al-
gorithm.

Program correctness with respect to multiple execution
threads reading and writing shared data is termed thread
safety. The two main idioms for enabling thread-safety with
respect to shared modifiable data 5 are mutual exclusion,
also known as “locking”, and atomic operations. While lock-
ing is general, it can entail unnecessary overhead, and it can
complicate multi-threaded software, especially when situa-
tions when multiple locks need to be held at once. Atomic
primitive functions in a programming model can simplify
the implementation of thread-safe algorithms. A function is
atomic if the effect of concurrent threads executing it can
always be produced by some serial execution.

5 As distinguished from data that once written is constant.
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3.2 Parallelism available within the search

The computational phases of the ghosting algorithm de-
scribed in Section 2.2 offer several opportunities to exploit
manycore parallelism. Except when MPI is explicitly men-
tioned, our discussion of parallel computation here will refer
to work done on a single, arbitrary rank.

In the construct bounding boxes operation, the bounding
boxes of the individual nodes (and faces) on a rank can be
computed independently of each other. Therefore, each of
these two sets of boxes, Bn and B f (see Section 2.2) can be
computed in parallel. Further, computing the rank bounding
boxes Bn and B f can be performed in parallel.

We developed functors for computing the node and face
bounding boxes. The functors’ constructors are used to pro-
vide them with read-only Views of the node and face IDs, en-
tity type information, connectivity data, and position infor-
mation, and writable Views to hold the output AABB data.6

The functors are used through the parallel reduce construct
described earlier. We defined a bounding-box structure for
both Bn and B f , and this is used for the reduction variable in
both cases. The functors share a common relative base class
that provides an implementation of the reduction operation
and the initialization for this bounding-box structure.

The parallel construction of the set of face bounding
boxes B f and the of the all-faces bounding box B f is the
easier case. The FaceComputeBoundingBoxFunctor’s oper-
ator uses an work increment argument to index into a View
of face IDs and writes the corresponding face ε-inflated axis
aligned bounding box data into its AABB View represen-
tation. It also expands the geometric extent of the second
argument as needed to contain the inflated AABB.

Parallel construction of Bn and Bn is slightly less
straightforward because not all the nodes in the input to the
functor are used. Specifically, for ACME “boundary” nodes
are shared across multiple processors with only one proces-
sor rank actually “owning” the shared node. ACME packs
the bounding boxes into an array (presumably to save mem-
ory), and we chose not to modify this behavior. The Node-
ComputeBoundingBoxFunctor’s operator evaluates a predi-
cate to decide whether the node specified via its index ar-
gument will be included. If not, then the node’s ε-inflated
AABB is not computed, and thus it is excluded from the
output View of AABBs and from reduction into B f . If the
predicate evaluates to false (the node is not owned by this
rank) the operator can simply return. However, if it evaluates
to true, the functor must determine the index at which the
node’s AABB data should be written in the output AABBs
View.

We tried the simplest approach, using atomic fetch-and-
add to provide each outputting thread with the next available
unused index.

6 Node and face IDs are simply indexes into data arrays.

idx = Kokkos::atomic fetch add(&m idx(), 1);

Here, m idx is the atomic variable7 holding the index at
which the unoccupied portion of the result View data begins.
The atomic operation increments the variable at the data lo-
cation &m idx() and returns the value of the variable be-
fore it was incremented. This approach provided good per-
formance on the GPU.

Other opportunities for parallelism arise in both the com-
pute communication partners and ghosting candidates and
the search local faces against remote nodes operations. Re-
calling Section 2.2, we observe that on each rank the ghost-
ing algorithm performs the following bounding box inter-
section searches:

i) Between members of {Bq
f } and Bn, providing {Bq∩

f } for
a result

ii) Between members of {Bq
n} and B f , calculating {Bq∩

n }
iii) Between members of Bn and members of {Bq∩

f }
iv) Between members of B f and members of {Bq∩

n }.
v) For each of the other ranks q, between members of Lq

gfs
and Lq

gnr.

Parallel approaches to search for spatial overlaps be-
tween two sets of AABBs {Bα} and {Bβ} once there is a
BVH of either set are well understood. In serial, it is com-
mon to implement a single AABB’s recursive traversal of a
BVH to search for overlaps with its leaves by using a stack,
instead of using a search function that calls itself recursively.
Let us assume that Bβ has fewer members than Bα , and that
the BVH for {Bβ} is well-balanced8. Then, the outer loop
over {Bα} can be converted to a thread-parallel implemen-
tation with each active traversal having its own array to use
as a stack. For each member bα

i ∈ Bα , it is easy to imple-
ment an overlap search recursively searches the BVH of Bβ

to find all the AABBs bβ

j ∈ Bβ that bα
i overlaps.

Some attention is required in storing the results of the
search. The basic idea is to use atomic fetch-and-add simi-
larly to what is done in NodeComputeBoundingBoxFunctor,
so that the functor obtains a unique index in a result View for
each overlapping pair it finds. However, the theoretical up-
per bound on the number intersections can exceed memory
capacity when the two sets of AABBs are large, and the re-
sults View cannot be resized while multiple threads are in
flight executing the traversal functor. Thus, we let the call-
ing code set results capacity and allow for the possibility that
the atomically updated index value could exceed it. In that
case, the index value tracks the number of results that need
to be stored. We dispatch the traversal functor using par-
allel reduce and introduce a reduction variable that tracks

7 The atomic variable is a scalar View whose data will be atomically
read-and-updated.

8 A well-balanced tree with N nodes has O(lgN) levels with a small
constant factor.
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whether the results View is discovered to be too small. If it
is (after the parallel reduce is completed), we resize the re-
sults capacity to the final value of the atomic variable, reset
it, and repeat the application of the search functor via a sec-
ond parallel reduce.

Finally, recall that in a computational mechanics sim-
ulation, all faces and nodes can be expected to move at
each timestep of the simulation. For this reason, the BVHs
used for AABB-overlap searches need to be updated or re-
computed each time the contact ghosting function is called.
In general, we must ensure that sufficient storage is allo-
cated for all of the sets of AABBs mentioned above. Given
the need to reconstruct the BVH, it is highly desirable to use
a BVH type for which there is an efficient manycore-parallel
construction algorithm. We opted to use a parallel algorithm
developed for efficiency on the GPU.

3.3 Morton Code Linearized BVH Trees for Intersection
Search

As previously stated, the simple approach to parallelizing
the top-down k-D tree construction is not efficient because
there is insufficient parallelism at the top of the tree [6].
Thus, other types of BVHs and construction algorithms
specifically targeting GPUs are popular research areas. We
summarize the Morton code linearized tree proposed by
Karras.

For many applications, including ray tracing in dynamic
scenes, simulation of deforming bodies, and simulations that
include large numbers of rigid bodies, the structure of a
BVH computed a priori will not yield satisfactorily fast
searches for the course of the whole runtime. The cost of the
algorithm for adapting or rebuilding the BVH from scratch
must be weighed against how efficiently it can be traversed.
With ray tracing in mind, Lauterbach, et al, [27], proposed
a linearized BVH construction for GPU computing that re-
quires only one sort. Given an 2m× 2m× 2m array of cells,
the 3m-bit Morton code of the 3-vector index of a cell simply
interleaves the binary representations of individual indices.
Thus, the Morton code for a cell is its ordinal in the Morton
(or “Z order”) space filling curve that traverses all the cells.

The basic idea for a Morton code linearized BVH of
AABBs is to:

1. Compute the AABB that is the bounding box for all the
input AABBs.

2. Compute the Morton code for the centroid of each
AABB based on this bounding box.

3. Sort the Morton codes.
4. Construct an ordered radix tree with the Morton codes

as keys at the leaves and the associated AABBs as data.

5. Convert the radix tree into a BVH: construct the AABB
at each interior node by combining the AABBs of its
children.

We implement Step 1 with a functor that resembles
a simplification of the FaceComputeBoundingBoxFunctor
mentioned above and that is applied through using paral-
lel reduce. Step 2 is performed by a centroid-computing
functor applied through parallel for. For the sorting step, it
is useful to use a template specialization matching the com-
puting Device (CPU, core, MIC, or GPU processing unit)
that is chosen at compile time, as the appropriateness of dif-
ferent sorting algorithms [28,29,21,30–33] varies with ar-
chitecture and expected problem size. In our CUDA special-
ization, we use the parallel sort by key(..) function from the
version of the Thrust library [18] distributed in the NVidia’s
CUDA Toolkit.

Karras improved the speed of constructing a Morton
code linearized BVH with a new algorithm for construct-
ing a binary, ordered radix tree from a sorted set of Mor-
ton codes [6], to address Step 4. Given the Morton codes
at the leaves of the tree, the algorithm computes the parent
and children of each node independently and in parallel. The
algorithm is designed for CUDA and trades work-efficiency
for parallelism, and was implemented as a single functor dis-
patched through a parallel for. Karras has presented perfor-
mance data showing that on a Fermi GPU it enables BVH
construction time similar to the overlap search time on the
GPU in large scenes [35].

Following [35], we implemented Step 5 with a functor
that traverses the tree upwards from its leaves. It is applied
via parallel for. The functor uses atomic fetch and add to
check and update an array whose entries each track how
many times an interior node has been visited. The first vis-
itor of a node simply returns, because it does not know
whether the AABBs of both children have been updated.
The second visitor knows that they have been. The second
visitor sets the AABB of the node to the result of merging
the AABBs of the children, and then proceeds to visit the
node’s parent.

For maximum speed during search, Karras recommends
computing the Morton codes for the set of AABBs for which
a BVH is not computed, and sorting that set in Morton-code
order. This is done to reduce divergence between threads in
the same warp on the GPU during the search phase. The
idea is that BVH traversals searching for intersections with
respect to similarly-sized AABBs with close Morton codes
can be expected to follow similar paths through the BVH.
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3.4 Applying Manycore Parallel Search and BVH
Construction

The first two searches in the compute communication part-
ners and ghosting candidates phase are for overlaps between
members of {Bq

f } and Bn (step (i)) and between members of

{Bq
n} and B f (step (ii)). These two searches do not merit the

construction of a BVH for parallel search, since Bn and B f
are effectively singleton sets of AABBs. It is straightforward
to parallelize the search for intersections between the mem-
bers of a set of AABBs and a single AABB, and this should
be done with respect to {Bq

f } and {Bq
n} only if the number

of ranks is large enough.
The third and fourth searches in this phase (involving Bn

and B f ) are expected to be formidable. In our tests, they each
have at least 104 members. As a result, the search for over-
laps between members of Bn and members of {Bq∩

f } and the
search for overlaps between members of B f and members

of {Bq∩
n } are suited for parallelization. Application of Kar-

ras’s manycore algorithm for BVH construction is straight-
forward, as is the BVH search. However, when the ratio of
the size of the larger set to the smaller is large, we do not sort
the larger set; we would expect the O(N logN) work in the
sort to dominate the search cost for most problem scenarios

Recall that in the communicate node boxes phase, each
rank r receives from each other rank q the set of ghosted
node boxes Lq

gnr that intersects rank r’s all-faces bound-
ing box B f . Rank r has previously computed the set Lq

gfs
of bounding boxes of its faces that intersect the all-nodes
bounding box of rank q. The search local faces against re-
mote nodes operation computes which bi

f ∈ Lq
gfs overlap any

AABB in Lq
gnr in order to determine which faces fi to ghost

to rank q. In the original serial on-rank code for this phase,
an outer loop iterates over each rank q∈Qrcv. If Lq

gnr and Lq
gfs

are both non-empty, a BVH of Lq
gnr is constructed, and an

inner loop iterates through Lq
gfs and uses this BVH to search

for overlaps.
We restructure the separate BVHs and searches for the

different q into a single BVH construction and search in or-
der to maximize parallelism. Conceptually, from the Lq

gfs and
other data we construct an array of triples covering all the q
and each containing:

– an AABB from Lq
gfs;

– the ID of the corresponding face; and
– q, for which the face is a candidate to be ghosted.

We construct a similar conceptual array, ∀q, of pairs associ-
ating each member of Lq

gnr with the rank q it came from.
From these two arrays, we construct input Views rep-

resenting possibly non-unique AABBs, copying data to the
Device. We apply the BVH construction algorithm to the
AABB View representation from one array, and then do an
overlap search against it with the AABBs from the other in

parallel. The result consists of pairs of integers that index
into the two arrays. If a search result pair indexes to entries
that have the same q, then the AABB of the local face over-
laps the AABB of a node on rank q, and that face needs to be
ghosted to rank q. Any pairs that do not satisfy this criterion
are skipped.

In the current implementation, we construct the arrays
for the above comparison operation and process the search
results on the Host. After the ghost lists are constructed,
the Host performs the ghosting of the data (via MPI com-
munication) based on the search results, calling the Zoltan
MigrateExportedData() function to prepare communication
buffers and transfer the data to be ghosted.

3.5 Additional Opportunities for Manycore Parallelism in
Ghosting

As mentioned in Section 1.3, Kokkos::DualViews are used
to facilitate copying data back and forth between Host mem-
ory and Device memory. Specific categories of such data in-
clude:

– Field data, such as POSITION (displacements, etc), and
– Topology data, such as the IDs and number of nodes of

a face.

Accessor functions from legacy data structures were up-
dated to use the Host-side Views. While this staged re-
engineering method required significant changes across the
ACME code base, the alternative of maintaining more than
one copy of the entity data (one in the existing ACME data
structures, and a second in device-compatible Views) was
even less palatable.

At a higher level, the relationships among the Device and
Host sides of the DualViews and the MPI communications
network on the MPI+GPU systems we have used is shown
in in Figure 6. In an MPI+X application, algorithms and data

Fig. 6 Balanced data flow between host view, communications net-
work, and coprocessor device.

structures need to be selected with respect to the efficiency
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of the data flows both to the coprocessor and to the MPI
communications network, the two legs of Figure 6. If either
the MPI or the coprocessor data path is used out of balance
with the two execution spaces, the overall performance will
less than otherwise achievable.

Recall that the all-faces and all-nodes bounding boxes
computed on the Device are transferred to the Host for
exchange among the ranks. Here, the amount of data be-
ing sent from the Device to the Host, and then communi-
cated using MPI is very small and likely not overly expen-
sive. However, the MigrateExportedData() call at the
end of the ContactSearch::DoGhosting New NodeFace

function is quite expensive. In the migration operation,
for each MPI rank with which the current rank needs
to send ghost entity information, there may be thousands
of entities to be migrated. The bulk of time spent in
MigrateExportedData() is assembling and connecting
various ACME data structures on the Host. Potentially, par-
allel algorithms could perform this work faster on the Device
if more of the underlying ACME data structures are restruc-
tured. If the computation needed to form the communication
buffers was performed on the Device, and the communica-
tions architecture supported direct buffer sends from the de-
vice address space, a design such as the one illustrated in
Figure 7 would result. This model would avoid the need for
data transfer from the Device to the Host and the host mi-
gration processing and communications operations.

Fig. 7 Data flow between host view and coprocessor device where all
processing occurs on the device.

In Contact Global Search, the all-nodes and all-faces
bounding boxes, the ghosting node boxes, and the faces to be
ghosted that are calculated on the Device could be packed in
place on the Device . The packed data could then sent over
the network using an MPI all-to-all via the Device buffer.
Note that a bulk copy between Host and Device memory
is often preferable to serial packing/unpacking on the Host.
These AABBs and ghosted faces (including their field data)
would similarly be received directly on the Device for use in
the following search operations. More detailed investigation
of this approach is left for future work.

4 Performance Measurements

We compared the performance of the new contact ghost-
ing function against the ACME reference implementation on
“brick wall” test problems employing 278K, 1113K, 4458K,
7820K, and 17818K faces. We ran the code on 4 MPI ranks
on Shannon, with one MPI rank per compute node. We used
one regular processor core (Host) and one GPU (Device) per
MPI rank.
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Fig. 8 Scalability of the Morton code linearized BVH construction and
intersection search algorithm compared with the reference ACME im-
plementation. Both curves use the same MPI decomposition (4 ranks).
The GPU-executed linearized BVH algorithm is significantly faster
and scales better than the reference implementation.

Figure 8 shows the scaling of the Morton code linearized
BVH construction and intersection search algorithm com-
pared with the ACME implementation. We include all five
intersection searches described in Section 3.4 plus the time
required to read and write data to arrays for communication
and registering faces for ghosting9. The upper curve is the
reference ACME implementation using 4 MPI ranks. The
middle curve shows the new implementation where the GPU
on each rank executes the parallel Morton code linearized
BVH construction and search algorithm. The MPI decom-
position is identical in both cases. Recall that not all of this
code is parallel, only the three searches that process a large
number of bounding boxes are run in parallel on the GPU.
The bottom curve shows the scalability of these three large
searches, ignoring the two serial searches.

The gap between the top curve and the middle curve rep-
resents the overall performance gain in the global search due
to the proposed parallel BVH construction and search ap-
proach. Note that the middle curve includes the filtering step
on the Host that follows the search in the modified search

9 These operations are included in the outer loops of the respective
searches in the ACME reference implementation.
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local faces against remote nodes operation, since the orig-
inal ACME control flow did not require filtering. (c.f. Sec-
tion 3.4.) Note that the parallel search does extra work com-
pared to the reference, serial version. First, for each face box
bi

f ∈ Lq
gfs, the parallel algorithm actually finds all (off-rank)

AABBs in Lq
gnr that overlap bi

f , whereas the serial algorithm
can move on to the next face box once it has found any
such node box from rank q. In our test problems, this re-
sulted in extra BVH traversal work that identified as many as
three times as many overlapping pairs as the serial, reference
code. Second, when a face box overlaps more than one node
rank bounding box, the face box will be included on multi-
ple occasions in the search (recall that this is the reason for
the filtering step). Furthermore, we made no attempt to esti-
mate the capacity for the search results buffer and allowed it
grow incrementally as needed throughout the contact ghost-
ing function. As a result, all three searches repeated the BVH
traversal phase when running the test problems, as the first
pass was used only to determine the necessary capacity of
the array required (c.f. Section 3.2.)

Comparison of the gap between the top and middle
curves against the bottom curve shows excellent perfor-
mance of the GPU implementation of the linearized BVH
algorithm. We would expect the algorithm to continue to
scale well as problem size on the GPU increases, up to the
point of running short of memory to hold the on rank search
entities within the GPU memory space. Further work will
be needed before the search algorithm is robust for analy-
sis applications, as it will be necessary to modify either the
number of MPI ranks or the entity decomposition to prevent
overfilling the GPU memory space with search entities as
the simulation proceeds.

 0

 1

 2

 3

 4

 5

 6

5M 10M 15M 20M

Using 4 MPI Ranks

Se
ar

ch
 T

im
e 

(s
)

Number of Faces

Kokkos::Cuda
MigrateExportedData()

Fig. 9 Scalability of the contact ghosting function, illustrating the cost
of migrating the entities calculated withing the global search, Migrate-
ExportedData(). The search time is becoming negligible with respect
to the time required to migrate the entities in the ghosting operation.
Further acceleration of the search algorithm will require a strategy to
decrease the MPI intercommunication time, as suggested in Figure 7.

Figure 9 compares the time required by the contact
global (ghosting) search function to that required to migrate
the ghosts using MPI. Again, all cases employ 4 MPI ranks,
and each MPI rank has its own GPU. It is clear from this re-
sult that further improvement of the search algorithms will
result in little additional performance, as the MPI commu-
nication time now monopolizes the overall contact search
and ghosting process. Further improvement will depend on
increasing the efficiency of the data transfer from GPU to
GPU across the MPI communications channel.
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Fig. 10 Scalability of the contact ghosting function on a typical mul-
ticore shared memory multiprocessor (SMP). We compare the paral-
lel box construction and Morton code linearized BVH algorithm using
multiple threads (1, 2, 4, and 8) with 4 MPI ranks, varying the num-
ber of active CPU cores per rank. This result uses the OpenMP Kokkos
device, and shows that Kokkos provides a portable implementation on
both GPU and multicore devices.

To examine the portability of the new ghosting search al-
gorithm, we next considered conventional multi-core SMP,
using the Kokkos OpenMP execution space. For the pur-
poses of portability, we used a simple parallel radix sort in
the BVH construction algorithms. Figure 10 shows how the
ghosting function performance scales on the same machine
used for the GPU runs, but employing up to 8 Sandy Bridge
cores per MPI rank. Again, we employ 4 MPI ranks with
an identical domain decomposition as before. The data in-
dicates that as the number of cores were increased, there
was a significant improvement in overall performance. How-
ever, the single-thread ACME reference implementation was
more efficient than all but the 8 core result. Recall that this
is due to the fact that the parallel implementation performs
significantly more work than the reference implementation.
Indeed, one would not expect that the single-thread OpenMP
performance would compare with that of the (non-threaded)
reference ACME implementation.

Note that since the Morton code algorithm presented
here is tailored for the GPU, it is likely not well structured
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Fig. 11 Comparison of the overall effort required to execute the contact ghosting operation on the 4458K face problem. These results are for
Kokkos parallel implementation using the CUDA execution space on 4 GPUs (one per rank) and the OpenMP execution space (with 1, 2, 4, and 8
threads) on an SMP, also using 4 ranks.

for multicore SMP architectures. Figure 11 shows the tim-
ings for the 4458K face problem using a Kokkos::OpenMP
execution space on an SMP with 1, 2, 4, and 8 OpenMP
threads per MPI rank, adjacent to the Kokkos::Cuda compi-
lation on a GPU co-processor. Enhancing the performance
and scalability of the search algorithm on an SMP is left to
future work, it is quite likely that an improvement in perfor-
mance could be obtained. However, such an improvement
may come at the cost of GPU performance. It remains to be
demonstrated if is is possible to obtain near optimal perfor-
mance of contact global search across diverse architectures,
perhaps spanning SMPs, GPUs, and the INTEL MIC, using
a single-source implementation with Kokkos serving as the
abstraction layer.

In Figure 11, 13 individual timers were used to study the
various contact ghosting operations. The timers’ spans par-
tition the contact global search function. Four of these sec-
tions (marked with a P) correspond to phases of the contact
ghosting function algorithm that we attempted to accelerate
using parallelization:

– Computing the expanded bounding boxes for the local
nodes on each MPI rank.

– Computing the expanded bounding boxes for the local
faces on each MPI rank.

– Searching for intersections between local node boxes
and rank wide faces boxes, and between local face boxes
and rank wide node boxes. One timer (“Searches 0 & 1”)
covers both searches, which are contiguous in the code.

– The box intersection search (“Search 2”) that is applied
to the results of those two searches, following the paral-
lel data exchange.

Other phases cover initialization, data allocation and initial-
ization, synchronizing data between the Host and Device
(for CUDA/GPU), parallel data exchanges, MPI Barriers,
data migration, and sections too insignificant to merit paral-
lelization in the 4 MPI rank example. Note that the timings
of phases that involve MPI Barriers and synchronization are
sensitive to skew in the respective previous phases.

The single thread OpenMP results show that all four of
the phases in which we introduced parallelization consume
a significant enough amount of time and could potentially
benefit from parallel execution. The face box computation
shows good strong scaling on the OpenMP Device. Indeed,
when the number of OpenMP threads were increased from
1 to 8, this operation was accelerated by a factor of 7. The
first two searches show significant improvement in perfor-
mance, and are more than 4 times as fast with 8 threads com-
pared to a single thread. The node box computation scales
less well. Using 8 threads it about 2.6 as fast than on a sin-



An MPI+X Implementation of Contact Global Search Using Kokkos 15

gle thread. The difference between the node box functor and
the face box functor is that the former uses an atomic vari-
able that each thread increments to obtain space in a results
array. While the GPU provides high performance atomics
using CUDA, the performance of the atomic operation on
OpenMP results in a bottleneck. The searches also make use
of atomics, although to a lesser proportion to the amount of
computation done.

The final search phase is only slightly faster using 8
threads as on a single thread. Overall, the performance of
the algorithm on OpenMP is respectable given the addi-
tional overhead involved in the parallel search; performance
is slightly slower on 2 threads than 1 and slightly faster on 4
threads than 1.

Finally, we observe that initialization of the search is has
appreciable cost on the GPU but is insignificant in the case
of OpenMP. We focused the code optimization on the GPU
platform, but clearly more work can be done in this area to
further improve GPU performance. Work is also currently
underway to study this algorithm on the Intel Xeon Phi co-
processor.

5 Conclusions

The paper details the development of a contact global
(ghosting) search formulation to make use of manycore par-
allelism. Our primary target was MPI+GPU architectures.
While some aspects of this work that lead to substantial per-
formance gains are straightforward, for intersection searches
involving sets of bounding boxes we leveraged capabilites
developed by researchers at NVIDIA targeted at visualiza-
tion operations on a GPU. Here, we employ a Morton code
linearized BVH search algorithm and a BVH construction
algorithm advanced by Karras [6,7]. This algorithm, if it
were applied in the most straightforward manner, could re-
quire performing a number of searches linear in the num-
ber of MPI ranks. As this would limit the benefits of many-
core parallelism, we modified the global search algorithm to
combine all but a constant number of searches into a single
search operation.

We implemented the contact search algorithm using
Sandia National Laboratories’ Kokkos multicore hardware
abstraction package, to allow the use of the search capability
in a portable manner across GPU and multicore hardware.
We chose to demonstrate this algorithm inside of Sandia’s
ACME (Algorithms for Contact in a Multiphysics Environ-
ment), taking advantage of the set of correctness tests avail-
able in ACME to ensure correct operation of the final code.
Our study of developing MPI+GPU/multicore search capa-
bilities and implementing them in ACME followed these
steps:

– To select what sections of code to address, we first used
profiling to identify where to focus ACME code and data
access restructuring activity. We then looked for the top
time consuming sections while considering dependen-
cies and the existing code structure.

– We replaced the original ACME contact ghosting func-
tion with an implementation that builds on Kokkos for
portable on-rank parallelization. Changes in the new ver-
sion include:
a) parallel compution of node and face bounding boxes,
b) implementation of the parallel Morton code lin-

earized BVH algorithm using Kokkos, and
c) calling the parallel methods using generic

Kokkos::DualView interfaces and functors.
– We compared the final results on both GPU and multi-

core hardware to assess the degree to which Kokkos has
enabled code portability and convenience. Initial results
of the approach demonstrate very good performance on
GPUs, and significant parallel performance on multicore
architectures.

Future work includes improving the scalability of the al-
gorithm on OpenMP and PThreads and developing results
on the Xeon Phi. Use of the “count, allocate, and fill” pat-
tern [16] for returning parallel algorithm results would re-
move some performance limitations caused by the use of
atomic operations. In addition, redesigning the final entity
migration communication could take advantage of copro-
cessor execution and direct buffer communications between
coprocessors. Overall performance of the contact implemen-
tation could be further increased by performing the contact
local search operation given the resident entity data migrated
between the coprocessors during that operation. Finally, it
should be possible to also perform the contact enforcement
phase subsequent to the local search, without appreciable
data transfer between the Host and Device.

The Kokkos hardware abstraction library has appeared
to be suitable for this study. One goal of Kokkos is to provide
performance portability, where an algorithm implementa-
tion using the Kokkos library is portable across a variety of
architectures and the implementation provides performance
near that achievable with a natively-coded version of the
method on the hardware of interest. This study demonstrated
source code portability across both multicore and GPU ar-
chitectures. It has found good performance with little work
where the chosen algorithm was appropiate for the hard-
ware. We did not compare the Morton code linearized BVH
search implementation with architecture specific versions,
and additional study would be required to verify the per-
formance dimension of the Kokkos implementation. Prac-
tically, at least in the case of the GPU, additional perfor-
mance in the search would not increase the performance of
the overall contact implementation as the time spent in entity
migration overwhelms the rest of the search. It was straight-
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forward to implement the Morton code linearized BVH con-
struction and search algorithms using Kokkos, and to use the
Kokkos portable data structures to redesign the ACME code
to efficiently transfer data between the Host and Device.

This study begins the path of developing a performance
portable contact library, building on the excellent results
obtained with the Morton code linearized BVH algorithm
and straightforward parallelized bounding-box computation.
The performance gains from these algorithms overcome ad-
ditional costs within contact ghosting accrued on the Host
due to CUDA optimized data layouts in Kokkos data struc-
tures. Kokkos versions of local search and contact enforce-
ment would be a natural evolution of the demonstrated ca-
pability that could take advantage of coprocessor data struc-
tures developed during this effort.
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31. Linh Ha, Jens Krüger, and Cláudio T. Silva. Fast four-way parallel

radix sorting on GPUs. Computer Graphics Forum, 28(8):2368–
2378, 2009.

32. Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger.
Fast in-place sorting with CUDA based on bitonic sort. In Pro-
ceedings of the 8th International Conference on Parallel Process-
ing and Applied Mathematics: Part I, PPAM’09, pages 403–410,
Berlin, Heidelberg, 2010. Springer-Verlag.

33. Erik Sintorn and Ulf Assarsson. Fast parallel gpu-sorting using a
hybrid algorithm. J. Parallel Distrib. Comput., 68(10):1381–1388,
October 2008.

34. N. Satish, M. Harris, and M. Garland. Designing efficient sorting
algorithms for manycore gpus. In Parallel Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pages 1–
10, May 2009.

35. Tero Karras. Thinking parallel, part III: Tree construction on
the GPU. http://devblogs.nvidia.com/parallelforall/

thinking-parallel-part-ii-tree-traversal-gpu/, 2012.




