DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3 )]2+ (6DHBP = 6,6'-(OH)2 bpy)

Abstract

Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2':6',2"-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined in this study for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)]2+ generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP–2H+)]0) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)]2+ (bpy = 2,2'-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. Lastly, the Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP–2H+ with CO2.

Authors:
 [1];  [1];  [1];  [2];  [1];  [3];  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Baruch College, New York, NY (United States). Department of Natural Science
  3. National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1335424
Report Number(s):
BNL-112052-2016-JA
Journal ID: ISSN 0020-1669; R&D Project: CO026; KC0304030
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 55; Journal Issue: 9; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Duan, Lele, Manbeck, Gerald F., Kowalczyk, Marta, Szalda, David J., Muckerman, James T., Himeda, Yuichiro, and Fujita, Etsuko. Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3 )]2+ (6DHBP = 6,6'-(OH)2 bpy). United States: N. p., 2016. Web. doi:10.1021/acs.inorgchem.6b00398.
Duan, Lele, Manbeck, Gerald F., Kowalczyk, Marta, Szalda, David J., Muckerman, James T., Himeda, Yuichiro, & Fujita, Etsuko. Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3 )]2+ (6DHBP = 6,6'-(OH)2 bpy). United States. https://doi.org/10.1021/acs.inorgchem.6b00398
Duan, Lele, Manbeck, Gerald F., Kowalczyk, Marta, Szalda, David J., Muckerman, James T., Himeda, Yuichiro, and Fujita, Etsuko. Thu . "Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3 )]2+ (6DHBP = 6,6'-(OH)2 bpy)". United States. https://doi.org/10.1021/acs.inorgchem.6b00398. https://www.osti.gov/servlets/purl/1335424.
@article{osti_1335424,
title = {Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3 )]2+ (6DHBP = 6,6'-(OH)2 bpy)},
author = {Duan, Lele and Manbeck, Gerald F. and Kowalczyk, Marta and Szalda, David J. and Muckerman, James T. and Himeda, Yuichiro and Fujita, Etsuko},
abstractNote = {Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2':6',2"-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined in this study for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)]2+ generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP–2H+)]0) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)]2+ (bpy = 2,2'-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. Lastly, the Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP–2H+ with CO2.},
doi = {10.1021/acs.inorgchem.6b00398},
journal = {Inorganic Chemistry},
number = 9,
volume = 55,
place = {United States},
year = {Thu Apr 14 00:00:00 EDT 2016},
month = {Thu Apr 14 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Introduction: Solar Energy Conversion
journal, August 2015


Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation
journal, June 2013

  • Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr300463y

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting
journal, August 2015


Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes
journal, August 2015


CO 2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO 2 Reduction
journal, August 2015


Molecular Catalysts for Water Oxidation
journal, July 2015


Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications
journal, August 2015


Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation
journal, December 2009

  • Rakowski Dubois, M.; Dubois, Daniel L.
  • Accounts of Chemical Research, Vol. 42, Issue 12, p. 1974-1982
  • DOI: 10.1021/ar900110c

Electrocatalytic and homogeneous approaches to conversion of CO 2 to liquid fuels
journal, January 2009

  • Benson, Eric E.; Kubiak, Clifford P.; Sathrum, Aaron J.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B804323J

Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels
journal, December 2009

  • Morris, Amanda J.; Meyer, Gerald J.; Fujita, Etsuko
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar9001679

Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2reductioncatalysts
journal, January 2012

  • Schneider, Jacob; Jia, Hongfei; Muckerman, James T.
  • Chem. Soc. Rev., Vol. 41, Issue 6
  • DOI: 10.1039/C1CS15278E

Molecular Catalysts that Oxidize Water to Dioxygen
journal, January 2009

  • Sala, Xavier; Romero, Isabel; Rodríguez, Montserrat
  • Angewandte Chemie International Edition, Vol. 48, Issue 16, p. 2842-2852
  • DOI: 10.1002/anie.200802659

Reduction potentials of CO2- and the alcohol radicals
journal, January 1989

  • Schwarz, H. A.; Dodson, R. W.
  • The Journal of Physical Chemistry, Vol. 93, Issue 1
  • DOI: 10.1021/j100338a079

Photocatalytic reduction of CO2 using metal complexes
journal, December 2015


A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide
journal, January 2015

  • Manbeck, Gerald F.; Fujita, Etsuko
  • Journal of Porphyrins and Phthalocyanines, Vol. 19, Issue 01-03
  • DOI: 10.1142/S1088424615300013

Molecular artificial photosynthesis
journal, January 2014

  • Berardi, Serena; Drouet, Samuel; Francàs, Laia
  • Chem. Soc. Rev., Vol. 43, Issue 22
  • DOI: 10.1039/C3CS60405E

A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
journal, January 2014

  • Qiao, Jinli; Liu, Yuyu; Hong, Feng
  • Chem. Soc. Rev., Vol. 43, Issue 2
  • DOI: 10.1039/C3CS60323G

A review on advances in photocatalysts towards CO2 conversion
journal, January 2014


Photocatalytic Conversion of CO 2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects
journal, May 2014


Photocatalytic Reduction of CO 2 on TiO 2 and Other Semiconductors
journal, June 2013

  • Habisreutinger, Severin N.; Schmidt-Mende, Lukas; Stolarczyk, Jacek K.
  • Angewandte Chemie International Edition, Vol. 52, Issue 29
  • DOI: 10.1002/anie.201207199

Catalysis of the electrochemical reduction of carbon dioxide
journal, January 2013

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35360A

Advances in molecular photocatalytic and electrocatalytic CO2 reduction
journal, November 2012

  • Windle, Christopher D.; Perutz, Robin N.
  • Coordination Chemistry Reviews, Vol. 256, Issue 21-22
  • DOI: 10.1016/j.ccr.2012.03.010

Photochemical and Photoelectrochemical Reduction of CO 2
journal, May 2012


Molecular approaches to the electrochemical reduction of carbon dioxide
journal, January 2012

  • Finn, Colin; Schnittger, Sorcha; Yellowlees, Lesley J.
  • Chem. Commun., Vol. 48, Issue 10
  • DOI: 10.1039/C1CC15393E

A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper
journal, August 2006


Multi-electron reduction of CO2 via RuCO2, C(O)OH, CO, CHO, and CH2OH species
journal, March 2002


Carbon-Carbon Bond Formation in the Electrochemical Reduction of Carbon Dioxide Catalyzed by a Ruthenium Complex
journal, July 1994

  • Nagao, Hirotaka; Mizukawa, Tetsunori; Tanaka, Koji
  • Inorganic Chemistry, Vol. 33, Issue 15
  • DOI: 10.1021/ic00093a033

Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes
journal, January 2011

  • Chen, Zuofeng; Chen, Chuncheng; Weinberg, David R.
  • Chemical Communications, Vol. 47, Issue 47
  • DOI: 10.1039/c1cc15071e

Splitting CO2 into CO and O2 by a single catalyst
journal, June 2012

  • Chen, Z.; Concepcion, J. J.; Brennaman, M. K.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1203122109

Mechanistic insights into electrocatalytic CO 2 reduction within [Ru II (tpy)(NN)X] n+ architectures
journal, January 2014

  • White, Travis A.; Maji, Somnath; Ott, Sascha
  • Dalton Trans., Vol. 43, Issue 40
  • DOI: 10.1039/C4DT01591F

Catalysis of the Electrochemical Reduction of Carbon Dioxide by Iron(0) Porphyrins:  Synergystic Effect of Weak Brönsted Acids
journal, January 1996

  • Bhugun, Iqbal; Lexa, Doris; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 118, Issue 7
  • DOI: 10.1021/ja9534462

A Local Proton Source Enhances CO 2 Electroreduction to CO by a Molecular Fe Catalyst
journal, October 2012


A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production
journal, August 2011

  • Helm, M. L.; Stewart, M. P.; Bullock, R. M.
  • Science, Vol. 333, Issue 6044, p. 863-866
  • DOI: 10.1126/science.1205864

Dehydrogenative Oxidation of Alcohols in Aqueous Media Using Water-Soluble and Reusable Cp*Ir Catalysts Bearing a Functional Bipyridine Ligand
journal, February 2012

  • Kawahara, Ryoko; Fujita, Ken-ichi; Yamaguchi, Ryohei
  • Journal of the American Chemical Society, Vol. 134, Issue 8
  • DOI: 10.1021/ja210857z

A local proton source in a [Mn(bpy-R)(CO) 3 Br]-type redox catalyst enables CO 2 reduction even in the absence of Brønsted acids
journal, January 2014

  • Franco, Federico; Cometto, Claudio; Ferrero Vallana, Federico
  • Chem. Commun., Vol. 50, Issue 93
  • DOI: 10.1039/C4CC05563B

Design of a Catalytic Active Site for Electrochemical CO 2 Reduction with Mn(I)-Tricarbonyl Species
journal, May 2015


Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

Second-coordination-sphere and electronic effects enhance iridium(iii)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure
journal, January 2012

  • Wang, Wan-Hui; Hull, Jonathan F.; Muckerman, James T.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21888g

Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight
journal, May 2014


Mechanistic Insight through Factors Controlling Effective Hydrogenation of CO 2 Catalyzed by Bioinspired Proton-Responsive Iridium(III) Complexes
journal, April 2013

  • Wang, Wan-Hui; Muckerman, James T.; Fujita, Etsuko
  • ACS Catalysis, Vol. 3, Issue 5
  • DOI: 10.1021/cs400172j

Effects of a Proximal Base on Water Oxidation and Proton Reduction Catalyzed by Geometric Isomers of [Ru(tpy)(pynap)(OH2)]2+
journal, November 2011

  • Boyer, Julie L.; Polyansky, Dmitry E.; Szalda, David J.
  • Angewandte Chemie International Edition, Vol. 50, Issue 52
  • DOI: 10.1002/anie.201102648

Stabilization and Destabilization of the Ru?CO Bond During the 2,2?-Bipyridin-6-onato (bpyO)-Localized Redox Reaction of [Ru(terpy)(bpyO)(CO)](PF6)
journal, January 2005

  • Tomon, Takashi; Koizumi, Take-aki; Tanaka, Koji
  • European Journal of Inorganic Chemistry, Vol. 2005, Issue 2
  • DOI: 10.1002/ejic.200400522

Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO 2 Reduction Catalysts
journal, December 2014

  • Manbeck, Gerald F.; Muckerman, James T.; Szalda, David J.
  • The Journal of Physical Chemistry B, Vol. 119, Issue 24
  • DOI: 10.1021/jp511131x

Oxidation of isopropylamine and related amines coordinated to ruthenium. Formation of monodentate imine and alkylideneamido complexes of ruthenium
journal, July 1984

  • Adcock, Peter A.; Keene, F. Richard; Smythe, Robert S.
  • Inorganic Chemistry, Vol. 23, Issue 15
  • DOI: 10.1021/ic00183a025

Synthetic Approaches to an Isostructural Series of Redox-Active, Metal Tris(bipyridine) Core Dendrimers
journal, November 2003

  • Hong, Young-Rae; Gorman, Christopher B.
  • The Journal of Organic Chemistry, Vol. 68, Issue 23
  • DOI: 10.1021/jo0351116

Further Observations on Water Oxidation Catalyzed by Mononuclear Ru(II) Complexes
journal, February 2012

  • Kaveevivitchai, Nattawut; Zong, Ruifa; Tseng, Huan-Wei
  • Inorganic Chemistry, Vol. 51, Issue 5
  • DOI: 10.1021/ic202174j

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis
journal, August 1980

  • Vosko, S. H.; Wilk, L.; Nusair, M.
  • Canadian Journal of Physics, Vol. 58, Issue 8
  • DOI: 10.1139/p80-159

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Energy-adjustedab initio pseudopotentials for the second and third row transition elements
journal, January 1990

  • Andrae, D.; H�u�ermann, U.; Dolg, M.
  • Theoretica Chimica Acta, Vol. 77, Issue 2
  • DOI: 10.1007/BF01114537

Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe
journal, February 2001

  • Martin, Jan M. L.; Sundermann, Andreas
  • The Journal of Chemical Physics, Vol. 114, Issue 8
  • DOI: 10.1063/1.1337864

Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules
journal, January 1971

  • Ditchfield, R.; Hehre, W. J.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 54, Issue 2
  • DOI: 10.1063/1.1674902

Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
journal, March 1972

  • Hehre, W. J.; Ditchfield, R.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 56, Issue 5, p. 2257-2261
  • DOI: 10.1063/1.1677527

The influence of polarization functions on molecular orbital hydrogenation energies
journal, January 1973

  • Hariharan, P. C.; Pople, J. A.
  • Theoretica Chimica Acta, Vol. 28, Issue 3
  • DOI: 10.1007/BF00533485

Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory
journal, January 1974


The isomers of silacyclopropane
journal, November 1980


Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements
journal, October 1982

  • Francl, Michelle M.; Pietro, William J.; Hehre, Warren J.
  • The Journal of Chemical Physics, Vol. 77, Issue 7, p. 3654-3665
  • DOI: 10.1063/1.444267

Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model
journal, March 1998

  • Barone, Vincenzo; Cossi, Maurizio
  • The Journal of Physical Chemistry A, Vol. 102, Issue 11
  • DOI: 10.1021/jp9716997

Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model
journal, April 2003

  • Cossi, Maurizio; Rega, Nadia; Scalmani, Giovanni
  • Journal of Computational Chemistry, Vol. 24, Issue 6
  • DOI: 10.1002/jcc.10189

A new definition of cavities for the computation of solvation free energies by the polarizable continuum model
journal, August 1997

  • Barone, Vincenzo; Cossi, Maurizio; Tomasi, Jacopo
  • The Journal of Chemical Physics, Vol. 107, Issue 8
  • DOI: 10.1063/1.474671

New Water Oxidation Chemistry of a Seven-Coordinate Ruthenium Complex with a Tetradentate Polypyridyl Ligand
journal, June 2014

  • Muckerman, James T.; Kowalczyk, Marta; Badiei, Yosra M.
  • Inorganic Chemistry, Vol. 53, Issue 13
  • DOI: 10.1021/ic500709h

Steric ligand effects of six bidentate bipyridyl ligands
journal, December 1993

  • Bessel, Carol A.; Margarucci, Joseph A.; Acquaye, J. Henry
  • Inorganic Chemistry, Vol. 32, Issue 25
  • DOI: 10.1021/ic00077a021

Redox and spectral properties of monooxo polypyridyl complexes of ruthenium and osmium in aqueous media
journal, June 1984

  • Takeuchi, Kenneth J.; Thompson, Mark S.; Pipes, David W.
  • Inorganic Chemistry, Vol. 23, Issue 13
  • DOI: 10.1021/ic00181a014

Chemical Redox Agents for Organometallic Chemistry
journal, January 1996

  • Connelly, Neil G.; Geiger, William E.
  • Chemical Reviews, Vol. 96, Issue 2
  • DOI: 10.1021/cr940053x

Thermodynamic and Kinetic Hydricity of Ruthenium(II) Hydride Complexes
journal, September 2012

  • Matsubara, Yasuo; Fujita, Etsuko; Doherty, Mark D.
  • Journal of the American Chemical Society, Vol. 134, Issue 38
  • DOI: 10.1021/ja302937q

Temperature-dependent reduction pathways of complexes fac-[Re(CO)3(N-R-imidazole)(1,10-phenanthroline)]+ (R=H, CH3)
journal, November 2013


Electrochemical Reductive Deprotonation of an Imidazole Ligand in a Bipyridine Tricarbonyl Rhenium(I) Complex
journal, November 2011

  • Zeng, Qiang; Messaoudani, Mahdi; Vlček, Antonín
  • European Journal of Inorganic Chemistry, Vol. 2012, Issue 3
  • DOI: 10.1002/ejic.201101100

Localized states in reduced and excited-state ruthenium(II) terpyridyls
journal, November 1988

  • Berger, Robert M.; McMillin, David R.
  • Inorganic Chemistry, Vol. 27, Issue 23
  • DOI: 10.1021/ic00296a032

Vibrational spectra and normal-coordinate analysis of tris(bipyridine)ruthenium(II)
journal, October 1988

  • Mallick, Prabal K.; Danzer, Gerald D.; Strommen, Dennis P.
  • The Journal of Physical Chemistry, Vol. 92, Issue 20
  • DOI: 10.1021/j100331a018

Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems.
journal, April 1964

  • Nicholson, R. S.; Shain, Irving
  • Analytical Chemistry, Vol. 36, Issue 4, p. 706-723
  • DOI: 10.1021/ac60210a007

Synthesis and properties of [Ru(tpy)(4,4′-X2bpy)H]+ (tpy=2,2′:6′,2″-terpyridine, bpy=2,2′-bipyridine, X=H and MeO), and their reactions with CO2
journal, March 2000


Mechanism of the Formation of a Mn-Based CO 2 Reduction Catalyst Revealed by Pulse Radiolysis with Time-Resolved Infrared Detection
journal, April 2014

  • Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.
  • Journal of the American Chemical Society, Vol. 136, Issue 15
  • DOI: 10.1021/ja501051s

Ruthenium Formyl Complexes as the Branch Point in Two- and Multi-Electron Reductions of CO2
journal, October 1995

  • Toyohara, Kiyotsuna; Nagao, Hirotaka; Mizukawa, Tetsunori
  • Inorganic Chemistry, Vol. 34, Issue 22
  • DOI: 10.1021/ic00126a003

Facile Insertion of CO 2 into the Ru−H Bonds of Ru(dmpe) 2 H 2 (dmpe = Me 2 PCH 2 CH 2 PMe 2 ):  Identification of Three Ruthenium Formate Complexes
journal, January 1996

  • Whittlesey, Michael K.; Perutz, Robin N.; Moore, Madeleine H.
  • Organometallics, Vol. 15, Issue 24
  • DOI: 10.1021/om960588b

Electrochemical Separation and Concentration of <1% Carbon Dioxide from Nitrogen
journal, January 2003

  • Scovazzo, Paul; Poshusta, Joe; DuBois, Dan
  • Journal of The Electrochemical Society, Vol. 150, Issue 5, p. D91-D98
  • DOI: 10.1149/1.1566962

Reductive Addition of  CO 2 to 9,10‐Phenanthrenequinone
journal, April 1989

  • Mizen, Mark B.; Wrighton, Mark S.
  • Journal of The Electrochemical Society, Vol. 136, Issue 4
  • DOI: 10.1149/1.2096891

Direct Electrochemical Capture and Release of Carbon Dioxide Using an Industrial Organic Pigment: Quinacridone
journal, May 2014

  • Apaydin, Dogukan Hazar; Głowacki, Eric Daniel; Portenkirchner, Engelbert
  • Angewandte Chemie International Edition, Vol. 53, Issue 26
  • DOI: 10.1002/anie.201403618

Standard potentials of amalgam electrodes in aqueous solutions, temperature coefficients, and activity coefficients of metals in mercury
journal, January 1985


Works referencing / citing this record:

Hydricity, electrochemistry, and excited-state chemistry of Ir complexes for CO 2 reduction
journal, January 2017

  • Manbeck, Gerald F.; Garg, Komal; Shimoda, Tomoe
  • Faraday Discussions, Vol. 198
  • DOI: 10.1039/c6fd00223d

Artificial photosynthesis: opportunities and challenges of molecular catalysts
journal, January 2019

  • Zhang, Biaobiao; Sun, Licheng
  • Chemical Society Reviews, Vol. 48, Issue 7
  • DOI: 10.1039/c8cs00897c

A bulk adjusted linear combination of atomic orbitals (BA-LCAO) approach for nanoparticles
journal, October 2018

  • Kaledin, Alexey L.; Hill, Craig L.; Lian, Tianquan
  • Journal of Computational Chemistry, Vol. 40, Issue 1
  • DOI: 10.1002/jcc.25373

Ruthenium( ii ) complexes of pyridinol and N-heterocyclic carbene derived pincers as robust catalysts for selective carbon dioxide reduction
journal, January 2017

  • Boudreaux, Chance M.; Liyanage, Nalaka P.; Shirley, Hunter
  • Chem. Commun., Vol. 53, Issue 81
  • DOI: 10.1039/c7cc05706g

Nickel( ii ) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction
journal, January 2018

  • Burks, Dalton B.; Davis, Shakeyia; Lamb, Robert W.
  • Chemical Communications, Vol. 54, Issue 31
  • DOI: 10.1039/c7cc09507d

Effect of PDI ligand binding pattern on the electrocatalytic activity of two Ru(II) complexes for CO 2 reduction
journal, February 2020

  • Shi, Ning‐ning; Xie, Wang‐jing; Gao, Wei‐song
  • Applied Organometallic Chemistry, Vol. 34, Issue 4
  • DOI: 10.1002/aoc.5551

Molecular Catalysts with Intramolecular Re–O Bond for Electrochemical Reduction of Carbon Dioxide
journal, August 2020