DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays

Abstract

The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizes the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides aremore » incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. Furthermore, this novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes.« less

Authors:
 [1];  [2];  [2];  [3];  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. UT-Battelle, Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1334470
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Lab on a Chip
Additional Journal Information:
Journal Volume: 16; Journal Issue: 18; Journal ID: ISSN 1473-0197
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Nguyen, Mary -Anne, Srijanto, Bernadeta, Collier, C. Patrick, Retterer, Scott T., and Sarles, Stephen A. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays. United States: N. p., 2016. Web. doi:10.1039/C6LC00810K.
Nguyen, Mary -Anne, Srijanto, Bernadeta, Collier, C. Patrick, Retterer, Scott T., & Sarles, Stephen A. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays. United States. https://doi.org/10.1039/C6LC00810K
Nguyen, Mary -Anne, Srijanto, Bernadeta, Collier, C. Patrick, Retterer, Scott T., and Sarles, Stephen A. Tue . "Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays". United States. https://doi.org/10.1039/C6LC00810K. https://www.osti.gov/servlets/purl/1334470.
@article{osti_1334470,
title = {Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays},
author = {Nguyen, Mary -Anne and Srijanto, Bernadeta and Collier, C. Patrick and Retterer, Scott T. and Sarles, Stephen A.},
abstractNote = {The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizes the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides are incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. Furthermore, this novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes.},
doi = {10.1039/C6LC00810K},
journal = {Lab on a Chip},
number = 18,
volume = 16,
place = {United States},
year = {Tue Aug 02 00:00:00 EDT 2016},
month = {Tue Aug 02 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer
journal, January 2015

  • Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick
  • Soft Matter, Vol. 11, Issue 38
  • DOI: 10.1039/C5SM01005E

Hair cell inspired mechanotransduction with a gel-supported, artificial lipid membrane
journal, January 2011

  • Sarles, Stephen A.; Madden, John D. W.; Leo, Donald J.
  • Soft Matter, Vol. 7, Issue 10
  • DOI: 10.1039/c1sm05120b

Droplet based microfluidics
journal, December 2011


Voltage Control of Droplet Interface Bilayer Lipid Membrane Dimensions
journal, January 2011

  • Punnamaraju, Srikoundinya; Steckl, Andrew J.
  • Langmuir, Vol. 27, Issue 2
  • DOI: 10.1021/la1036508

Air-stable droplet interface bilayers on oil-infused surfaces
journal, May 2014

  • Boreyko, J. B.; Polizos, G.; Datskos, P. G.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 21
  • DOI: 10.1073/pnas.1400381111

Extracting the hydrodynamic resistance of droplets from their behavior in microchannel networks
journal, March 2009

  • Labrot, Vincent; Schindler, Michael; Guillot, Pierre
  • Biomicrofluidics, Vol. 3, Issue 1
  • DOI: 10.1063/1.3109686

Microfluidic methods for generating continuous droplet streams
journal, September 2007


Electrowetting on dielectric-based microfluidics for integrated lipid bilayer formation and measurement
journal, July 2009

  • Poulos, Jason L.; Nelson, Wyatt C.; Jeon, Tae-Joon
  • Applied Physics Letters, Vol. 95, Issue 1
  • DOI: 10.1063/1.3167283

Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds
journal, January 2014

  • King, Philip H.; Jones, Gareth; Morgan, Hywel
  • Lab Chip, Vol. 14, Issue 4
  • DOI: 10.1039/C3LC51072G

Microfluidic array platform for simultaneous lipid bilayer membrane formation
journal, January 2009


Kinetics and stability of alamethicin conducting channels in lipid bilayers
journal, July 1976


Nanopore-Based Single-Molecule Mass Spectrometry on a Lipid Membrane Microarray
journal, September 2011

  • Baaken, Gerhard; Ankri, Norbert; Schuler, Anne-Katrin
  • ACS Nano, Vol. 5, Issue 10
  • DOI: 10.1021/nn202670z

Dynamic and Reversible Control of 2D Membrane Protein Concentration in a Droplet Interface Bilayer
journal, August 2011

  • Gross, Linda C. M.; Castell, Oliver K.; Wallace, Mark I.
  • Nano Letters, Vol. 11, Issue 8
  • DOI: 10.1021/nl201689v

Heating-Enabled Formation of Droplet Interface Bilayers Using Escherichia coli Total Lipid Extract
journal, December 2014

  • Taylor, Graham J.; Sarles, Stephen A.
  • Langmuir, Vol. 31, Issue 1
  • DOI: 10.1021/la503471m

Stochastic sensors inspired by biology
journal, September 2001

  • Bayley, Hagan; Cremer, Paul S.
  • Nature, Vol. 413, Issue 6852, p. 226-230
  • DOI: 10.1038/35093038

Electrical Behavior of Droplet Interface Bilayer Networks:  Experimental Analysis and Modeling
journal, September 2007

  • Hwang, William L.; Holden, Matthew A.; White, Steven
  • Journal of the American Chemical Society, Vol. 129, Issue 38
  • DOI: 10.1021/ja074071a

Functional Bionetworks from Nanoliter Water Droplets
journal, July 2007

  • Holden, Matthew A.; Needham, David; Bayley, Hagan
  • Journal of the American Chemical Society, Vol. 129, Issue 27
  • DOI: 10.1021/ja072292a

Droplet Split-and-Contact Method for High-Throughput Transmembrane Electrical Recording
journal, November 2013

  • Tsuji, Yutaro; Kawano, Ryuji; Osaki, Toshihisa
  • Analytical Chemistry, Vol. 85, Issue 22
  • DOI: 10.1021/ac402299z

Automated Parallel Recordings of Topologically Identified Single Ion Channels
journal, June 2013

  • Kawano, Ryuji; Tsuji, Yutaro; Sato, Koji
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01995

Ultrasensitive detection of protein translocated through toxin pores in droplet-interface bilayers
journal, September 2011

  • Fischer, A.; Holden, M. A.; Pentelute, B. L.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 40
  • DOI: 10.1073/pnas.1113074108

Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers
journal, January 2013

  • Nisisako, Takasi; Portonovo, Shiva A.; Schmidt, Jacob J.
  • The Analyst, Vol. 138, Issue 22
  • DOI: 10.1039/c3an01314f

Asymmetric Droplet Interface Bilayers
journal, May 2008

  • Hwang, William L.; Chen, Min; Cronin, Bríd
  • Journal of the American Chemical Society, Vol. 130, Issue 18
  • DOI: 10.1021/ja802089s

Microchip Technology for Automated and Parallel Patch-Clamp Recording
journal, July 2006


Formation of artificial lipid bilayers using droplet dielectrophoresis
journal, January 2008

  • Aghdaei, Sara; Sandison, Mairi E.; Zagnoni, Michele
  • Lab on a Chip, Vol. 8, Issue 10
  • DOI: 10.1039/b807374k

Behavior of a train of droplets in a fluidic network with hydrodynamic traps
journal, December 2010

  • Bithi, Swastika S.; Vanapalli, Siva A.
  • Biomicrofluidics, Vol. 4, Issue 4
  • DOI: 10.1063/1.3523053

Electrical Properties of Supported Lipid Bilayer Membranes
journal, April 2002

  • Wiegand, Gerald; Arribas-Layton, Noah; Hillebrandt, Heiko
  • The Journal of Physical Chemistry B, Vol. 106, Issue 16
  • DOI: 10.1021/jp014337e

Whole Cell Patch Clamp Recording Performed on a Planar Glass Chip
journal, June 2002


Characterization of the Prokaryotic Sodium Channel NavSp Pore with a Microfluidic Bilayer Platform
journal, July 2015


Biological transport processes for microhydraulic actuation
journal, May 2007

  • Sundaresan, Vishnu Baba; Homison, Christopher; Weiland, Lisa M.
  • Sensors and Actuators B: Chemical, Vol. 123, Issue 2
  • DOI: 10.1016/j.snb.2006.10.009

Scalable micro-cavity bilayer lipid membrane arrays for parallel ion channel recording
journal, August 2014

  • Saha, Shimul Chandra; Thei, Federico; de Planque, Maurits R. R.
  • Sensors and Actuators B: Chemical, Vol. 199
  • DOI: 10.1016/j.snb.2014.03.111

Supported Membranes: Scientific and Practical Applications
journal, January 1996


Regulated Attachment Method for Reconstituting Lipid Bilayers of Prescribed Size within Flexible Substrates
journal, February 2010

  • Sarles, Stephen A.; Leo, Donald J.
  • Analytical Chemistry, Vol. 82, Issue 3
  • DOI: 10.1021/ac902555z

A microdroplet-based shift register
journal, January 2010

  • Zagnoni, Michele; Cooper, Jonathan M.
  • Lab on a Chip, Vol. 10, Issue 22
  • DOI: 10.1039/c0lc00219d

Lipid Bilayer Microarray for Parallel Recording of Transmembrane Ion Currents
journal, January 2008

  • Le Pioufle, Bruno; Suzuki, Hiroaki; Tabata, Kazuhito V.
  • Analytical Chemistry, Vol. 80, Issue 1
  • DOI: 10.1021/ac7016635

Dynamic morphologies of microscale droplet interface bilayers
journal, January 2014

  • Mruetusatorn, Prachya; Boreyko, Jonathan B.; Venkatesan, Guru A.
  • Soft Matter, Vol. 10, Issue 15
  • DOI: 10.1039/c3sm53032a

Determining Membrane Capacitance by Dynamic Control of Droplet Interface Bilayer Area
journal, December 2011

  • Gross, Linda C. M.; Heron, Andrew J.; Baca, Sylvan C.
  • Langmuir, Vol. 27, Issue 23
  • DOI: 10.1021/la203081v

Tailored Current—Voltage Relationships of Droplet-Interface Bilayers Using Biomolecules and External Feedback Control
journal, April 2009

  • Sarles, Stephen A.; Leo, Donald J.
  • Journal of Intelligent Material Systems and Structures, Vol. 20, Issue 10
  • DOI: 10.1177/1045389X09104390

A dynamic microarray device for paired bead-based analysis
journal, January 2010

  • Teshima, Tetsuhiko; Ishihara, Hirotaka; Iwai, Kosuke
  • Lab on a Chip, Vol. 10, Issue 18
  • DOI: 10.1039/c004986g

A microfluidic platform for size-dependent generation of droplet interface bilayer networks on rails
journal, November 2015

  • Carreras, P.; Elani, Y.; Law, R. V.
  • Biomicrofluidics, Vol. 9, Issue 6
  • DOI: 10.1063/1.4938731

Formation of Bimolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties
journal, December 1972

  • Montal, M.; Mueller, P.
  • Proceedings of the National Academy of Sciences, Vol. 69, Issue 12
  • DOI: 10.1073/pnas.69.12.3561

A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings
journal, January 2015

  • Czekalska, Magdalena A.; Kaminski, Tomasz S.; Jakiela, Slawomir
  • Lab on a Chip, Vol. 15, Issue 2
  • DOI: 10.1039/C4LC00985A

Tunable crystallization via osmosis-driven transport across a droplet interface bilayer
journal, January 2012

  • Michalak, Zuzanna; Fartash, Darius; Haque, Nousin
  • CrystEngComm, Vol. 14, Issue 23
  • DOI: 10.1039/c2ce26249e

Construction and Manipulation of Functional Three-Dimensional Droplet Networks
journal, December 2013

  • Wauer, Tobias; Gerlach, Holger; Mantri, Shiksha
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405433y

Lipid bilayer array for simultaneous recording of ion channel activities
journal, July 2012

  • Hirano-Iwata, Ayumi; Nasu, Tomohiro; Oshima, Azusa
  • Applied Physics Letters, Vol. 101, Issue 2
  • DOI: 10.1063/1.4736263

Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks
journal, January 2010

  • Sarles, Stephen A.; Leo, Donald J.
  • Lab on a Chip, Vol. 10, Issue 6
  • DOI: 10.1039/b916736f

Activity of single ion channel proteins detected with a planar microstructure
journal, December 2002

  • Fertig, Niels; Klau, Michèle; George, Michael
  • Applied Physics Letters, Vol. 81, Issue 25
  • DOI: 10.1063/1.1531228

Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis
journal, December 2006

  • Funakoshi, Kei; Suzuki, Hiroaki; Takeuchi, Shoji
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac0613479

Synthetic Protocells to Mimic and Test Cell Function
journal, January 2010

  • Xu, Jian; Sigworth, Fred J.; LaVan, David A.
  • Advanced Materials, Vol. 22, Issue 1
  • DOI: 10.1002/adma.200901945

Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices
journal, April 2002

  • McDonald, J. Cooper; Whitesides, George M.
  • Accounts of Chemical Research, Vol. 35, Issue 7, p. 491-499
  • DOI: 10.1021/ar010110q

Effect of Monoglyceride Structure and Cholesterol Content on Water Permeability of the Droplet Bilayer
journal, December 2013

  • Michalak, Zuzanna; Muzzio, Michelle; Milianta, Peter J.
  • Langmuir, Vol. 29, Issue 51
  • DOI: 10.1021/la4040535

Reversible, voltage-activated formation of biomimetic membranes between triblock copolymer-coated aqueous droplets in good solvents
journal, January 2016

  • Tamaddoni, Nima; Taylor, Graham; Hepburn, Trevor
  • Soft Matter, Vol. 12, Issue 23
  • DOI: 10.1039/C6SM00400H

Evaporation-Induced Buckling and Fission of Microscale Droplet Interface Bilayers
journal, April 2013

  • Boreyko, Jonathan B.; Mruetusatorn, Prachya; Sarles, Stephen A.
  • Journal of the American Chemical Society, Vol. 135, Issue 15
  • DOI: 10.1021/ja4019435

Droplet interface bilayers
journal, January 2008

  • Bayley, Hagan; Cronin, Brid; Heron, Andrew
  • Molecular BioSystems, Vol. 4, Issue 12
  • DOI: 10.1039/b808893d

A trap-and-release integrated microfluidic system for dynamic microarray applications
journal, January 2007

  • Tan, W.-H.; Takeuchi, S.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 4, p. 1146-1151
  • DOI: 10.1073/pnas.0606625104

Alamethicin-induced current-voltage curve asymmetry in lipid bilayers
journal, April 1983


Formation of lipid bilayers inside microfluidic channel array for monitoring membrane-embedded nanopores of phi29 DNA packaging nanomotor
journal, July 2012


A double droplet trap system for studying mass transport across a droplet-droplet interface
journal, January 2010

  • Bai, Yunpeng; He, Ximin; Liu, Dingsheng
  • Lab on a Chip, Vol. 10, Issue 10
  • DOI: 10.1039/b925133b

3D stochastic microsensors for molecular recognition and determination of heregulin-α in biological samples
journal, March 2021

  • Stefan-van Staden, Raluca-Ioana; Negut, Catalina Cioates; Gheorghe, Sorin Sebastian
  • Analytical and Bioanalytical Chemistry, Vol. 413, Issue 13
  • DOI: 10.1007/s00216-021-03295-7

Microfluidic Passive Permeability Assay using Nanoliter Droplet Interface Lipid Bilayers
journal, January 2013


Works referencing / citing this record:

Encapsulating Networks of Droplet Interface Bilayers in a Thermoreversible Organogel
journal, April 2018


In vitro synthesis of a Major Facilitator Transporter for specific active transport across Droplet Interface Bilayers
journal, December 2016

  • Findlay, Heather E.; Harris, Nicola J.; Booth, Paula J.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep39349

Droplet microfluidics for the construction of compartmentalised model membranes
journal, January 2018

  • Trantidou, T.; Friddin, M. S.; Salehi-Reyhani, A.
  • Lab on a Chip, Vol. 18, Issue 17
  • DOI: 10.1039/c8lc00028j

Reconfiguring droplet interface bilayer networks through sacrificial membranes
journal, May 2018

  • Challita, Elio J.; Makhoul-Mansour, Michelle M.; Freeman, Eric C.
  • Biomicrofluidics, Vol. 12, Issue 3
  • DOI: 10.1063/1.5023386

Effects of magnetic nanoparticles on mixing in droplet-based microfluidics
journal, March 2019

  • Maleki, Mohammad Amin; Soltani, M.; Kashaninejad, Navid
  • Physics of Fluids, Vol. 31, Issue 3
  • DOI: 10.1063/1.5086867

Microfluidic Systems Applied in Solid-State Nanopore Sensors
journal, March 2020