
Reynolds Averaged Turbulence Modeling using Deep Neural

Networks with Embedded Invariance

Julia Ling∗ and Jeremy Templeton

Sandia National Laboratories

Thermal/Fluid Sciences and Engineering Department

Livermore, CA

Andrew Kurzawski

University of Texas at Austin

Mechanical Engineering Department

Austin, TX

(Dated: July 24, 2016)

Abstract

There exists significant demand for improved Reynolds Averaged Navier Stokes (RANS) turbu-

lence models. This paper presents a method of using deep neural networks to learn a model for

the Reynolds stress anisotropy tensor from high fidelity simulation data. A novel neural network

architecture is proposed which uses a multiplicative layer with an invariant tensor basis to em-

bed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural

network architecture provides improved prediction accuracy compared to a generic neural network

architecture which does not embed this invariance property. The Reynolds stress anisotropy pre-

dictions of this invariant neural network are propagated through to the velocity field for two test

cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and

non-linear eddy viscosity models is demonstrated.

PACS numbers: 47.27.em, 47.27.eb, 02.20.-a

∗ jling@sandia.gov

1

SAND2016-7345J



I. INTRODUCTION

Reynolds Averaged Navier Stokes (RANS) models are widely used because of their com-

putational tractability. Most two-equation RANS models rely on the Linear Eddy Viscosity

Model (LEVM) for their Reynolds stress closure. The LEVM postulates a linear relationship

between the Reynolds stresses and the mean strain rate. However, this model does not pro-

vide satisfactory predictive accuracy in many engineering-relevant flows, such as those with

curvature, impingement, and separation [1, 2]. In particular, it has been demonstrated that

the LEVM does not capture the correct Reynolds stress anisotropy in many flows, includ-

ing simple shear flows [3]. More advanced non-linear eddy viscosity models have also been

proposed [1, 4, 5] which rely on higher order products of the mean strain rate and mean

rotation rate tensors. These non-linear models have not gained widespread usage because

they do not give consistent performance improvement over the LEVM and often lead to

worsened convergence and stability properties [6, 7].

More recently, there has been interest in using machine learning methods to develop

Reynolds stress closures. Tracey et al. [3] used kernel regression to model the Reynolds

stress anisotropy eigenvalues. This method was shown to have limited ability to generalize

to new flows and to scale to large amounts of training data. Tracey et al. [8] later used

neural networks with a single hidden layer to model the source terms from the Spalart

Allmaras RANS model. These neural networks were shown capable of reconstructing these

source terms, demonstrating the potential utility of neural networks for turbulence modeling.

Zhang and Duraisamy [9] investigated applications of neural networks to predict a correction

factor for the turbulent production term. Parish and Duraisamy [10] proposed the use of

Gaussian processes to provide closure models for modeling terms inferred through Bayesian

inversion. These Gaussian processes, however, are not easily scalable to larger data sets.

Ling et al. [11] and Xiao et al. [12] proposed the use of Random Forests to predict the

Reynolds stress anisotropy. However, Random Forests are limited in their ability to predict

the full anisotropy tensor because they cannot easily enforce Galilean invariance for a tensor

prediction.

Deep neural networks, also referred to as deep learning, are a branch of machine learning in

which input features are transformed through multiple layers of non-linear interactions [13].

Deep neural networks have gained attention for their ability to represent complex interactions

2



and achieve superior results across a wide range of applications, including video classifica-

tion [14], voice recognition [15], and playing the game of Go [16]. Despite the widespread

success of neural networks at providing high quality predictions in complex problems, there

have been only limited attempts to apply deep learning techniques to turbulence modeling.

Zhang and Duraisamy [9] and Tracey et al. [3] used neural networks with only one or two

hidden layers. Milano and Koumoutsakos [17] used neural networks with multiple hidden

layers to replicate near wall channel flows, but did not build these neural networks into

forward models for turbulence model prediction. This paper will demonstrate the utility of

deep neural networks for providing improved Reynolds stress closures for RANS turbulence

models.

A key strength of neural networks is in the flexibility of their architecture. While Ran-

dom Forests cannot easily be restructured to preserve tensor invariance properties, neural

networks can be. Ling et al. [18] used Random Forests and neural networks to predict the

Reynolds stress anisotropy eigenvalues, and showed significant performance gains when a

rotationally invariant input feature set was used. These results showed that embedding

invariance properties into the machine learning model is critical for achieving high perfor-

mance. In the current work, a specialized neural network architecture is proposed which

embeds Galilean invariance into the neural network predictions. This neural network is

able to predict not only the anisotropy eigenvalues, but the full anisotropy tensor while

preserving Galilean invariance. The neural network model is trained and evaluated on a

database of flows for which both RANS and high fidelity (Direct Numerical Simulation or

well-resolved Large Eddy Simulation) data are available. The performance of this specialized

neural network is compared to that of a more generic feed forward multi-layer perceptron.

Section II will introduce the concepts of deep neural networks and will present the archi-

tecture and training and validation procedures for the multi-layer perceptron neural network

and the specialized invariant neural network. Section III will detail the data sets used for

training, validation, and testing. Section IV will present the a priori results of the neural

networks in predicting the Reynolds stress anisotropy as well as the a posteriori results of

the velocity fields calculated when using these Reynolds stress closures. Finally, Section V

will present conclusions and ideas for next steps.

3



II. DEEP NEURAL NETWORKS

Neural networks are composed of connected nodes. Each node takes in inputs ~x, trans-

forms the inputs through an activation function f(~x), and outputs the result, as shown in

Fig. 1. Common activation functions include linear functions: f(~x) = ~wT~x, tanh functions:

f(~x) = tanh(~wT~x), and the rectified linear unit (ReLU): f(~x) = max(0, ~wT~x). In these func-

tions, ~w are node weights which are set during the training phase of the model. The leaky

ReLU activation function is an adaptation of ReLU with a small negative slope for negative

values of ~wT~x. The leaky ReLU was employed in the neural networks discussed in this paper

because it enables efficient training of deep neural networks [19]. In deep neural networks,

there are multiple layers of nodes, with the outputs of one layer becoming the inputs to the

next layer. By using multiple layers of transformations, deep neural networks are able to

capture complex, hierarchical interactions between features. The layers between the input

layer and the output layer are called hidden layers because the physical interpretation of

their activation is not always clear.

The inputs to the neural networks were based on the mean strain rate tensor S and the

mean rotation rate tensor R, non-dimensionalized using the turbulent kinetic energy k and

the turbulent dissipation rate ε as suggested by Pope [5]. The output was the normalized

Reynolds stress anisotropy tensor, b, where bij =
u′iu

′
j

2k
− 1

3
δij.

The neural networks were trained using back propagation with gradient descent. The pro-

cess of training a neural network is analogous to calibrating a regression model. In training,

the model is fit to a subset of the data, known as the training data, by iteratively adjusting

the node weights to provide the lowest mean squared error between the predicted and true

values of the anisotropy tensor. Back-propagation is a method of efficiently calculating the

derivative of the mean squared error with respect to node weights in each layer of the neural

network. Once these gradients are calculated, the node weights are updated using gradient

descent. For the multi-layer perceptron (MLP), mini-batch gradient descent was employed,

in which the gradient-based updates were averaged over a random subset of the training data

to reduce noise. For the Tensor Basis Neural Network (TBNN), stochastic gradient descent

was used, in which the weights were updated after each training point. This technique was

used to facilitate the implementation of a multiplicative layer, as detailed in the following

sections.

4



FIG. 1. Schematic of neural network node.

FIG. 2. Schematic of Multi-Layer Perceptron.

For both neural network architectures, there were three main hyper-parameters that had

to be fit: the number of hidden layers, the number of nodes per hidden layer, and the

learning rate in the gradient descent algorithm. All three of these parameters can have

a significant effect on model performance. Larger networks (with more hidden layers and

more nodes per layer) can fit more complex data, but are also more prone to over-fitting

the data. These three hyper-parameters were determined through a Bayesian optimization

process that sampled the parameter space efficiently to find the parameters that yielded the

best performance. The neural network performance was evaluated on a validation data set

that was different from both the training data and the test data. The Spearmint python

package [20] was used to implement the Bayesian optimization process.

A. Multi-Layer Perceptron

An MLP is the most basic type of neural network: it is a densely connected feed-forward

neural network. Feed-forward means that there are no loops in the connections between

the nodes. Densely connected means that each node in a given layer is connected to all the

nodes in the next layer. Fig. 2 shows a schematic of an MLP.

The inputs to the MLP were the 9 distinct components of the non-dimensionalized strain

5



FIG. 3. Schematic of Tensor Basis Neural Network.

rate and rotation rate tensors, S and R, at a given point in the flow as predicted by RANS.

Through Bayesian optimization, the network was set to have 10 hidden layers, each with 10

nodes, and the learning rate was 2.5e-6.

B. Tensor Basis Neural Network

A special network architecture, which will be referred to as the Tensor Basis Neural Net-

work (TBNN), is proposed. This network architecture, shown in Fig. 3, embeds rotational

invariance by enforcing that the predicted anisotropy tensor lies on a basis of isotropic ten-

sors. Rotational invariance signifies that the physics of the fluid flow do not depend on the

orientation of the coordinate frame of the observer. This is a fundamental physical principle,

and it is important that any turbulence closure obeys it. Otherwise, the machine learning

model evaluated on identical flows with the axes defined in different directions could yield

different predictions.

If the goal were just to predict the eigenvalues of the anisotropy tensor, then a basis

of scalar invariants could be used as the input features to ensure the rotational invariance

of the predicted eigenvalues, as was shown by Ling et al. [18]. However, to predict the

6



full anisotropy tensor, this approach is not sufficient. Unlike the anisotropy eigenvalues,

the full anisotropy tensor will change when the coordinate axes are rotated. The key to

ensuring Galilean invariance is therefore to ensure that when the coordinate frame is rotated,

the anisotropy tensor is also rotated by the same angles. Therefore, if the input to the

neural network is a rotated velocity gradient tensor, the output should be the corresponding

rotated anisotropy tensor. This can be achieved by constructing an integrity basis of the

input tensors. Further explanation of integrity bases for isotropic functions can be found in

Ref. [21].

For the specific case of interest here, with input tensors S and R, Pope [5] has previously

derived the relevant integrity basis. Pope proved that in the most general case, an eddy

viscosity model for incompressible flow that is a function of only S and R can be expressed

as a linear combination of 10 isotropic basis tensors:

b =
10∑
n=1

g(n)(λ1, ..., λ5)T
(n) (1)

Any tensor b which satisfies this condition will automatically satisfy Galilean invariance.

There are only a finite number of tensors because by the Caley-Hamilton theory, higher

order products of these two tensors can be reduced to a linear combination of this tensor

basis. The 5 tensor invariants λ1, ..., λ5 are known scalar functions of the elements of S and

R. Pope [5] gave a detailed derivation of these 10 tensors, T(1), ...,T(10) and 5 invariants

λ1, ..., λ5, which are listed below:

T(1) =S

T(2) =SR−RS

T(3) =S2 − 1

3
I · Tr(S2)

T(4) =R2 − 1

3
I · Tr(R2)

T(5) =RS2 − S2R

T(6) =R2S + SR2 − 2

3
I · Tr(SR2)

T(7) =RSR2 −R2SR

T(8) =SRS2 − S2RS

T(9) =R2S2 + S2R2 − 2

3
I · Tr(S2R2)

T(10) =RS2R2 −R2S2R

(2)

λ1 = Tr(S2), λ2 = Tr(R2), λ3 = Tr(S3)

λ4 = Tr(R2S), λ5 = Tr(R2S2)

7



The goal of the TBNN, then, is to determine the scalar coefficients g(n)(λ1, ..., λ5) in Eq. 1.

Once these coefficients are determined, then Eq. 1 can be used to solve for the anisotropy

tensor b.

As Fig. 3 shows, the network architecture was designed to match Eq. 1. There are two

input layers: an Invariant Input Layer and a Tensor Input Layer. The Invariant Input Layer

takes in the 5 invariants λ1, ..., λ5, and is followed by a series of hidden layers. The Final

Hidden Layer has 10 elements and represents g(n) for n = 1, ..., 10. The output from these

10 nodes is then multiplied by the Tensor Input Layer, which also has 10 nodes. These 10

nodes represent the 10 tensors T(n) for n = 1, ..., 10. The Merge Output Layer performs

element-wise multiplication between the outputs of the Final Hidden Layer and the Tensor

Input Layer and then sums the result to give the final prediction for b. This innovative

architecture ensures that Eq. 1 is satisfied, thereby guaranteeing the Galilean invariance of

the network predictions.

Because of this final multiplicative layer, stochastic gradient descent was used during

network training. While noisier, this method was more convenient to implement given the

added complexity of back-propagation through a multiplicative layer. Through Bayesian

optimization, the number of hidden layers was set to 8, with 30 nodes per hidden layer. The

learning rate was 2.5e-7.

III. DATA SETS

The neural networks were trained, validated, and tested on a database of 9 flows for

which both high fidelity (DNS or well-resolved LES) as well as RANS results were available.

The RANS data, obtained using the k − ε model with a Linear Eddy Viscosity Model for

the Reynolds stresses, were used as the inputs to the neural networks. The high fidelity

data were used to provide the truth labels for the Reynolds stress anisotropy during model

training and evaluation.

The nine flows in the database were selected because of the availability of high fidelity

data and because they represent canonical flow cases. All of the high fidelity simulation

results have been previously reported in the literature. 6 cases were used for training: Duct

flow at Reb = 3500 [22], channel flow at Reτ = 590 [23], a perpendicular jet in crossflow [24],

an inclined jet in crossflow [25], flow around a square cylinder [26, 27], and flow through

8



a converging-diverging channel [28]. One case was used for validation when selecting the

neural network hyper-parameters through Bayesian optimization: a wall-mounted cube in

crossflow at bulk Reynolds number of 5000 [29]. Two cases were used for testing: duct flow

at Reb = 2000 and flow over a wavy wall at Re = 6850. These cases were chosen for test

sets because they are both flows in which Reynolds stress anisotropy plays a key role.

It is notable that this flow database represents a wide variety of different flow configu-

rations. We are therefore testing the ability of the neural network to do more than just

interpolate between similar flow configurations at different Reynolds numbers; we are eval-

uating the ability of the neural network to learn about the underlying flow regimes present

in these configurations.

IV. RESULTS

A. A Priori Results

The MLP and TBNN were used to predict the normalized Reynolds stress anisotropy

tensor b for two different test flow cases: turbulent duct flow and flow over a wavy wall.

Figures 4 shows the anisotropy predictions for the duct flow case. For comparison, the

anisotropy predictions from two different baseline RANS simulations are also shown. The

first RANS was run using the default Linear Eddy Viscosity Model (LEVM): b = −νtS
k

. The

second RANS used a Quadratic Eddy Viscosity Model (QEVM) based on Craft’s non-linear

eddy viscosity model [1]:

bij = − νtSij
k

+ C1
νt
ε̃

(2SikSkj −
2

3
SklSklδij)

+ C2
νt
ε̃

(2RikSkj + 2RjkSki) + C3
νt
ε̃

(2RikRjk −
2

3
RklRklδij)

(3)

In this model, the coefficients are set as C1 = −0.1, C2 = 0.1, and C3 = 0.26.

As Fig. 4 shows, the baseline LEVM completely failed to predict the anisotropy values.

It predicted zero anisotropy for b11, b22, b33, and b12. This is due to the fact that the

LEVM model does not predict any secondary flows in the duct, so the mean velocity in the

x1 and x2 directions is zero, causing S11, S22, and S12 to be zero. Since the flow is periodic

in the x3 direction, S33 is also zero. As a result, the corresponding b components are zero,

as shown. The QEVM does slightly better, predicting the right sign, though still too small

9



b11

b22

b33

b12

b23

b13

LEVM QEVM TBNN MLP DNSx1

x2

FIG. 4. Predictions of Reynolds stress anisotropy tensor b on the duct flow test case. Only the

lower left quadrant of the duct is shown, and the streamwise flow direction is out of the page. The

columns show the predictions of the LEVM, QEVM, TBNN, and MLP models. The true DNS

anisotropy values are shown in the right-most column for comparison.

a magnitude, for these components of b. The TBNN does even better, getting closer to the

correct magnitude for the components of b. The MLP, on the other hand, completely fails

to predict the anisotropy in this configuration. Its predictions are both qualitatively and

quantitatively inaccurate.

A more quantitative comparison of these model performances is given by Table I, which

provides the root mean squared error (RMSE) for these four models with respect to the DNS

10



b11

b22

b33

b12

LEVM QEVM TBNN MLP DNS

FIG. 5. Predictions of Reynolds stress anisotropy b tensor on the wavy wall test case. The columns

show the predictions of the LEVM, QEVM, TBNN, and MLP models. The true DNS anisotropy

values are shown in the right-most column for comparison.

data. This table confirms that the TBNN provides by far the most accurate predictions in

this case: 43% more accurate than the LEVM and 28% more accurate than the QEVM.

Figure 5 shows the anisotropy predictions on the wavy wall test case. b13 and b23 are

not shown because they are identically zero in this 2-D test case. Once again, the LEVM is

unable to predict even the qualitative trends in the anisotropy components, and the QEVM

is only slightly better, predicting the correct sign for the on-diagonal components of b. The

TABLE I. Root Mean Squared Error on Test Cases

Model Duct Flow Flow over Wavy Wall

LEVM 0.23 0.18

QEVM 0.18 0.11

TBNN 0.13 0.08

MLP 0.33 0.09

11



TBNN predicts closer to the correct magnitude for the on-diagonal components of b. For

the b12 component, it predicts too low of anisotropy near the center of the channel. Once

again, the MLP is unable to make satisfactory predictions for the anisotropy in this flow.

Table I lists the RMSE values for each of the four models in the wavy wall test case. Once

again, the TBNN provides the predictions with the lowest error, giving a 56% reduction

in error with respect to LEVM and a 27% reduction in error with respect to QEVM. In

this case, the MLP surpasses LEVM and QEVM, but still falls short of the TBNN in

accuracy. Therefore, on both test cases, the TBNN has been shown to provide substantial

reductions in error with respect to the baseline RANS models. The TBNN has also been

shown to be consistently more accurate than the MLP, emphasizing the performance benefits

of embedding invariance into the network architecture.

B. A Posteriori Results

Given the significantly improved Reynolds stress anisotropy predictions of the TBNN,

it was of interest to determine whether these improved anisotropy values would translate

to improved mean velocity predictions. Therefore, the Reynolds stress anisotropy tensor

predicted by the TBNN was implemented in an in-house RANS solver, SIERRA Fuego [30],

in the momentum equations and in the turbulent kinetic energy production term. Notably,

the Reynolds stress anisotropy is not the only source of uncertainty in the RANS equations,

which also relies on approximate transport equations for k and ε. Therefore, the true DNS

anisotropy values were also implemented in the RANS solver as a point of comparison. This

DNS anisotropy (DNS-b) model shows the flow predictions that would be achieved by using

the correct normalized anisotropy tensor b, given the other RANS model assumptions. It

therefore represents the upper performance limit of an improved Reynolds stress anisotropy

model.

In the duct flow test case, one of the major failings of LEVM is that it cannot predict

the corner vortices that are known to form in this flow. Figure 6 shows the secondary flow

predictions made by the LEVM, QEVM, TBNN, DNS-b, and the true DNS. As this figure

shows, the LEVM does not predict any secondary flows at all. The QEVM predicts corner

vortices, but significantly under-predicts their strength. The TBNN, on the other hand,

over-predicts the strength of these vortices, with incorrect counter-rotating vortices forming

12



(a)LEVM (b)QEVM (c)TBNN

(d)DNS-b (e)True DNS

FIG. 6. Plot of secondary flows in duct flow case. Reference arrows of length Ub/10 shown at the

top of each plot.

near the center of the channel. The DNS-b slightly over-predicts the strength of the corner

vortices, but is overall the most accurate, unsurprisingly. In this test case, then, while the

TBNN provides improved secondary flow predictions, it is still not able to correctly capture

the strength and shape of the corner vortices.

In the case of periodic flow over a wavy wall, the DNS shows flow separation on the

leeward side of the bump. RANS struggles to correctly capture this separation region.

Figure 7 shows contours of streamwise velocity for this flow case. The RANS LEVM and

QEVM both fail to predict flow separation downstream of the bump. The DNS-b correctly

predicts the size and shape of the separated region. TBNN predicts flow separation, though

in a smaller region than the DNS.

In both test cases, the TBNN improvements in predicting the anisotropy tensor yield

more accurate velocity predictions in comparison to RANS LEVM and QEVM. On the

13



(a)LEVM (b)QEVM (c)TBNN

(d)DNS-b (e)True DNS

FIG. 7. Contours of streamwise velocity. Separated regions outlined in black.

other hand, there is still room for improved RANS predictions, as is shown by the DNS-b

results.

V. CONCLUSIONS

A deep learning approach to RANS turbulence modeling was presented which embedded

Galilean invariance into the network architecture using a higher order multiplicative layer.

This architecture used concepts from representation theory to ensure that the predicted

anisotropy tensor lay on a invariant tensor basis. This invariant Tensor Basis Neural Net-

work was shown to have significantly more accurate predictions than a generic multi-layer

perceptron that did not have any embedded invariance properties.

The accuracy of the TBNN was explored in both an a priori and an a posteriori sense.

The Reynolds stress anisotropy predictions were compared to those of the default LEVM

14



RANS model, as well as a non-linear eddy viscosity model. The TBNN anisotropy predic-

tions were shown to be significantly more accurate than either of these two conventional

RANS models on two different test cases. Notably, both of the test cases represented chal-

lenges for the TBNN. While there was also a duct flow test case in the training set, the test

case was at a significantly different Reynolds number, and therefore had distinctly different

anisotropy and secondary flows. The wavy wall test case was a completely different geome-

try than any of the training cases. The fact that the TBNN was able to provide improved

predictions in this test case demonstrates that the TBNN learned about the underlying flow

regimes and has the capability to extrapolate to new flow cases.

The a posteriori evaluation showed that the TBNN was able to predict corner vortices

in the duct flow case and flow separation in the wavy wall case, two key flow features that

the baseline LEVM model completely failed to predict. While the TBNN was not able

to perfectly reproduce the DNS results, it represents a significant step towards improved

RANS predictive accuracy. In order for this innovative approach to reach its full potential,

the TBNN needs to be trained and tested across a much broader set of a flows. Training

across more flows will improve the neural network accuracy, and testing across more flows

will enable uncertainty analysis for the TBNN predictions.

ACKNOWLEDGMENTS

The authors wish to thank V. Brunini for his valuable support in the code implemen-

tation stage of this research. Funding for this work was provided by the Sandia LDRD

program, and its support is gratefully acknowledged. Sandia National Laboratories is a

multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

[1] T. Craft, B. Launder, and K. Suga, International Journal of Heat and Fluid Flow 17, 108

(1996).

[2] S. Pope, “Turbulent flows,” (Cambridge University Press, 2000).

[3] B. Tracey, K. Duraisamy, and J. Alonso, AIAA Aerospace Sciences Meeting , 2013 (2013).

15



[4] S. Wallin and A. Johansson, Journal of Fluid Mechanics 403, 89 (2000).

[5] S. Pope, Journal of Fluid Mechanics 72, 331 (1975).

[6] L. Belhoucine, M. Deville, A. Elazehari, and M. Bensalah, Computers and Fluids 33, 179

(2004).

[7] T. Gatski and C. Speziale, Journal of Fluid Mechanics 254, 59 (1993).

[8] B. Tracey, K. Duraisamy, and J. Alonso, AIAA SciTech , 2015 (2015).

[9] Z. Zhang and K. Duraisamy, AIAA Aviation , 2015 (2015).

[10] E. Parish and K. Duraisamy, Journal of computational physics 305, 758 (2016).

[11] J. Ling, A. Ruiz, G. Lacaze, and J. Oefelein, ASME Turbo Expo 2016 (2016).

[12] J. Wang, J. Wu, and H. Xiao, arXiv preprint arXiv:1606.07987 (2016).

[13] Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436 (2015).

[14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li, Proceedings of the

IEEE conference on Computer Vision and Pattern Recognition , 1725 (2014).

[15] G. Hinton et al., IEEE Signal Processing Magazine 29, 82 (2012).

[16] D. Silver et al., Nature 529, 484 (2016).

[17] M. Milano and P. Koumoutsakos, Journal of Computational Physics 182, 1 (2002).

[18] J. Ling, R. Jones, and J. Templeton, Journal of Computational Physics 318, 22 (2016).

[19] A. Maas, A. Hannun, and A. Ng, Proceedings of ICML 30, 1 (2013).

[20] J. Snoek, H. Larochelle, and R. Adams, Advances in Neural Information Processing Systems

, 2951 (2012).

[21] G. Smith, Archive for rational mechanics and analysis 18, 282 (1965).

[22] A. Pinelli, M. Uhlmann, A. Sekimoto, and G. Kawahara, Journal of Fluid Mechanics 644,

107 (2010).

[23] R. Moser, J. Kim, and N. Mansour, Physics of Fluids 11, 943 (1999).

[24] A. Ruiz, J. Oefelein, and G. Lacaze, Physics of Fluids 27, 045101 (2015).

[25] J. Ling, K. Ryan, J. Bodart, and J. Eaton, in ASME Turbo Expo 2015 (ASME Turbo Expo,

Montreal, Canada, 2015).

[26] J. Ray, S. Lefantzi, S. Arunajatesan, and L. Dechant, AIAA Paper , 2085 (2014).

[27] S. Lefantzi, J. Ray, S. Arunajatesan, and L. Dechant, Sandia Technical Report , SAND2015

(2015).

[28] M. Marquillie, U. Ehrenstein, and J. Laval, Journal of Fluid Mechanics 681, 205 (2011).

16



[29] R. Rossi, D. Philips, and G. Iaccarino, International Journal of Heat and Fluid Flow 31, 805

(2010).

[30] S. Domino, C. Moen, S. Burns, and G. Evans, AIAA Aerospace Sciences Meeting (2003),

AIAA-2003-149.

17


