DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Band diagram and rate analysis of thin film spinel LiMn2O4 formed by electrochemical conversion of ALD-grown MnO

Abstract

Nanoscale spinel lithium manganese oxide is of interest as a high-rate cathode material for advanced battery technologies among other electrochemical applications. In this work, the synthesis of ultrathin films of spinel lithium manganese oxide (LiMn2O4) between 20 and 200 nm in thickness by room-temperature electrochemical conversion of MnO grown by atomic layer deposition (ALD) is demonstrated. The charge storage properties of LiMn2O4 thin films in electrolytes containing Li+, Na+, K+, and Mg2+ are investigated. A unified electrochemical band-diagram (UEB) analysis of LiMn2O4 informed by screened hybrid density functional theory calculations is also employed to expand on existing understanding of the underpinnings of charge storage and stability in LiMn2O4. It is shown that the incorporation of Li+ or other cations into the host manganese dioxide spinel structure (λ-MnO2) stabilizes electronic states from the conduction band which align with the known redox potentials of LiMn2O4. Furthermore, the cyclic voltammetry experiments demonstrate that up to 30% of the capacity of LiMn2O4 arises from bulk electronic charge-switching which does not require compensating cation mass transport. As a result, the hybrid ALD-electrochemical synthesis, UEB analysis, and unique charge storage mechanism described here provide a fundamental framework to guide the development of future nanoscale electrode materialsmore » for ion-incorporation charge storage.« less

Authors:
 [1];  [2];  [3];  [1];  [1]
  1. Univ. of Colorado, Boulder, CO (United States)
  2. Leupold-Institut fur Angewandte Naturwissenschaften, Zwickau (Germany)
  3. Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1333410
Report Number(s):
NREL/JA-5K00-67263
Journal ID: ISSN 1616-301X
Grant/Contract Number:  
AC36-08GO28308; AC36-99GO10337
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 26; Journal Issue: 43; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; atomic layer deposition; charge storage mechanism; defect theory; ion intercalation; lithium manganese oxide

Citation Formats

Young, Matthias J., Schnabel, Hans-Dieter, Holder, Aaron M., George, Steven M., and Musgrave, Charles B. Band diagram and rate analysis of thin film spinel LiMn2O4 formed by electrochemical conversion of ALD-grown MnO. United States: N. p., 2016. Web. doi:10.1002/adfm.201602773.
Young, Matthias J., Schnabel, Hans-Dieter, Holder, Aaron M., George, Steven M., & Musgrave, Charles B. Band diagram and rate analysis of thin film spinel LiMn2O4 formed by electrochemical conversion of ALD-grown MnO. United States. https://doi.org/10.1002/adfm.201602773
Young, Matthias J., Schnabel, Hans-Dieter, Holder, Aaron M., George, Steven M., and Musgrave, Charles B. Thu . "Band diagram and rate analysis of thin film spinel LiMn2O4 formed by electrochemical conversion of ALD-grown MnO". United States. https://doi.org/10.1002/adfm.201602773. https://www.osti.gov/servlets/purl/1333410.
@article{osti_1333410,
title = {Band diagram and rate analysis of thin film spinel LiMn2O4 formed by electrochemical conversion of ALD-grown MnO},
author = {Young, Matthias J. and Schnabel, Hans-Dieter and Holder, Aaron M. and George, Steven M. and Musgrave, Charles B.},
abstractNote = {Nanoscale spinel lithium manganese oxide is of interest as a high-rate cathode material for advanced battery technologies among other electrochemical applications. In this work, the synthesis of ultrathin films of spinel lithium manganese oxide (LiMn2O4) between 20 and 200 nm in thickness by room-temperature electrochemical conversion of MnO grown by atomic layer deposition (ALD) is demonstrated. The charge storage properties of LiMn2O4 thin films in electrolytes containing Li+, Na+, K+, and Mg2+ are investigated. A unified electrochemical band-diagram (UEB) analysis of LiMn2O4 informed by screened hybrid density functional theory calculations is also employed to expand on existing understanding of the underpinnings of charge storage and stability in LiMn2O4. It is shown that the incorporation of Li+ or other cations into the host manganese dioxide spinel structure (λ-MnO2) stabilizes electronic states from the conduction band which align with the known redox potentials of LiMn2O4. Furthermore, the cyclic voltammetry experiments demonstrate that up to 30% of the capacity of LiMn2O4 arises from bulk electronic charge-switching which does not require compensating cation mass transport. As a result, the hybrid ALD-electrochemical synthesis, UEB analysis, and unique charge storage mechanism described here provide a fundamental framework to guide the development of future nanoscale electrode materials for ion-incorporation charge storage.},
doi = {10.1002/adfm.201602773},
journal = {Advanced Functional Materials},
number = 43,
volume = 26,
place = {United States},
year = {Thu Sep 22 00:00:00 EDT 2016},
month = {Thu Sep 22 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Absolute potential diagram motivating the need for high-voltage cathode materials, showing equilibrium potential regions for anodes (green) and cathodes (red), and electrolyte stability windows (blue), with common electrochemical references shown in black.

Save / Share:

Works referenced in this record:

Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells
journal, April 1994


Pourbaix-like phase diagram for lithium manganese spinels in acid
journal, January 2010

  • Benedek, R.; Thackeray, M. M.; van de Walle, A.
  • J. Mater. Chem., Vol. 20, Issue 2
  • DOI: 10.1039/B913226K

Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations
journal, January 2011

  • Hautier, Geoffroy; Jain, Anubhav; Chen, Hailong
  • Journal of Materials Chemistry, Vol. 21, Issue 43
  • DOI: 10.1039/c1jm12216a

An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications
journal, September 2012


Influence of oxalic acid on the dissolution kinetics of manganese oxide
journal, November 2012

  • Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.
  • Russian Metallurgy (Metally), Vol. 2012, Issue 11
  • DOI: 10.1134/S0036029512110079

Citric acid-assisted sol–gel synthesis of nanocrystalline LiMn2O4 spinel as cathode material
journal, August 2003


Electrochemical Quartz Crystal Microbalance for Insertion/Extraction of Lithium in Spinel LiMn 2 O 4 Thin Films
journal, July 1999

  • Nishizawa, Matsuhiko; Uchiyama, Takayuki; Itoh, Takashi
  • Langmuir, Vol. 15, Issue 15
  • DOI: 10.1021/la990270z

Thermodynamic Properties of Manganese Oxides
journal, July 1996


Sodium Charge Storage in Thin Films of MnO 2 Derived by Electrochemical Oxidation of MnO Atomic Layer Deposition Films
journal, January 2015

  • Young, Matthias J.; Neuber, Markus; Cavanagh, Andrew C.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0671514jes

Proton insertion and lithium-proton exchange in spinel lithium manganates
journal, May 1997


Electronic properties of LiMn2−x Ti x O4
journal, September 2009


High Cycling Stability and Extreme Rate Performance in Nanoscaled LiMn 2 O 4 Thin Films
journal, September 2015

  • Put, Brecht; Vereecken, Philippe M.; Labyedh, Nouha
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 40
  • DOI: 10.1021/acsami.5b06386

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


First principles computational materials design for energy storage materials in lithium ion batteries
journal, January 2009

  • Meng, Ying Shirley; Arroyo-de Dompablo, M. Elena
  • Energy & Environmental Science, Vol. 2, Issue 6
  • DOI: 10.1039/b901825e

Synthesis of spinel LiMn2O4 using direct solid state reaction
journal, October 2002


Charge and spin ordering in LiMn 2 O 4
journal, August 2001


Ground-state properties of multivalent manganese oxides: Density functional and hybrid density functional calculations
journal, May 2007


Preparation, structure and electrochemical properties of spinel Li1−xMn2−yO4 cathode material for lithium ion batteries
journal, April 2000


Atomic Layer Deposition of Spinel Lithium Manganese Oxide by Film-Body-Controlled Lithium Incorporation for Thin-Film Lithium-Ion Batteries
journal, December 2013

  • Miikkulainen, Ville; Ruud, Amund; Østreng, Erik
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp409399y

Bulk and Surface Tunneling Hydrogen Defects in Alumina
journal, August 2013


Crystalline MnO[sub 2] as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors
journal, January 2006

  • Brousse, Thierry; Toupin, Mathieu; Dugas, Romain
  • Journal of The Electrochemical Society, Vol. 153, Issue 12
  • DOI: 10.1149/1.2352197

Fast Li-Ion Insertion into Nanosized LiMn 2 O 4 without Domain Boundaries
journal, January 2010

  • Okubo, Masashi; Mizuno, Yoshifumi; Yamada, Hirotoshi
  • ACS Nano, Vol. 4, Issue 2
  • DOI: 10.1021/nn9012065

Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries
journal, January 2012


“Inner” and “outer” active surface of RuO2 electrodes
journal, January 1990


Low-Temperature Synthesis of Lithium Manganese Oxide Using LiCl-Li 2 CO 3 and Manganese Acetate Eutectic Mixture
journal, November 2011


Electrochemical Impedance Spectroscopy
book, February 2008


First-principles calculations for defects and impurities: Applications to III-nitrides
journal, April 2004

  • Van de Walle, Chris G.; Neugebauer, Jörg
  • Journal of Applied Physics, Vol. 95, Issue 8
  • DOI: 10.1063/1.1682673

Rechargeable Li[sub 1+x]Mn[sub 2]O[sub 4]∕Carbon Cells with a New Electrolyte Composition
journal, January 1993

  • Guyomard, D.
  • Journal of The Electrochemical Society, Vol. 140, Issue 11
  • DOI: 10.1149/1.2220987

Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell
journal, January 1989

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 136, Issue 11
  • DOI: 10.1149/1.2096421

Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability
journal, September 2009


Achieving electrochemical capacitor functionality from nanoscale LiMn2O4 coatings on 3-D carbon nanoarchitectures
journal, January 2013

  • Sassin, Megan B.; Greenbaum, Steve G.; Stallworth, Phillip E.
  • Journal of Materials Chemistry A, Vol. 1, Issue 7
  • DOI: 10.1039/c2ta00937d

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion
journal, October 1991


Ceramic and polymeric solid electrolytes for lithium-ion batteries
journal, August 2010


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Charge Storage in Cation Incorporated α-MnO 2
journal, February 2015

  • Young, Matthias J.; Holder, Aaron M.; George, Steven M.
  • Chemistry of Materials, Vol. 27, Issue 4
  • DOI: 10.1021/cm503544e

Phase-controlled synthesis of polymorphic MnO 2 structures for electrochemical energy storage
journal, January 2015

  • Yin, Bosi; Zhang, Siwen; Jiang, He
  • Journal of Materials Chemistry A, Vol. 3, Issue 10
  • DOI: 10.1039/C4TA06943A

Effect of substrate on the characteristics of manganese(IV) oxide thin films prepared by atomic layer deposition
journal, December 2004


The reduction and oxidation behaviour of manganese oxides
journal, January 1999


Growth of manganese oxide thin films by atomic layer deposition
journal, November 2003


Accurate defect levels obtained from the HSE06 range-separated hybrid functional
journal, April 2010


Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles
journal, October 2007

  • Wang, John; Polleux, Julien; Lim, James
  • The Journal of Physical Chemistry C, Vol. 111, Issue 40, p. 14925-14931
  • DOI: 10.1021/jp074464w

Beyond the ability of Rietveld analysis: MEM-based pattern fitting
journal, August 2004


Polymer Electrolytes for Lithium-Ion Batteries
journal, April 1998


Charge Storage Mechanism of MnO 2 Electrode Used in Aqueous Electrochemical Capacitor
journal, August 2004

  • Toupin, Mathieu; Brousse, Thierry; Bélanger, Daniel
  • Chemistry of Materials, Vol. 16, Issue 16
  • DOI: 10.1021/cm049649j

Batteries for lithium recovery from brines
journal, January 2012

  • Pasta, Mauro; Battistel, Alberto; La Mantia, Fabio
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee22977c

Atomic layer deposition of MnO using Bis(ethylcyclopentadienyl)manganese and H2O
journal, August 2009


Highly selective lithium recovery from brine using a λ-MnO2–Ag battery
journal, January 2013

  • Lee, Jaehan; Yu, Seung-Ho; Kim, Choonsoo
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 20
  • DOI: 10.1039/c3cp50919b

Surface structure and equilibrium particle shape of the LiMn 2 O 4 spinel from first-principles calculations
journal, February 2013


Works referencing / citing this record:

The Unified Electrochemical Band Diagram Framework: Understanding the Driving Forces of Materials Electrochemistry
journal, August 2018

  • Young, Matthias J.; Holder, Aaron M.; Musgrave, Charles B.
  • Advanced Functional Materials, Vol. 28, Issue 41
  • DOI: 10.1002/adfm.201803439

Modulation of the Optical Properties of Lithium Manganese Oxide via Li-Ion De/Intercalation
journal, April 2018

  • Joshi, Yug; Hadjixenophontos, Efi; Nowak, Susann
  • Advanced Optical Materials, Vol. 6, Issue 12
  • DOI: 10.1002/adom.201701362

Unveiling Conversion Reaction on Intercalation-Based Transition Metal Oxides for High Power, High Energy Aqueous Lithium Battery
journal, October 2018


Discovery of Anion Insertion Electrochemistry in Layered Hydroxide Nanomaterials
journal, February 2019

  • Young, Matthias J.; Kiryutina, Tatyana; Bedford, Nicholas M.
  • Scientific Reports, Vol. 9, Issue 1
  • DOI: 10.1038/s41598-019-39052-1

Growth behavior, work function, and band gap tuning of nanocrystalline LiMn 2 O 4 thin films
journal, August 2019

  • Paulraj, Vivek; Swami, Bhavya; Kamala Bharathi, K.
  • Applied Physics Letters, Vol. 115, Issue 9
  • DOI: 10.1063/1.5109355

Efficient Capacitive Deionization Using Thin Film Sodium Manganese Oxide
journal, January 2018

  • Wallas, Jasmine M.; Young, Matthias J.; Sun, Huaxing
  • Journal of The Electrochemical Society, Vol. 165, Issue 10
  • DOI: 10.1149/2.0751810jes

Unveiling Conversion Reaction on Intercalation‐Based Transition Metal Oxides for High Power, High Energy Aqueous Lithium Battery
journal, July 2021


Discovery of Anion Insertion Electrochemistry in Layered Hydroxide Nanomaterials
journal, February 2019

  • Young, Matthias J.; Kiryutina, Tatyana; Bedford, Nicholas M.
  • Scientific Reports, Vol. 9, Issue 1
  • DOI: 10.1038/s41598-019-39052-1