DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Graphene-Immobilized fac-Re(bipy)(CO)3 Cl for Syngas Generation from Carbon Dioxide

Abstract

We report herein the synthesis of fac-M(4-amino-bipy)(CO)3X (M = Mn and X = Br or M = Re and X = Cl, with bipy = 2,2'-bipyridine), their immobilization on graphene oxide (GrO) via diazonium grafting, and the use of Re-functionalized GrO for electrocatalytic syngas production. Infrared (IR) spectroscopy, X-ray absorption fine structure (XAFS) spectroscopy, and electrocatalysis indicated successful grafting of the Re catalyst onto GrO. Re-functionalized GrO was then deposited onto a glassy carbon electrode (GCE) for CO2 reduction. Investigation of the Re-functionalized GCE for syngas production was performed in a CO2-saturated acetonitrile solution with 3.1 M H2O as the proton source and 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) as the supporting electrolyte. Cyclic voltammetry (CV), controlled potential electrolysis (CPE), and gas chromatography (GC) were employed to determine its CO2-to-CO conversion performance. The Re catalyst shows a turnover frequency (TOF) for generating CO up to 4.44 s–1 with a CO/H2 ratio of 7:5.

Authors:
 [1];  [2];  [2];  [2];  [3];  [2]
  1. Univ. of Chicago, IL (United States); South China University of Technology, Guangzhou (People's Republic of China)
  2. Univ. of Chicago, IL (United States)
  3. South China University of Technology, Guangzhou (People's Republic of China)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Science Foundation (NSF); Oversea Study Program of Guangzhou Elite Project; USDOE Office of Science (SC)
OSTI Identifier:
1330243
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 6; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
ENGLISH
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; CO2 reduction; syngas; graphene; diazonium grafting; catalysis

Citation Formats

Zhou, Xin, Micheroni, Daniel, Lin, Zekai, Poon, Christopher, Li, Zhong, and Lin, Wenbin. Graphene-Immobilized fac-Re(bipy)(CO)3 Cl for Syngas Generation from Carbon Dioxide. United States: N. p., 2016. Web. doi:10.1021/acsami.5b11958.
Zhou, Xin, Micheroni, Daniel, Lin, Zekai, Poon, Christopher, Li, Zhong, & Lin, Wenbin. Graphene-Immobilized fac-Re(bipy)(CO)3 Cl for Syngas Generation from Carbon Dioxide. United States. https://doi.org/10.1021/acsami.5b11958
Zhou, Xin, Micheroni, Daniel, Lin, Zekai, Poon, Christopher, Li, Zhong, and Lin, Wenbin. Fri . "Graphene-Immobilized fac-Re(bipy)(CO)3 Cl for Syngas Generation from Carbon Dioxide". United States. https://doi.org/10.1021/acsami.5b11958. https://www.osti.gov/servlets/purl/1330243.
@article{osti_1330243,
title = {Graphene-Immobilized fac-Re(bipy)(CO)3 Cl for Syngas Generation from Carbon Dioxide},
author = {Zhou, Xin and Micheroni, Daniel and Lin, Zekai and Poon, Christopher and Li, Zhong and Lin, Wenbin},
abstractNote = {We report herein the synthesis of fac-M(4-amino-bipy)(CO)3X (M = Mn and X = Br or M = Re and X = Cl, with bipy = 2,2'-bipyridine), their immobilization on graphene oxide (GrO) via diazonium grafting, and the use of Re-functionalized GrO for electrocatalytic syngas production. Infrared (IR) spectroscopy, X-ray absorption fine structure (XAFS) spectroscopy, and electrocatalysis indicated successful grafting of the Re catalyst onto GrO. Re-functionalized GrO was then deposited onto a glassy carbon electrode (GCE) for CO2 reduction. Investigation of the Re-functionalized GCE for syngas production was performed in a CO2-saturated acetonitrile solution with 3.1 M H2O as the proton source and 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) as the supporting electrolyte. Cyclic voltammetry (CV), controlled potential electrolysis (CPE), and gas chromatography (GC) were employed to determine its CO2-to-CO conversion performance. The Re catalyst shows a turnover frequency (TOF) for generating CO up to 4.44 s–1 with a CO/H2 ratio of 7:5.},
doi = {10.1021/acsami.5b11958},
journal = {ACS Applied Materials and Interfaces},
number = 6,
volume = 8,
place = {United States},
year = {Fri Jan 22 00:00:00 EST 2016},
month = {Fri Jan 22 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Figures / Tables:

Scheme 1 Scheme 1: The synthesis of 4-amino-bipy.

Save / Share:

Works referenced in this record:

When will fossil fuel reserves be diminished?
journal, January 2009


The geographical distribution of fossil fuels unused when limiting global warming to 2 °C
journal, January 2015


Impact of solar panels on global climate
journal, November 2015

  • Hu, Aixue; Levis, Samuel; Meehl, Gerald A.
  • Nature Climate Change, Vol. 6, Issue 3
  • DOI: 10.1038/nclimate2843

Photosensitizing Metal–Organic Framework Enabling Visible-Light-Driven Proton Reduction by a Wells–Dawson-Type Polyoxometalate
journal, February 2015

  • Zhang, Zhi-Ming; Zhang, Teng; Wang, Cheng
  • Journal of the American Chemical Society, Vol. 137, Issue 9
  • DOI: 10.1021/jacs.5b00075

Highly porous and stable metal–organic frameworks for uranium extraction
journal, January 2013

  • Carboni, Michaël; Abney, Carter W.; Liu, Shubin
  • Chemical Science, Vol. 4, Issue 6, p. 2396-2402
  • DOI: 10.1039/c3sc50230a

Development of Computational Methodologies for Metal–Organic Frameworks and Their Application in Gas Separations
journal, July 2013

  • Yang, Qingyuan; Liu, Dahuan; Zhong, Chongli
  • Chemical Reviews, Vol. 113, Issue 10
  • DOI: 10.1021/cr400005f

The Artificial Leaf
journal, January 2012

  • Nocera, Daniel G.
  • Accounts of Chemical Research, Vol. 45, Issue 5
  • DOI: 10.1021/ar2003013

Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts
journal, March 2015

  • Santos, Vera P.; Wezendonk, Tim A.; Jaén, Juan José Delgado
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7451

Cobalt-Catalyzed Fischer–Tropsch Synthesis: Chemical Nature of the Oxide Support as a Performance Descriptor
journal, April 2015

  • Prieto, Gonzalo; De Mello, Mariele I. S.; Concepción, Patricia
  • ACS Catalysis, Vol. 5, Issue 6
  • DOI: 10.1021/acscatal.5b00057

Single catalyst electrocatalytic reduction of CO 2 in water to H 2 +CO syngas mixtures with water oxidation to O 2
journal, January 2014

  • Kang, Peng; Chen, Zuofeng; Nayak, Animesh
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE01904K

Progress in hydroformylation and carbonylation
journal, December 1995

  • Beller, Matthias; Cornils, Boy; Frohning, Carl D.
  • Journal of Molecular Catalysis A: Chemical, Vol. 104, Issue 1, p. 17-85
  • DOI: 10.1016/1381-1169(95)00130-1

Methanol Synthesis
journal, May 1992


Photochemical and Photoelectrochemical Reduction of CO 2
journal, May 2012


Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation
journal, June 2013

  • Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr300463y

Catalysis of the electrochemical reduction of carbon dioxide
journal, January 2013

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35360A

Electrocatalytic CO 2 reduction with a membrane supported manganese catalyst in aqueous solution
journal, January 2014

  • Walsh, James J.; Neri, Gaia; Smith, Charlotte L.
  • Chem. Commun., Vol. 50, Issue 84
  • DOI: 10.1039/C4CC06404F

Re(bipy-tBu)(CO) 3 Cl−improved Catalytic Activity for Reduction of Carbon Dioxide: IR-Spectroelectrochemical and Mechanistic Studies
journal, October 2010

  • Smieja, Jonathan M.; Kubiak, Clifford P.
  • Inorganic Chemistry, Vol. 49, Issue 20
  • DOI: 10.1021/ic1008363

Abundances of chemical elements in the Earth’s crust
journal, January 2006


[Mn(bipyridyl)(CO)3Br]: An Abundant Metal Carbonyl Complex as Efficient Electrocatalyst for CO2 Reduction
journal, September 2011

  • Bourrez, Marc; Molton, Florian; Chardon-Noblat, Sylvie
  • Angewandte Chemie International Edition, Vol. 50, Issue 42
  • DOI: 10.1002/anie.201103616

Manganese as a Substitute for Rhenium in CO 2 Reduction Catalysts: The Importance of Acids
journal, February 2013

  • Smieja, Jonathan M.; Sampson, Matthew D.; Grice, Kyle A.
  • Inorganic Chemistry, Vol. 52, Issue 5
  • DOI: 10.1021/ic302391u

Metal-Organic Frameworks as Single-Site Solid Catalysts for Asymmetric Reactions
journal, July 2012

  • Falkowski, Joseph M.; Liu, Sophie; Lin, Wenbin
  • Israel Journal of Chemistry, Vol. 52, Issue 7
  • DOI: 10.1002/ijch.201100159

Postsynthetic Metalation of Bipyridyl-Containing Metal–Organic Frameworks for Highly Efficient Catalytic Organic Transformations
journal, April 2014

  • Manna, Kuntal; Zhang, Teng; Lin, Wenbin
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja5018267

Elucidating Molecular Iridium Water Oxidation Catalysts Using Metal–Organic Frameworks: A Comprehensive Structural, Catalytic, Spectroscopic, and Kinetic Study
journal, November 2012

  • Wang, Cheng; Wang, Jin-Liang; Lin, Wenbin
  • Journal of the American Chemical Society, Vol. 134, Issue 48
  • DOI: 10.1021/ja310074j

Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis
journal, August 2011

  • Wang, Cheng; Xie, Zhigang; deKrafft, Kathryn E.
  • Journal of the American Chemical Society, Vol. 133, Issue 34, p. 13445-13454
  • DOI: 10.1021/ja203564w

Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups
journal, February 2009

  • Bekyarova, Elena; Itkis, Mikhail E.; Ramesh, Palanisamy
  • Journal of the American Chemical Society, Vol. 131, Issue 4
  • DOI: 10.1021/ja8057327

An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes
journal, May 2012

  • Li, Yanguang; Zhou, Wu; Wang, Hailiang
  • Nature Nanotechnology, Vol. 7, Issue 6
  • DOI: 10.1038/nnano.2012.72

Carbon Materials for Chemical Capacitive Energy Storage
journal, September 2011


Graphene-Immobilized Monomeric Bipyridine-M x + (M x + = Fe 3+ , Co 2+ , Ni 2+ , or Cu 2+ ) Complexes for Electrocatalytic Water Oxidation
journal, October 2014

  • Zhou, Xin; Zhang, Teng; Abney, Carter W.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 21
  • DOI: 10.1021/am506435u

The Homogeneous Reduction of CO 2 by [Ni(cyclam)] + : Increased Catalytic Rates with the Addition of a CO Scavenger
journal, March 2015

  • Froehlich, Jesse D.; Kubiak, Clifford P.
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/ja512575v

Poisoning and Activation of the Gold Cathode during Electroreduction of CO[sub 2]
journal, January 1994

  • Kedzierzawski, P.
  • Journal of The Electrochemical Society, Vol. 141, Issue 5
  • DOI: 10.1149/1.2054936

The Oxidation Potential of the System Potassium Ferrocyanide–Potassium Ferricyanide at Various Ionic Strengths
journal, July 1935

  • Kolthoff, I. M.; Tomsicek, William J.
  • The Journal of Physical Chemistry, Vol. 39, Issue 7
  • DOI: 10.1021/j150367a004

Preparation of Graphitic Oxide
journal, March 1958

  • Hummers, William S.; Offeman, Richard E.
  • Journal of the American Chemical Society, Vol. 80, Issue 6, p. 1339-1339
  • DOI: 10.1021/ja01539a017

Graphene-supported [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10− for highly efficient electrocatalytic water oxidation
journal, January 2013

  • Guo, Si-Xuan; Liu, Yuping; Lee, Chong-Yong
  • Energy & Environmental Science, Vol. 6, Issue 9
  • DOI: 10.1039/c3ee41892h

Quantum-CORMs: quantum dot sensitized CO releasing molecules
journal, January 2015


ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


The Synthesis of Biaryl Compounds by Means of the Diazo Reaction
journal, October 1924

  • Gomberg, M.; Bachmann, W. E.
  • Journal of the American Chemical Society, Vol. 46, Issue 10
  • DOI: 10.1021/ja01675a026

Electrochemical Water Oxidation with Carbon-Grafted Iridium Complexes
journal, February 2012

  • deKrafft, Kathryn E.; Wang, Cheng; Xie, Zhigang
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 2
  • DOI: 10.1021/am2018095

Covalent Electron Transfer Chemistry of Graphene with Diazonium Salts
journal, September 2012

  • Paulus, Geraldine L. C.; Wang, Qing Hua; Strano, Michael S.
  • Accounts of Chemical Research, Vol. 46, Issue 1, p. 160-170
  • DOI: 10.1021/ar300119z

X-ray Absorption Spectroscopy of Ground and Excited Rhenium–Carbonyl–Diimine Complexes: Evidence for a Two-Center Electron Transfer
journal, January 2013

  • El Nahhas, A.; van der Veen, R. M.; Penfold, T. J.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 2
  • DOI: 10.1021/jp3106502

Manganese Catalysts with Bulky Bipyridine Ligands for the Electrocatalytic Reduction of Carbon Dioxide: Eliminating Dimerization and Altering Catalysis
journal, February 2014

  • Sampson, Matthew D.; Nguyen, An D.; Grice, Kyle A.
  • Journal of the American Chemical Society, Vol. 136, Issue 14
  • DOI: 10.1021/ja501252f

Developing a Mechanistic Understanding of Molecular Electrocatalysts for CO 2 Reduction using Infrared Spectroelectrochemistry
journal, April 2014

  • Machan, Charles W.; Sampson, Matthew D.; Chabolla, Steven A.
  • Organometallics, Vol. 33, Issue 18
  • DOI: 10.1021/om500044a

Works referencing / citing this record:

Carbon Materials as Cathode Constituents for Electrochemical CO2 Reduction—A Review
journal, December 2019

  • Messias, Sofia; Nunes da Ponte, Manuel; S. Reis-Machado, Ana
  • C — Journal of Carbon Research, Vol. 5, Issue 4
  • DOI: 10.3390/c5040083

Nitrogen-doped tubular carbon foam electrodes for efficient electroreduction of CO 2 to syngas with potential-independent CO/H 2 ratios
journal, January 2019

  • Li, Hongqiang; Xiao, Nan; Wang, Yuwei
  • Journal of Materials Chemistry A, Vol. 7, Issue 32
  • DOI: 10.1039/c9ta05904k

Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts
journal, January 2020

  • Sun, Libo; Reddu, Vikas; Fisher, Adrian C.
  • Energy & Environmental Science, Vol. 13, Issue 2
  • DOI: 10.1039/c9ee03660a

Rhenium-modified porous covalent triazine framework for highly efficient photocatalytic carbon dioxide reduction in a solid–gas system
journal, January 2018

  • Xu, Rui; Wang, Xu-Sheng; Zhao, Hui
  • Catalysis Science & Technology, Vol. 8, Issue 8
  • DOI: 10.1039/c8cy00176f

Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbon-Based Catalysts for the Electrochemical Reduction of CO 2
journal, July 2017

  • Vasileff, Anthony; Zheng, Yao; Qiao, Shi Zhang
  • Advanced Energy Materials, Vol. 7, Issue 21
  • DOI: 10.1002/aenm.201700759

Immobilizing Re(CO) 3 Br(dcbpy) Complex on CsPbBr 3 Nanocrystal for Boosted Charge Separation and Photocatalytic CO 2 Reduction
journal, September 2019


Electrocatalytic reduction of CO 2 with CCC-NHC pincer nickel complexes
journal, January 2017

  • Cope, James D.; Liyanage, Nalaka P.; Kelley, Paul J.
  • Chemical Communications, Vol. 53, Issue 68
  • DOI: 10.1039/c6cc06537f

Elucidating the Electrocatalytic CO 2 Reduction Reaction over a Model Single‐Atom Nickel Catalyst
journal, December 2019


Elucidating the Electrocatalytic CO 2 Reduction Reaction over a Model Single‐Atom Nickel Catalyst
journal, January 2020

  • Liu, Song; Yang, Hong Bin; Hung, Sung‐Fu
  • Angewandte Chemie International Edition, Vol. 59, Issue 2
  • DOI: 10.1002/anie.201911995

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.