DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxygen reduction kinetics on Pt monolayer shell highly affected by the structure of bimetallic AuNi cores

Abstract

Here, we describe pronounced effects of structural changes of the AuNi cores on the oxygen reduction reaction (ORR) activity of a Pt monolayer shell. The study of alloyed AuNi nanoparticles compared with AuNi core–shell structured nanoparticles revealed configurations having different electronic and electrochemical properties. Controlled alloying of Au with Ni was essential to tune the electronic properties of Au interacting with the Pt monolayer shell to achieve suitable adsorption of O2 on Pt for expediting the ORR. The alloyed AuNi nanoparticles made the Pt shell more catalytically active for the ORR than the core–shell structured AuNi nanoparticles. The Pt monolayer supported on the alloyed AuNi nanoparticles showed the Pt mass and specific activities as high as 1.52 A mg–1 and 1.18 mA cm–2, respectively, with almost no loss over 5 000 cycles of stability test. This high ORR activity is ascribed to the role of nonspecific steric configuration of Ni atoms changing the electronic properties of the alloy that affect the oxygen and water interaction with the Pt shell and facilitate increased ORR kinetics.

Authors:
 [1];  [2];  [2];  [2];  [2];  [2];  [3];  [3];  [3];  [2];  [2];  [2]
  1. Harbin Institute of Technology, Harbin (China); Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Harbin Institute of Technology, Harbin (China)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1329922
Report Number(s):
BNL-112748-2016-JA
Journal ID: ISSN 0897-4756; R&D Project: MA510MAEA; KC0302010
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 28; Journal Issue: 15; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Chen, Guangyu, Kuttiyiel, Kurian A., Su, Dong, Li, Meng, Wang, Chiu -Hui, Buceta, David, Du, Chunyu, Gao, Yunzhi, Yin, Geping, Sasaki, Kotaro, Vukmirovic, Miomir B., and Adzic, Radoslav R. Oxygen reduction kinetics on Pt monolayer shell highly affected by the structure of bimetallic AuNi cores. United States: N. p., 2016. Web. doi:10.1021/acs.chemmater.6b00500.
Chen, Guangyu, Kuttiyiel, Kurian A., Su, Dong, Li, Meng, Wang, Chiu -Hui, Buceta, David, Du, Chunyu, Gao, Yunzhi, Yin, Geping, Sasaki, Kotaro, Vukmirovic, Miomir B., & Adzic, Radoslav R. Oxygen reduction kinetics on Pt monolayer shell highly affected by the structure of bimetallic AuNi cores. United States. https://doi.org/10.1021/acs.chemmater.6b00500
Chen, Guangyu, Kuttiyiel, Kurian A., Su, Dong, Li, Meng, Wang, Chiu -Hui, Buceta, David, Du, Chunyu, Gao, Yunzhi, Yin, Geping, Sasaki, Kotaro, Vukmirovic, Miomir B., and Adzic, Radoslav R. Tue . "Oxygen reduction kinetics on Pt monolayer shell highly affected by the structure of bimetallic AuNi cores". United States. https://doi.org/10.1021/acs.chemmater.6b00500. https://www.osti.gov/servlets/purl/1329922.
@article{osti_1329922,
title = {Oxygen reduction kinetics on Pt monolayer shell highly affected by the structure of bimetallic AuNi cores},
author = {Chen, Guangyu and Kuttiyiel, Kurian A. and Su, Dong and Li, Meng and Wang, Chiu -Hui and Buceta, David and Du, Chunyu and Gao, Yunzhi and Yin, Geping and Sasaki, Kotaro and Vukmirovic, Miomir B. and Adzic, Radoslav R.},
abstractNote = {Here, we describe pronounced effects of structural changes of the AuNi cores on the oxygen reduction reaction (ORR) activity of a Pt monolayer shell. The study of alloyed AuNi nanoparticles compared with AuNi core–shell structured nanoparticles revealed configurations having different electronic and electrochemical properties. Controlled alloying of Au with Ni was essential to tune the electronic properties of Au interacting with the Pt monolayer shell to achieve suitable adsorption of O2 on Pt for expediting the ORR. The alloyed AuNi nanoparticles made the Pt shell more catalytically active for the ORR than the core–shell structured AuNi nanoparticles. The Pt monolayer supported on the alloyed AuNi nanoparticles showed the Pt mass and specific activities as high as 1.52 A mg–1 and 1.18 mA cm–2, respectively, with almost no loss over 5 000 cycles of stability test. This high ORR activity is ascribed to the role of nonspecific steric configuration of Ni atoms changing the electronic properties of the alloy that affect the oxygen and water interaction with the Pt shell and facilitate increased ORR kinetics.},
doi = {10.1021/acs.chemmater.6b00500},
journal = {Chemistry of Materials},
number = 15,
volume = 28,
place = {United States},
year = {Tue Jul 12 00:00:00 EDT 2016},
month = {Tue Jul 12 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Catalysts by Platonic design
journal, July 2015


Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets
journal, July 2015


Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces
journal, February 2014


Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction
journal, January 2012

  • Sasaki, Kotaro; Naohara, Hideo; Choi, YongMan
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2124

Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters
journal, January 2007


Tuning the thermodynamic onset potential of electrocatalytic O 2 reduction reaction by synthetic iron–porphyrin complexes
journal, January 2015

  • Amanullah, Sk; Das, Pradip Kumar; Samanta, Subhra
  • Chemical Communications, Vol. 51, Issue 49
  • DOI: 10.1039/C5CC01938A

Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis
journal, September 2011


Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry
journal, October 2013

  • Ramaswamy, Nagappan; Tylus, Urszula; Jia, Qingying
  • Journal of the American Chemical Society, Vol. 135, Issue 41
  • DOI: 10.1021/ja405149m

Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction
journal, June 2011

  • Yang, Lijun; Jiang, Shujuan; Zhao, Yu
  • Angewandte Chemie International Edition, Vol. 50, Issue 31
  • DOI: 10.1002/anie.201101287

The Role of Catalysts and Peroxide Oxidation in Lithium-Oxygen Batteries
journal, November 2012

  • Black, Robert; Lee, Jin-Hyon; Adams, Brian
  • Angewandte Chemie International Edition, Vol. 52, Issue 1, p. 392-396
  • DOI: 10.1002/anie.201205354

Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction
journal, November 2014

  • Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong
  • Nature Communications, Vol. 5, Article No. 5185
  • DOI: 10.1038/ncomms6185

High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt
journal, April 2011


Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells
journal, April 2009

  • Lefèvre, Michel; Proietti, Eric; Jaouen, Frédéric
  • Science, Vol. 324, Issue 5923, p. 71-74
  • DOI: 10.1126/science.1170051

Electrocatalytic Oxygen Activation by Carbanion Intermediates of Nitrogen-Doped Graphitic Carbon
journal, February 2014

  • Li, Qiqi; Noffke, Benjamin W.; Wang, Yilun
  • Journal of the American Chemical Society, Vol. 136, Issue 9
  • DOI: 10.1021/ja413179n

Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction
journal, February 2009


Electrocatalyst approaches and challenges for automotive fuel cells
journal, June 2012


Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs
journal, March 2005

  • Gasteiger, Hubert A.; Kocha, Shyam S.; Sompalli, Bhaskar
  • Applied Catalysis B: Environmental, Vol. 56, Issue 1-2, p. 9-35
  • DOI: 10.1016/j.apcatb.2004.06.021

Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces
journal, February 2007

  • Stamenkovic, Vojislav R.; Mun, Bongjin Simon; Arenz, Matthias
  • Nature Materials, Vol. 6, Issue 3, p. 241-247
  • DOI: 10.1038/nmat1840

Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts
journal, April 2010

  • Strasser, Peter; Koh, Shirlaine; Anniyev, Toyli
  • Nature Chemistry, Vol. 2, Issue 6
  • DOI: 10.1038/nchem.623

Platinum-Based Electrocatalysts with Core-Shell Nanostructures
journal, February 2011


Platinum Monolayer Electrocatalysts: Tunable Activity, Stability, and Self-Healing Properties
journal, September 2012


Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics
journal, September 2005

  • Zhang, Junliang; Vukmirovic, Miomir B.; Sasaki, Kotaro
  • Journal of the American Chemical Society, Vol. 127, Issue 36
  • DOI: 10.1021/ja053695i

Enhanced Oxygen Reduction Activity of IrCu Core Platinum Monolayer Shell Nano-electrocatalysts
journal, June 2013

  • Choi, YongMan; Kuttiyiel, Kurian A.; Labis, Joselito P.
  • Topics in Catalysis, Vol. 56, Issue 12
  • DOI: 10.1007/s11244-013-0070-x

Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes
journal, October 2010

  • Sasaki, Kotaro; Naohara, Hideo; Cai, Yun
  • Angewandte Chemie International Edition, Vol. 49, Issue 46, p. 8602-8607
  • DOI: 10.1002/anie.201004287

Pt monolayer on Au-stabilized PdNi core–shell nanoparticles for oxygen reduction reaction
journal, November 2013


Platinum-Monolayer Shell on AuNi 0.5 Fe Nanoparticle Core Electrocatalyst with High Activity and Stability for the Oxygen Reduction Reaction
journal, October 2010

  • Gong, Kuanping; Su, Dong; Adzic, Radoslav R.
  • Journal of the American Chemical Society, Vol. 132, Issue 41
  • DOI: 10.1021/ja1063873

Platinum Monolayer on Nonnoble Metal−Noble Metal Core−Shell Nanoparticle Electrocatalysts for O2 Reduction
journal, December 2005

  • Zhang, J.; Lima, F. H. B.; Shao, M. H.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 48, p. 22701-22704
  • DOI: 10.1021/jp055634c

AuPt Alloy Nanoparticles for CO-Tolerant Hydrogen Activation: Architectural Effects in Au-Pt Bimetallic Nanocatalysts
journal, September 2007

  • Zhou, S.; Jackson, G. S.; Eichhorn, B.
  • Advanced Functional Materials, Vol. 17, Issue 16
  • DOI: 10.1002/adfm.200700216

In Situ Phase Separation of NiAu Alloy Nanoparticles for Preparing Highly Active Au/NiO CO Oxidation Catalysts
journal, December 2008


Truncated Octahedral Pt 3 Ni Oxygen Reduction Reaction Electrocatalysts
journal, April 2010

  • Wu, Jianbo; Zhang, Junliang; Peng, Zhenmeng
  • Journal of the American Chemical Society, Vol. 132, Issue 14
  • DOI: 10.1021/ja100571h

Metal monolayer deposition by replacement of metal adlayers on electrode surfaces
journal, March 2001


ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Structural Characterization of Carbon-Supported Platinum−Ruthenium Nanoparticles from the Molecular Cluster Precursor PtRu 5 C(CO) 16
journal, August 1997

  • Nashner, Michael S.; Frenkel, Anatoly I.; Adler, David L.
  • Journal of the American Chemical Society, Vol. 119, Issue 33
  • DOI: 10.1021/ja971039f

Carbon-Supported IrNi Core–Shell Nanoparticles: Synthesis, Characterization, and Catalytic Activity
journal, May 2011

  • Sasaki, Kotaro; Kuttiyiel, Kurian A.; Barrio, Laura
  • The Journal of Physical Chemistry C, Vol. 115, Issue 20
  • DOI: 10.1021/jp200746j

Structural Models and Atomic Distribution of Bimetallic Nanoparticles as Investigated by X-ray Absorption Spectroscopy
journal, August 2005

  • Hwang, Bing-Joe; Sarma, Loka Subramanyam; Chen, Jiun-Ming
  • Journal of the American Chemical Society, Vol. 127, Issue 31
  • DOI: 10.1021/ja0526618

Tables of Standard Electrode Potentials
journal, June 1978

  • Milazzo, G.; Caroli, S.; Braun, Robert D.
  • Journal of The Electrochemical Society, Vol. 125, Issue 6
  • DOI: 10.1149/1.2131790

Surface segregation energies in transition-metal alloys
journal, June 1999


Ordered bilayer ruthenium–platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts
journal, September 2013

  • Hsieh, Yu-Chi; Zhang, Yu; Su, Dong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3466

Ag L -edge x-ray-absorption near-edge-structure study of charge redistribution at the Ag site in Au-Ag alloys
journal, May 1994


Structure and reactivity investigations on supported bimetallic AuNi catalysts used for hydrocarbon steam reforming
journal, December 2006


Structural and Architectural Evaluation of Bimetallic Nanoparticles: A Case Study of Pt−Ru Core−Shell and Alloy Nanoparticles
journal, October 2009

  • Alayoglu, Selim; Zavalij, Peter; Eichhorn, Bryan
  • ACS Nano, Vol. 3, Issue 10, p. 3127-3137
  • DOI: 10.1021/nn900242v

Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts
journal, January 2012


Solving the 3D structure of metal nanoparticles
journal, January 2007


Role of Strain and Ligand Effects in the Modification of the Electronic and Chemical Properties of Bimetallic Surfaces
journal, October 2004


A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys
journal, November 2005


Density functional theory in surface chemistry and catalysis
journal, January 2011

  • Norskov, J. K.; Abild-Pedersen, F.; Studt, F.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 3
  • DOI: 10.1073/pnas.1006652108

Enhanced Oxygen Reduction Activity of Platinum Monolayer on Gold Nanoparticles
journal, December 2010

  • Shao, Minhua; Peles, Amra; Shoemaker, Krista
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 2
  • DOI: 10.1021/jz1015789

Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations
journal, January 2014

  • Leontyev, I. N.; Kuriganova, A. B.; Leontyev, N. G.
  • RSC Adv., Vol. 4, Issue 68
  • DOI: 10.1039/C4RA04809A

Works referencing / citing this record:

Redox-active and semi-conducting donor–acceptor conjugated microporous polymers as metal-free ORR catalysts
journal, January 2018

  • Roy, Syamantak; Bandyopadhyay, Arkamita; Das, Mrinmay
  • Journal of Materials Chemistry A, Vol. 6, Issue 14
  • DOI: 10.1039/c8ta00099a

Highly stable one-dimensional Pt nanowires with modulated structural disorder towards the oxygen reduction reaction
journal, January 2019

  • Kong, Fanpeng; Norouzi Banis, Mohammad; Du, Lei
  • Journal of Materials Chemistry A, Vol. 7, Issue 43
  • DOI: 10.1039/c9ta08120h

Highly Dispersed Carbon Supported PdNiMo Core with Pt Monolayer Shell Electrocatalysts for Oxygen Reduction Reaction
journal, January 2018

  • Okoli, Celest; Kuttiyiel, Kurian A.; Sasaki, Kotaro
  • Journal of The Electrochemical Society, Vol. 165, Issue 15
  • DOI: 10.1149/2.0381815jes

Strain engineering of metal-based nanomaterials for energy electrocatalysis
journal, January 2019

  • Xia, Zhonghong; Guo, Shaojun
  • Chemical Society Reviews, Vol. 48, Issue 12
  • DOI: 10.1039/c8cs00846a

Electrocatalysts Prepared by Galvanic Replacement
journal, March 2017

  • Papaderakis, Athanasios; Mintsouli, Ioanna; Georgieva, Jenia
  • Catalysts, Vol. 7, Issue 12
  • DOI: 10.3390/catal7030080

Highly Dispersed Carbon Supported PdNiMo Core with Pt Monolayer Shell Electrocatalysts for Oxygen Reduction Reaction
journal, March 2018

  • Okoli, Celest; Kuttiyiel, Kurian A.; Sasaki, Kotaro
  • ECS Transactions, Vol. 85, Issue 12
  • DOI: 10.1149/08512.0067ecst