DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces

Abstract

Here in this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated with a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D2 law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowly inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet moving velocity. Furthermore, the processes that the Leidenfrost droplets climb uphill on inclined ratchet surfaces are also studied. Lastly, numerical results show that the maximum inclination angle at which a Leidenfrost droplet can still climb uphill successfully is affected by the initial radius ofmore » the droplet.« less

Authors:
 [1];  [2];  [3];  [4]
  1. Central South Univ., Changsha (China). School of Energy Science and Engineering; Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computational Earth Science Group
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computational Earth Science Group
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Fluid Dynamics and Solid Mechanics
  4. Southwest Univ. of Science and Technology, Mianyang (China). School of Civil Engineering and Architecture
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program; National Natural Science Foundation of China (NSFC); Foundation for the Author of National Excellent Doctoral Dissertation of China
OSTI Identifier:
1329863
Report Number(s):
LA-UR-15-24100
Journal ID: ISSN 1744-683X
Grant/Contract Number:  
AC52-06NA25396; 51506227; 201439
Resource Type:
Accepted Manuscript
Journal Name:
Soft Matter
Additional Journal Information:
Journal Volume: 12; Journal Issue: 1; Journal ID: ISSN 1744-683X
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; Energy Sciences

Citation Formats

Li, Qing, Kang, Qinjun J., Francois, Marianne M., and Hu, A. J. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. United States: N. p., 2016. Web. doi:10.1039/C5SM01353D.
Li, Qing, Kang, Qinjun J., Francois, Marianne M., & Hu, A. J. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. United States. https://doi.org/10.1039/C5SM01353D
Li, Qing, Kang, Qinjun J., Francois, Marianne M., and Hu, A. J. Sun . "Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces". United States. https://doi.org/10.1039/C5SM01353D. https://www.osti.gov/servlets/purl/1329863.
@article{osti_1329863,
title = {Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces},
author = {Li, Qing and Kang, Qinjun J. and Francois, Marianne M. and Hu, A. J.},
abstractNote = {Here in this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated with a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D2 law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowly inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet moving velocity. Furthermore, the processes that the Leidenfrost droplets climb uphill on inclined ratchet surfaces are also studied. Lastly, numerical results show that the maximum inclination angle at which a Leidenfrost droplet can still climb uphill successfully is affected by the initial radius of the droplet.},
doi = {10.1039/C5SM01353D},
journal = {Soft Matter},
number = 1,
volume = 12,
place = {United States},
year = {Sun Oct 09 00:00:00 EDT 2016},
month = {Sun Oct 09 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Leidenfrost Point Reduction on Micropatterned Metallic Surfaces
journal, October 2012

  • Arnaldo del Cerro, Daniel; Marín, Álvaro G.; Römer, Gertwillem R. B. E.
  • Langmuir, Vol. 28, Issue 42
  • DOI: 10.1021/la302181f

Lattice Boltzmann Simulation of Growth and Deformation for a Rising Vapor Bubble Through Superheated Liquid
journal, February 2009

  • Dong, Zhiqiang; Li, Weizhong; Song, Yongchen
  • Numerical Heat Transfer, Part A: Applications, Vol. 55, Issue 4
  • DOI: 10.1080/10407780902720718

Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation
journal, April 1994


Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability
journal, June 2015


Simulation of evaporation by an extension of the pseudopotential lattice Boltzmann method: A quantitative analysis
journal, April 2011


A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate
journal, January 2007


Leidenfrost on a ratchet
journal, February 2011

  • Lagubeau, Guillaume; Le Merrer, Marie; Clanet, Christophe
  • Nature Physics, Vol. 7, Issue 5
  • DOI: 10.1038/nphys1925

Effect of an electric field on a Leidenfrost droplet
journal, January 2012

  • Celestini, Franck; Kirstetter, Geoffroy
  • Soft Matter, Vol. 8, Issue 22
  • DOI: 10.1039/c2sm25656h

Propulsion mechanisms for Leidenfrost solids on ratchets
journal, February 2013


Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow
journal, July 2013

  • Safari, Hesameddin; Rahimian, Mohammad Hassan; Krafczyk, Manfred
  • Physical Review E, Vol. 88, Issue 1
  • DOI: 10.1103/PhysRevE.88.013304

Room temperature water Leidenfrost droplets
journal, January 2013

  • Celestini, Franck; Frisch, Thomas; Pomeau, Yves
  • Soft Matter, Vol. 9, Issue 40
  • DOI: 10.1039/c3sm51608c

Propulsion of droplets on micro- and sub-micron ratchet surfaces in the Leidenfrost temperature regime
journal, November 2010

  • Ok, Jeong Tae; Lopez-Oña, Eugene; Nikitopoulos, Dimitris E.
  • Microfluidics and Nanofluidics, Vol. 10, Issue 5
  • DOI: 10.1007/s10404-010-0733-x

Convection in Multiphase Fluid Flows Using Lattice Boltzmann Methods
journal, March 2012


Self-Propelled Leidenfrost Droplets
journal, April 2006


A sublimation heat engine
journal, March 2015

  • Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7390

Trapping Leidenfrost Drops with Crenelations
journal, September 2011


Fingering patterns during droplet impact on heated surfaces
journal, January 2015

  • Khavari, Mohammad; Sun, Chao; Lohse, Detlef
  • Soft Matter, Vol. 11, Issue 17
  • DOI: 10.1039/C4SM02878C

Multi-scale simulation of oblique collisions of a droplet on a surface in the Leidenfrost regime
journal, July 2007


Thermally driven flows between a Leidenfrost solid and a ratchet surface
journal, June 2013


Capillary droplets on Leidenfrost micro-ratchets
journal, December 2012

  • Marín, Álvaro G.; Arnaldo del Cerro, Daniel; Römer, Gertwillem R. B. E.
  • Physics of Fluids, Vol. 24, Issue 12
  • DOI: 10.1063/1.4768813

Viscous mechanism for Leidenfrost propulsion on a ratchet
journal, November 2011


Propulsion on a superhydrophobic ratchet
journal, June 2014

  • Dupeux, Guillaume; Bourrianne, Philippe; Magdelaine, Quentin
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05280

Leidenfrost drops
journal, January 2003

  • Biance, Anne-Laure; Clanet, Christophe; Quéré, David
  • Physics of Fluids, Vol. 15, Issue 6
  • DOI: 10.1063/1.1572161

Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model
journal, May 2013


Leidenfrost levitation: beyond droplets
journal, November 2012

  • Hashmi, Ali; Xu, Yuhao; Coder, Benjamin
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00797

Maximum size of drops levitated by an air cushion
journal, March 2009


Ratchet composite thin film for low-temperature self-propelled Leidenfrost droplet
journal, February 2012

  • Feng, Ruotao; Zhao, Wenjie; Wu, Xuedong
  • Journal of Colloid and Interface Science, Vol. 367, Issue 1
  • DOI: 10.1016/j.jcis.2011.11.008

Lattice Boltzmann 2038
journal, March 2015


Oscillating and star-shaped drops levitated by an airflow
journal, August 2013


Lattice-Boltzmann simulations of droplet evaporation
journal, January 2014

  • Ledesma-Aguilar, Rodrigo; Vella, Dominic; Yeomans, Julia M.
  • Soft Matter, Vol. 10, Issue 41
  • DOI: 10.1039/C4SM01291G

Formation, growth, and eruption cycle of vapor domes beneath a liquid puddle during Leidenfrost phenomena
journal, August 2013

  • Paul, Gayatri; Manna, Indranil; Kumar Das, Prasanta
  • Applied Physics Letters, Vol. 103, Issue 8
  • DOI: 10.1063/1.4819095

Hydrodynamics of Leidenfrost droplets in one-component fluids
journal, April 2013


Lattice Boltzmann model for simulating flows with multiple phases and components
journal, March 1993


Equations of state in a lattice Boltzmann model
journal, April 2006

  • Yuan, Peng; Schaefer, Laura
  • Physics of Fluids, Vol. 18, Issue 4
  • DOI: 10.1063/1.2187070

Leidenfrost Dynamics
journal, January 2013


Lattice BGK Models for Navier-Stokes Equation
journal, February 1992


Enhanced Droplet Control by Transition Boiling
journal, October 2012

  • Grounds, Alex; Still, Richard; Takashina, Kei
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00720

Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability
journal, June 2000


A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications
journal, September 2014


Lattice Boltzmann Method for Fluid Flows
journal, January 1998


Organization of microbeads in Leidenfrost drops
journal, January 2014

  • Maquet, Laurent; Colinet, Pierre; Dorbolo, Stéphane
  • Soft Matter, Vol. 10, Issue 23
  • DOI: 10.1039/c4sm00169a

A ratchet trap for Leidenfrost drops
journal, February 2012

  • Cousins, Thomas R.; Goldstein, Raymond E.; Jaworski, Justin W.
  • Journal of Fluid Mechanics, Vol. 696
  • DOI: 10.1017/jfm.2012.27

Leidenfrost Gas Ratchets Driven by Thermal Creep
journal, October 2011


Improved axisymmetric lattice Boltzmann scheme
journal, May 2010


Recent advances in droplet vaporization and combustion
journal, January 1982


Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water
journal, January 2014

  • Vakarelski, Ivan U.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.
  • Soft Matter, Vol. 10, Issue 31
  • DOI: 10.1039/C4SM00368C

Lattice-Boltzmann Method for Complex Flows
journal, January 2010


Works referencing / citing this record:

Entropy production in thermal phase separation: a kinetic-theory approach
journal, January 2019

  • Zhang, Yudong; Xu, Aiguo; Zhang, Guangcai
  • Soft Matter, Vol. 15, Issue 10
  • DOI: 10.1039/c8sm02637h

The nanoscale Leidenfrost effect
journal, January 2019


Discrete fluidization of dense monodisperse emulsions in neutral wetting microchannels
journal, January 2020

  • Fei, Linlin; Scagliarini, Andrea; Luo, Kai H.
  • Soft Matter, Vol. 16, Issue 3
  • DOI: 10.1039/c9sm02331c

Controllable Leidenfrost glider on a shallow water layer
journal, November 2018

  • Sugioka, Hideyuki; Segawa, Satoru
  • AIP Advances, Vol. 8, Issue 11
  • DOI: 10.1063/1.5051238

Self-propelling Leidenfrost droplets on a variable topography surface
journal, December 2018

  • Arter, James M.; Cleaver, David J.; Takashina, Kei
  • Applied Physics Letters, Vol. 113, Issue 24
  • DOI: 10.1063/1.5056249

High-speed side-shooter using Leidenfrost phenomena
journal, April 2019

  • Sugioka, Hideyuki; Segawa, Satoru; Kubota, Mako
  • Journal of Applied Physics, Vol. 125, Issue 13
  • DOI: 10.1063/1.5064429

Numerical study on vapor–liquid phase change in an enclosed narrow space
journal, November 2019


Entropy production in thermal phase separation: a kinetic-theory approach
text, January 2018


Discrete fluidization of dense monodisperse emulsions in neutral wetting microchannels
text, January 2019