DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases

Abstract

In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase (TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleaving the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalyticmore » rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2SO ring configuration as it reaches its binding site. Lastly, this work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.« less

Authors:
 [1];  [2];  [2];  [3];  [4];  [2]
  1. Northwestern Univ., Evanston, IL (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Northwestern Univ., Evanston, IL (United States)
  4. Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Bioenergy Technologies Office
OSTI Identifier:
1325070
Report Number(s):
NREL/JA-5100-67104
Journal ID: ISSN 2041-6520; CSHCBM
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Chemical Science
Additional Journal Information:
Journal Volume: 7; Journal Issue: 9; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; catalytic mechanisms; hydrolases

Citation Formats

Mayes, Heather B., Knott, Brandon C., Crowley, Michael F., Broadbelt, Linda J., Ståhlberg, Jerry, and Beckham, Gregg T. Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases. United States: N. p., 2016. Web. doi:10.1039/C6SC00571C.
Mayes, Heather B., Knott, Brandon C., Crowley, Michael F., Broadbelt, Linda J., Ståhlberg, Jerry, & Beckham, Gregg T. Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases. United States. https://doi.org/10.1039/C6SC00571C
Mayes, Heather B., Knott, Brandon C., Crowley, Michael F., Broadbelt, Linda J., Ståhlberg, Jerry, and Beckham, Gregg T. Wed . "Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases". United States. https://doi.org/10.1039/C6SC00571C. https://www.osti.gov/servlets/purl/1325070.
@article{osti_1325070,
title = {Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases},
author = {Mayes, Heather B. and Knott, Brandon C. and Crowley, Michael F. and Broadbelt, Linda J. and Ståhlberg, Jerry and Beckham, Gregg T.},
abstractNote = {In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase (TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleaving the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2SO ring configuration as it reaches its binding site. Lastly, this work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.},
doi = {10.1039/C6SC00571C},
journal = {Chemical Science},
number = 9,
volume = 7,
place = {United States},
year = {Wed Jun 01 00:00:00 EDT 2016},
month = {Wed Jun 01 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Structure of a Bacterial Cellobiohydrolase: The Catalytic Core of the Thermobifida fusca Family GH6 Cellobiohydrolase Cel6B
journal, February 2013

  • Sandgren, Mats; Wu, Miao; Karkehabadi, Saeid
  • Journal of Molecular Biology, Vol. 425, Issue 3
  • DOI: 10.1016/j.jmb.2012.11.039

Carbohydrate Polymers at the Center of Life’s Origins: The Importance of Molecular Processivity
journal, December 2008

  • Stern, Robert; Jedrzejas, Mark J.
  • Chemical Reviews, Vol. 108, Issue 12
  • DOI: 10.1021/cr078240l

Protein engineering of cellulases
journal, December 2000

  • Schülein, Martin
  • Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, Vol. 1543, Issue 2
  • DOI: 10.1016/S0167-4838(00)00247-8

Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
journal, February 1977


Fungal Cellulases
journal, January 2015

  • Payne, Christina M.; Knott, Brandon C.; Mayes, Heather B.
  • Chemical Reviews, Vol. 115, Issue 3
  • DOI: 10.1021/cr500351c

Hallmarks of Processivity in Glycoside Hydrolases from Crystallographic and Computational Studies of the Serratia marcescens Chitinases
journal, September 2012

  • Payne, Christina M.; Baban, Jamil; Horn, Svein J.
  • Journal of Biological Chemistry, Vol. 287, Issue 43
  • DOI: 10.1074/jbc.M112.402149

Base-Induced Solvent Switches in Acid–Base Reactions
journal, February 2007

  • Mohammed, Omar F.; Pines, Dina; Nibbering, Erik T. J.
  • Angewandte Chemie International Edition, Vol. 46, Issue 9
  • DOI: 10.1002/anie.200603383

Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from Trichoderma reesei
journal, September 1999


Using the histogram test to quantify reaction coordinate error
journal, December 2006

  • Peters, Baron
  • The Journal of Chemical Physics, Vol. 125, Issue 24
  • DOI: 10.1063/1.2409924

T RANSITION P ATH S AMPLING : Throwing Ropes Over Rough Mountain Passes, in the Dark
journal, October 2002


Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

Catalytic Mechanism of Glycosyltransferases:  Hybrid Quantum Mechanical/Molecular Mechanical Study of the Inverting N -Acetylglucosaminyltransferase I
journal, December 2006

  • Kozmon, Stanislav; Tvaroška, Igor
  • Journal of the American Chemical Society, Vol. 128, Issue 51
  • DOI: 10.1021/ja065944o

Dissecting conformational contributions to glycosidase catalysis and inhibition
journal, October 2014

  • Speciale, Gaetano; Thompson, Andrew J.; Davies, Gideon J.
  • Current Opinion in Structural Biology, Vol. 28
  • DOI: 10.1016/j.sbi.2014.06.003

Substrate-Binding Site of Endo-1,4-beta-Xylanase of the Yeast Cryptococcus albidus
journal, October 1981


CHAMBER: Comprehensive support for CHARMM force fields within the AMBER software
journal, December 2009

  • Crowley, Michael F.; Williamson, Mark J.; Walker, Ross C.
  • International Journal of Quantum Chemistry, Vol. 109, Issue 15
  • DOI: 10.1002/qua.22372

All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins
journal, April 1998

  • MacKerell, A. D.; Bashford, D.; Bellott, M.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 18
  • DOI: 10.1021/jp973084f

Long-Range Proton Transfer in Aqueous Acid−Base Reactions
journal, January 2008

  • Siwick, B. J.; Cox, M. J.; Bakker, H. J.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 2
  • DOI: 10.1021/jp075663i

The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics
journal, January 2009

  • Cantarel, B. L.; Coutinho, P. M.; Rancurel, C.
  • Nucleic Acids Research, Vol. 37, Issue Database
  • DOI: 10.1093/nar/gkn663

CHARMM: The biomolecular simulation program
journal, July 2009

  • Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.
  • Journal of Computational Chemistry, Vol. 30, Issue 10
  • DOI: 10.1002/jcc.21287

Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals
journal, July 2011


Multiple Functions of Aromatic-Carbohydrate Interactions in a Processive Cellulase Examined with Molecular Simulation
journal, September 2011

  • Payne, Christina M.; Bomble, Yannick J.; Taylor, Courtney B.
  • Journal of Biological Chemistry, Vol. 286, Issue 47
  • DOI: 10.1074/jbc.M111.297713

Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations
journal, June 1994

  • Beglov, Dmitrii; Roux, Benoît
  • The Journal of Chemical Physics, Vol. 100, Issue 12
  • DOI: 10.1063/1.466711

Identification of Tyr241 as a Key Catalytic Base in the Family 4 Glycoside Hydrolase BglT from Thermotoga maritima
journal, October 2012

  • Yip, Vivian L. Y.; Withers, Stephen G.
  • Biochemistry, Vol. 51, Issue 42
  • DOI: 10.1021/bi301021u

Improved Treatment of the Protein Backbone in Empirical Force Fields
journal, January 2004

  • MacKerell, Alexander D.; Feig, Michael; Brooks, Charles L.
  • Journal of the American Chemical Society, Vol. 126, Issue 3
  • DOI: 10.1021/ja036959e

Exploring Reaction Pathways for O -GlcNAc Transferase Catalysis. A String Method Study
journal, March 2015

  • Kumari, Manju; Kozmon, Stanislav; Kulhánek, Petr
  • The Journal of Physical Chemistry B, Vol. 119, Issue 12
  • DOI: 10.1021/jp511235f

Computational Investigation of the pH Dependence of Loop Flexibility and Catalytic Function in Glycoside Hydrolases
journal, March 2013

  • Bu, Lintao; Crowley, Michael F.; Himmel, Michael E.
  • Journal of Biological Chemistry, Vol. 288, Issue 17
  • DOI: 10.1074/jbc.M113.462465

Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis
journal, March 2011

  • Bras, J. L. A.; Cartmell, A.; Carvalho, A. L. M.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 13
  • DOI: 10.1073/pnas.1015006108

Probing Carbohydrate Product Expulsion from a Processive Cellulase with Multiple Absolute Binding Free Energy Methods
journal, March 2011

  • Bu, Lintao; Beckham, Gregg T.; Shirts, Michael R.
  • Journal of Biological Chemistry, Vol. 286, Issue 20
  • DOI: 10.1074/jbc.M110.212076

Glycoside hydrolases: Catalytic base/nucleophile diversity
journal, June 2010

  • Vuong, Thu V.; Wilson, David B.
  • Biotechnology and Bioengineering, Vol. 107, Issue 2, p. 195-205
  • DOI: 10.1002/bit.22838

The active site of Trichoderma reesei cellobiohydrolase II: the role of tyrosine 169
journal, January 1996

  • Koivula, Anu; Reinikainen, Tapani; Ruohonen, Laura
  • "Protein Engineering, Design and Selection", Vol. 9, Issue 8
  • DOI: 10.1093/protein/9.8.691

The carbohydrate-active enzymes database (CAZy) in 2013
journal, November 2013

  • Lombard, Vincent; Golaconda Ramulu, Hemalatha; Drula, Elodie
  • Nucleic Acids Research, Vol. 42, Issue D1
  • DOI: 10.1093/nar/gkt1178

Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ 1 and χ 2 Dihedral Angles
journal, August 2012

  • Best, Robert B.; Zhu, Xiao; Shim, Jihyun
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 9
  • DOI: 10.1021/ct300400x

Glycoside Hydrolase Processivity Is Directly Related to Oligosaccharide Binding Free Energy
journal, December 2013

  • Payne, Christina M.; Jiang, Wei; Shirts, Michael R.
  • Journal of the American Chemical Society, Vol. 135, Issue 50
  • DOI: 10.1021/ja407287f

A structural basis for processivity
journal, September 2001

  • Breyer, Wendy A.; Matthews, Brian W.
  • Protein Science, Vol. 10, Issue 9
  • DOI: 10.1110/ps.10301

The calculation of the potential of mean force using computer simulations
journal, September 1995


The Protein Data Bank
journal, January 2000


Quantum Mechanical Modeling of Catalytic Processes
journal, July 2011


Loop Motions Important to Product Expulsion in the Thermobifida fusca Glycoside Hydrolase Family 6 Cellobiohydrolase from Structural and Computational Studies
journal, September 2013

  • Wu, Miao; Bu, Lintao; Vuong, Thu V.
  • Journal of Biological Chemistry, Vol. 288, Issue 46
  • DOI: 10.1074/jbc.M113.502765

Biocatalysis in Organic Chemistry and Biotechnology: Past, Present, and Future
journal, August 2013

  • Reetz, Manfred T.
  • Journal of the American Chemical Society, Vol. 135, Issue 34
  • DOI: 10.1021/ja405051f

A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants
journal, March 1998


VMD: Visual molecular dynamics
journal, February 1996


PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data
journal, June 2013

  • Roe, Daniel R.; Cheatham, Thomas E.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 7
  • DOI: 10.1021/ct400341p

Estimating the Dimension of a Model
journal, March 1978


Product Binding Varies Dramatically between Processive and Nonprocessive Cellulase Enzymes
journal, May 2012

  • Bu, Lintao; Nimlos, Mark R.; Shirts, Michael R.
  • Journal of Biological Chemistry, Vol. 287, Issue 29
  • DOI: 10.1074/jbc.M112.365510

Binding Site Dynamics and Aromatic–Carbohydrate Interactions in Processive and Non-Processive Family 7 Glycoside Hydrolases
journal, April 2013

  • Taylor, Courtney B.; Payne, Christina M.; Himmel, Michael E.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 17
  • DOI: 10.1021/jp401410h

The Active Site of Cellobiohydrolase Cel6A from Trichoderma r eesei :  The Roles of Aspartic Acids D221 and D175
journal, August 2002

  • Koivula, Anu; Ruohonen, Laura; Wohlfahrt, Gerd
  • Journal of the American Chemical Society, Vol. 124, Issue 34
  • DOI: 10.1021/ja012659q

Path Sampling Calculation of Methane Diffusivity in Natural Gas Hydrates from a Water-Vacancy Assisted Mechanism
journal, December 2008

  • Peters, Baron; Zimmermann, Nils E. R.; Beckham, Gregg T.
  • Journal of the American Chemical Society, Vol. 130, Issue 51
  • DOI: 10.1021/ja802014m

Applications of computational science for understanding enzymatic deconstruction of cellulose
journal, April 2011

  • Beckham, Gregg T.; Bomble, Yannick J.; Bayer, Edward A.
  • Current Opinion in Biotechnology, Vol. 22, Issue 2
  • DOI: 10.1016/j.copbio.2010.11.005

Scalable molecular dynamics with NAMD
journal, January 2005

  • Phillips, James C.; Braun, Rosemary; Wang, Wei
  • Journal of Computational Chemistry, Vol. 26, Issue 16, p. 1781-1802
  • DOI: 10.1002/jcc.20289

Transition-State Theory, Dynamics, and Narrow Time Scale Separation in the Rate-Promoting Vibrations Model of Enzyme Catalysis
journal, April 2010

  • Peters, Baron
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 5
  • DOI: 10.1021/ct100051a

Obtaining reaction coordinates by likelihood maximization
journal, August 2006

  • Peters, Baron; Trout, Bernhardt L.
  • The Journal of Chemical Physics, Vol. 125, Issue 5
  • DOI: 10.1063/1.2234477

α-1- C -Butyl-1,4-dideoxy-1,4-imino- l -arabinitol as a Second-Generation Iminosugar-Based Oral α-Glucosidase Inhibitor for Improving Postprandial Hyperglycemia
journal, November 2012

  • Kato, Atsushi; Hayashi, Erina; Miyauchi, Saori
  • Journal of Medicinal Chemistry, Vol. 55, Issue 23
  • DOI: 10.1021/jm301304e

Site-Directed Mutation of the Putative Catalytic Residues of Endoglucanase CenA from Cellulomonas fimi
journal, February 1995

  • Damude, Howard Glenn; Withers, Stephen G.; Kilburn, Douglas G.
  • Biochemistry, Vol. 34, Issue 7
  • DOI: 10.1021/bi00007a016

Dynamics of Nucleation in the Ising Model
journal, December 2004

  • Pan, Albert C.; Chandler, David
  • The Journal of Physical Chemistry B, Vol. 108, Issue 51
  • DOI: 10.1021/jp0471249

The Mechanism of Cellulose Hydrolysis by a Two-Step, Retaining Cellobiohydrolase Elucidated by Structural and Transition Path Sampling Studies
journal, December 2013

  • Knott, Brandon C.; Haddad Momeni, Majid; Crowley, Michael F.
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja410291u

Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
journal, September 1998

  • Elstner, M.; Porezag, D.; Jungnickel, G.
  • Physical Review B, Vol. 58, Issue 11, p. 7260-7268
  • DOI: 10.1103/PhysRevB.58.7260

Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production
journal, February 2007

  • Himmel, M. E.; Ding, S.-Y.; Johnson, D. K.
  • Science, Vol. 315, Issue 5813, p. 804-807
  • DOI: 10.1126/science.1137016

Proton Transfer in Carbonic Anhydrase Is Controlled by Electrostatics Rather than the Orientation of the Acceptor
journal, February 2008

  • Riccardi, Demian; König, Peter; Guo, Hua
  • Biochemistry, Vol. 47, Issue 8
  • DOI: 10.1021/bi701950j

Mechanism of Cellulose Hydrolysis by Inverting GH8 Endoglucanases: A QM/MM Metadynamics Study
journal, May 2009

  • Petersen, Luis; Ardèvol, Albert; Rovira, Carme
  • The Journal of Physical Chemistry B, Vol. 113, Issue 20
  • DOI: 10.1021/jp811470d

XSEDE: Accelerating Scientific Discovery
journal, September 2014

  • Towns, John; Cockerill, Timothy; Dahan, Maytal
  • Computing in Science & Engineering, Vol. 16, Issue 5
  • DOI: 10.1109/MCSE.2014.80

Mechanism of Xylobiose Hydrolysis by GH43 β-Xylosidase
journal, November 2010

  • Barker, Ian J.; Petersen, Luis; Reilly, Peter J.
  • The Journal of Physical Chemistry B, Vol. 114, Issue 46, p. 15389-15393
  • DOI: 10.1021/jp107886e

Additive empirical force field for hexopyranose monosaccharides
journal, November 2008

  • Guvench, Olgun; Greene, Shannon N.; Kamath, Ganesh
  • Journal of Computational Chemistry, Vol. 29, Issue 15
  • DOI: 10.1002/jcc.21004

Engineering the third wave of biocatalysis
journal, May 2012

  • Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.
  • Nature, Vol. 485, Issue 7397
  • DOI: 10.1038/nature11117

Glycosidase mechanisms
journal, October 2002


The abundance and variety of carbohydrate-active enzymes in the human gut microbiota
journal, June 2013

  • Kaoutari, Abdessamad El; Armougom, Fabrice; Gordon, Jeffrey I.
  • Nature Reviews Microbiology, Vol. 11, Issue 7
  • DOI: 10.1038/nrmicro3050

Stereochemistry and the Mechanism of Enzymatic Reactions
journal, November 1953


Hybrid Quantum Mechanical/Molecular Mechanical Investigation of the β-1,4-Galactosyltransferase-I Mechanism
journal, August 2009

  • Krupička, Martin; Tvaroška, Igor
  • The Journal of Physical Chemistry B, Vol. 113, Issue 32
  • DOI: 10.1021/jp904716t

The case of the missing base
journal, October 2012

  • Withers, Stephen G.; Davies, Gideon J.
  • Nature Chemical Biology, Vol. 8, Issue 12
  • DOI: 10.1038/nchembio.1117

Structural Analysis of Dispersin B, a Biofilm-releasing Glycoside Hydrolase from the Periodontopathogen Actinobacillus actinomycetemcomitans
journal, June 2005


Structural Basis for Ligand Binding and Processivity in Cellobiohydrolase Cel6A from Humicola insolens
journal, July 2003


Implementation of the SCC-DFTB Method for Hybrid QM/MM Simulations within the Amber Molecular Dynamics Package
journal, July 2007

  • Seabra, Gustavo de M.; Walker, Ross C.; Elstner, Marcus
  • The Journal of Physical Chemistry A, Vol. 111, Issue 26
  • DOI: 10.1021/jp070071l

Structures and mechanisms of glycosyl hydrolases
journal, September 1995


General definition of ring puckering coordinates
journal, March 1975

  • Cremer, D.; Pople, J. A.
  • Journal of the American Chemical Society, Vol. 97, Issue 6
  • DOI: 10.1021/ja00839a011

THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
journal, October 1992

  • Kumar, Shankar; Rosenberg, John M.; Bouzida, Djamal
  • Journal of Computational Chemistry, Vol. 13, Issue 8
  • DOI: 10.1002/jcc.540130812

O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis
journal, October 2012

  • Schimpl, Marianne; Zheng, Xiaowei; Borodkin, Vladimir S.
  • Nature Chemical Biology, Vol. 8, Issue 12
  • DOI: 10.1038/nchembio.1108

Structure of a trapped endonuclease III-DNA covalent intermediate
journal, July 2003


Structural snapshots of the reaction coordinate for O-GlcNAc transferase
journal, October 2012

  • Lazarus, Michael B.; Jiang, Jiaoyang; Gloster, Tracey M.
  • Nature Chemical Biology, Vol. 8, Issue 12
  • DOI: 10.1038/nchembio.1109

Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei
journal, July 1990


Visualizing the Reaction Coordinate of an O-GlcNAc Hydrolase
journal, February 2010

  • He, Yuan; Macauley, Matthew S.; Stubbs, Keith A.
  • Journal of the American Chemical Society, Vol. 132, Issue 6
  • DOI: 10.1021/ja9086769

Molecular dynamics simulations of large macromolecular complexes
journal, April 2015

  • Perilla, Juan R.; Goh, Boon Chong; Cassidy, C. Keith
  • Current Opinion in Structural Biology, Vol. 31
  • DOI: 10.1016/j.sbi.2015.03.007

Unraveling the Reactions that Unravel Cellulose
journal, June 2012

  • Mayes, Heather B.; Broadbelt, Linda J.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 26
  • DOI: 10.1021/jp300405x

Carbohydrate–Protein Interactions That Drive Processive Polysaccharide Translocation in Enzymes Revealed from a Computational Study of Cellobiohydrolase Processivity
journal, June 2014

  • Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.
  • Journal of the American Chemical Society, Vol. 136, Issue 24
  • DOI: 10.1021/ja504074g

Structure of the Humicola insolens cellobiohydrolase Cel6A D416A mutant in complex with a non-hydrolysable substrate analogue, methyl cellobiosyl-4-thio-β-cellobioside, at 1.9 Å
journal, November 2002

  • Varrot, Annabelle; Frandsen, Torben P.; Driguez, Hugues
  • Acta Crystallographica Section D Biological Crystallography, Vol. 58, Issue 12
  • DOI: 10.1107/S0907444902017006

Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases
journal, June 2014


Computational and experimental studies of the catalytic mechanism of Thermobifida fusca cellulase Cel6A (E2)
journal, February 2003

  • André, G.; Kanchanawong, P.; Palma, R.
  • Protein Engineering, Design and Selection, Vol. 16, Issue 2
  • DOI: 10.1093/proeng/gzg017

How Sugars Pucker: Electronic Structure Calculations Map the Kinetic Landscape of Five Biologically Paramount Monosaccharides and Their Implications for Enzymatic Catalysis
journal, January 2014

  • Mayes, Heather B.; Broadbelt, Linda J.; Beckham, Gregg T.
  • Journal of the American Chemical Society, Vol. 136, Issue 3
  • DOI: 10.1021/ja410264d

Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A
journal, June 1998


CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses
journal, August 2009

  • Guvench, Olgun; Hatcher, Elizabeth; Venable, Richard M.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 9
  • DOI: 10.1021/ct900242e

Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)
journal, May 2008

  • Martinez, Diego; Berka, Randy M.; Henrissat, Bernard
  • Nature Biotechnology, Vol. 26, Issue 5
  • DOI: 10.1038/nbt1403

The absence of an identifiable single catalytic base residue in Thermobifida fusca exocellulase Cel6B
journal, July 2009


Extensions to the likelihood maximization approach for finding reaction coordinates
journal, July 2007

  • Peters, Baron; Beckham, Gregg T.; Trout, Bernhardt L.
  • The Journal of Chemical Physics, Vol. 127, Issue 3
  • DOI: 10.1063/1.2748396

Variational Transition State Theory
journal, October 1984


Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas
journal, March 2014


Escaping free-energy minima
journal, September 2002

  • Laio, A.; Parrinello, M.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 20
  • DOI: 10.1073/pnas.202427399

Traffic Jams Reduce Hydrolytic Efficiency of Cellulase on Cellulose Surface
journal, September 2011


Beyond directed evolution—semi-rational protein engineering and design
journal, December 2010


Computational tools for designing and engineering enzymes
journal, April 2014


Works referencing / citing this record:

Lignocellulosic biomass: Hurdles and challenges in its valorization
journal, November 2019

  • Singhvi, Mamata S.; Gokhale, Digambar V.
  • Applied Microbiology and Biotechnology, Vol. 103, Issue 23-24
  • DOI: 10.1007/s00253-019-10212-7

A biochemical comparison of fungal GH6 cellobiohydrolases
journal, August 2019

  • Christensen, Stefan Jarl; Krogh, Kristian Bertel Rømer Mørkeberg; Spodsberg, Nikolaj
  • Biochemical Journal, Vol. 476, Issue 15
  • DOI: 10.1042/bcj20190185

Insight into the process of product expulsion in cellobiohydrolase Cel6A from Trichoderma reesei by computational modeling
journal, March 2018


Discovery and characterization of a thermostable two-domain GH6 endoglucanase from a compost metagenome
journal, May 2018