DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code

Abstract

A minimum set of equations based on the peeling–ballooning (P–B) model with nonideal physics effects (diamagnetic drift, E × B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P–B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P–B modes is being studied; we find that (1) the diamagnetic drift and E × B drift stabilize the P–B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P–B mode, leading to resistive P–B mode; (3) anomalous electron and parallel ion viscosities destabilize the P–B mode, leading to a viscous P–B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P–B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number thatmore » the pedestal collapse is limited to the edge region and the ELM size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable α-zones of ideal P–B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented.« less

Authors:
 [1];  [2];  [3];  [1];  [2];  [4]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of York, York (United Kingdom)
  3. General Atomics, San Diego, CA (United States)
  4. ITER Organization, St. Paul lez Durance (France)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1313556
Report Number(s):
LLNL-JRNL-464898
Journal ID: ISSN 0029-5515
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 51; Journal Issue: 10; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION

Citation Formats

Xu, X. Q., Dudson, B. D., Snyder, P. B., Umansky, M. V., Wilson, H. R., and Casper, T. Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code. United States: N. p., 2011. Web. doi:10.1088/0029-5515/51/10/103040.
Xu, X. Q., Dudson, B. D., Snyder, P. B., Umansky, M. V., Wilson, H. R., & Casper, T. Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code. United States. https://doi.org/10.1088/0029-5515/51/10/103040
Xu, X. Q., Dudson, B. D., Snyder, P. B., Umansky, M. V., Wilson, H. R., and Casper, T. Fri . "Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code". United States. https://doi.org/10.1088/0029-5515/51/10/103040. https://www.osti.gov/servlets/purl/1313556.
@article{osti_1313556,
title = {Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code},
author = {Xu, X. Q. and Dudson, B. D. and Snyder, P. B. and Umansky, M. V. and Wilson, H. R. and Casper, T.},
abstractNote = {A minimum set of equations based on the peeling–ballooning (P–B) model with nonideal physics effects (diamagnetic drift, E × B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P–B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P–B modes is being studied; we find that (1) the diamagnetic drift and E × B drift stabilize the P–B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P–B mode, leading to resistive P–B mode; (3) anomalous electron and parallel ion viscosities destabilize the P–B mode, leading to a viscous P–B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P–B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable α-zones of ideal P–B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented.},
doi = {10.1088/0029-5515/51/10/103040},
journal = {Nuclear Fusion},
number = 10,
volume = 51,
place = {United States},
year = {Fri Sep 23 00:00:00 EDT 2011},
month = {Fri Sep 23 00:00:00 EDT 2011}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 84 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nonlinear Simulations of Peeling-Ballooning Modes with Anomalous Electron Viscosity and their Role in Edge Localized Mode Crashes
journal, October 2010


Analysis of the current‐diffusive ballooning mode
journal, October 1993

  • Yagi, M.; Itoh, K.; Itoh, S. ‐I.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 10
  • DOI: 10.1063/1.860841

MHD stability in X-point geometry: simulation of ELMs
journal, June 2007


Fast reconnection in high-Lundquist-number plasmas due to the plasmoid Instability
journal, November 2009

  • Bhattacharjee, A.; Huang, Yi-Min; Yang, H.
  • Physics of Plasmas, Vol. 16, Issue 11
  • DOI: 10.1063/1.3264103

Hot particle stabilization of ballooning modes in tokamaks
journal, December 1987


Suppression of edge-localized modes by magnetic field perturbations
journal, November 2010

  • Kleva, Robert G.; Guzdar, Parvez N.
  • Physics of Plasmas, Vol. 17, Issue 11
  • DOI: 10.1063/1.3507921

BOUT++: A framework for parallel plasma fluid simulations
journal, September 2009


Influence of Coulomb collisions on the structure of reconnection layers
journal, July 2009

  • Daughton, W.; Roytershteyn, V.; Albright, B. J.
  • Physics of Plasmas, Vol. 16, Issue 7
  • DOI: 10.1063/1.3191718

Pedestal stability comparison and ITER pedestal prediction
journal, July 2009


Modelling of ELM dynamics for DIII-D and ITER
journal, June 2007

  • Pankin, A. Y.; Bateman, G.; Brennan, D. P.
  • Plasma Physics and Controlled Fusion, Vol. 49, Issue 7
  • DOI: 10.1088/0741-3335/49/7/S04

Tearing Modes in a Plasma with Magnetic Braiding
journal, November 1979


Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes
journal, May 2002

  • Snyder, P. B.; Wilson, H. R.; Ferron, J. R.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1449463

Formation of Plasmoid Chains in Magnetic Reconnection
journal, September 2009


Influence of diamagnetic drifts on critical beta in tokamaks
journal, August 1982


Influence of poloidal equilibrium rotation in MHD simulations of edge-localized modes
journal, June 2010


Non-linear MHD simulations of edge localized modes (ELMs)
journal, November 2009


Simulation of edge localized modes using BOUT++
journal, April 2011


Numerical studies of edge localized instabilities in tokamaks
journal, April 2002

  • Wilson, H. R.; Snyder, P. B.; Huysmans, G. T. A.
  • Physics of Plasmas, Vol. 9, Issue 4
  • DOI: 10.1063/1.1459058

Inter-ELM behaviour of the electron density and temperature pedestal in ASDEX Upgrade
journal, September 2010


Theory for Explosive Ideal Magnetohydrodynamic Instabilities in Plasmas
journal, April 2004


Magnetic X-points, edge localized modes, and stochasticity
journal, June 2010

  • Sugiyama, L. E.; Strauss, H. R.
  • Physics of Plasmas, Vol. 17, Issue 6
  • DOI: 10.1063/1.3449301

Shear flows at the tokamak edge and their interaction with edge-localized modes
journal, May 2007


A current filamentation mechanism for breaking magnetic field lines during reconnection
journal, June 2011


Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER
journal, August 2003


Instability of current sheets and formation of plasmoid chains
journal, October 2007

  • Loureiro, N. F.; Schekochihin, A. A.; Cowley, S. C.
  • Physics of Plasmas, Vol. 14, Issue 10
  • DOI: 10.1063/1.2783986

Global two-fluid turbulence simulations of L-H transitions and edge localized mode dynamics in the COMPASS-D tokamak
journal, April 2010

  • Thyagaraja, A.; Valovič, M.; Knight, P. J.
  • Physics of Plasmas, Vol. 17, Issue 4
  • DOI: 10.1063/1.3381074

Intermediate nonlinear regime of a line-tied g mode
journal, May 2007

  • Zhu, P.; Hegna, C. C.; Sovinec, C. R.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2671230

Nonlinear gyrofluid computation of edge localized ideal ballooning modes
journal, July 2010

  • Kendl, Alexander; Scott, Bruce D.; Ribeiro, Tiago T.
  • Physics of Plasmas, Vol. 17, Issue 7
  • DOI: 10.1063/1.3449807

Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code
journal, March 2010

  • Burke, B. J.; Kruger, S. E.; Hegna, C. C.
  • Physics of Plasmas, Vol. 17, Issue 3
  • DOI: 10.1063/1.3309732

Progress in the peeling-ballooning model of edge localized modes: Numerical studies of nonlinear dynamics
journal, May 2005

  • Snyder, P. B.; Wilson, H. R.; Xu, X. Q.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1873792

Works referencing / citing this record:

Multiscale modelling for tokamak pedestals
journal, April 2018


Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode
journal, June 2014

  • Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.
  • Physics of Plasmas, Vol. 21, Issue 6
  • DOI: 10.1063/1.4885346

Evolution of magnetic Kubo number of stochastic magnetic fields during the edge pedestal collapse simulation
journal, August 2018

  • Kim, Jaewook; Lee, Wonjun; Jhang, Hogun
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5025687

Linear analyses of peeling-ballooning modes in high beta pedestal plasmas
journal, August 2018

  • Sun, C. K.; Xu, X. Q.; Ma, C. H.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5028261

Self-consistent simulation of transport and turbulence in tokamak edge plasma by coupling SOLPS-ITER and BOUT++
journal, January 2019

  • Zhang, D. R.; Chen, Y. P.; Xu, X. Q.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5084093

Simulations of divertor heat flux width using transport code with cross-field drifts under the BOUT++ framework
journal, January 2020

  • Li, N. M.; Xu, X. Q.; Hughes, J. W.
  • AIP Advances, Vol. 10, Issue 1
  • DOI: 10.1063/1.5126884