DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton–Krylov-AMG

Abstract

Here, we discuss that the computational solution of the governing balance equations for mass, momentum, heat transfer and magnetic induction for resistive magnetohydrodynamics (MHD) systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena, as well as the significant range of time- and length-scales that the interactions of these physical mechanisms produce. This paper explores the development of a scalable, fully-implicit stabilized unstructured finite element (FE) capability for 3D incompressible resistive MHD. The discussion considers the development of a stabilized FE formulation in context of the variational multiscale (VMS) method, and describes the scalable implicit time integration and direct-to-steady-state solution capability. The nonlinear solver strategy employs Newton–Krylov methods, which are preconditioned using fully-coupled algebraic multilevel preconditioners. These preconditioners are shown to enable a robust, scalable and efficient solution approach for the large-scale sparse linear systems generated by the Newton linearization. Verification results demonstrate the expected order-of-accuracy for the stabilized FE discretization. The approach is tested on a variety of prototype problems, that include MHD duct flows, an unstable hydromagnetic Kelvin–Helmholtz shear layer, and a 3D island coalescence problem used to model magnetic reconnection. Initial results that explore the scaling ofmore » the solution methods are also presented on up to 128K processors for problems with up to 1.8B unknowns on a CrayXK7.« less

Authors:
 [1];  [2];  [2];  [2];  [3];  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1310309
Alternate Identifier(s):
OSTI ID: 1467499
Report Number(s):
SAND-2014-20573J
Journal ID: ISSN 0045-7825; PII: S0045782516300184
Grant/Contract Number:  
AC04-94AL85000; AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Computer Methods in Applied Mechanics and Engineering
Additional Journal Information:
Journal Volume: 304; Journal Issue: C; Journal ID: ISSN 0045-7825
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; stabilized FE; variational multiscale methods; resistive magnetohydrodynamics; implicit methods; Newton–Krylov; algebraic multigrid methods

Citation Formats

Shadid, J. N., Pawlowski, R. P., Cyr, E. C., Tuminaro, R. S., Chacon, L., and Weber, P. D. Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton–Krylov-AMG. United States: N. p., 2016. Web. doi:10.1016/j.cma.2016.01.019.
Shadid, J. N., Pawlowski, R. P., Cyr, E. C., Tuminaro, R. S., Chacon, L., & Weber, P. D. Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton–Krylov-AMG. United States. https://doi.org/10.1016/j.cma.2016.01.019
Shadid, J. N., Pawlowski, R. P., Cyr, E. C., Tuminaro, R. S., Chacon, L., and Weber, P. D. Wed . "Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton–Krylov-AMG". United States. https://doi.org/10.1016/j.cma.2016.01.019. https://www.osti.gov/servlets/purl/1310309.
@article{osti_1310309,
title = {Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton–Krylov-AMG},
author = {Shadid, J. N. and Pawlowski, R. P. and Cyr, E. C. and Tuminaro, R. S. and Chacon, L. and Weber, P. D.},
abstractNote = {Here, we discuss that the computational solution of the governing balance equations for mass, momentum, heat transfer and magnetic induction for resistive magnetohydrodynamics (MHD) systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena, as well as the significant range of time- and length-scales that the interactions of these physical mechanisms produce. This paper explores the development of a scalable, fully-implicit stabilized unstructured finite element (FE) capability for 3D incompressible resistive MHD. The discussion considers the development of a stabilized FE formulation in context of the variational multiscale (VMS) method, and describes the scalable implicit time integration and direct-to-steady-state solution capability. The nonlinear solver strategy employs Newton–Krylov methods, which are preconditioned using fully-coupled algebraic multilevel preconditioners. These preconditioners are shown to enable a robust, scalable and efficient solution approach for the large-scale sparse linear systems generated by the Newton linearization. Verification results demonstrate the expected order-of-accuracy for the stabilized FE discretization. The approach is tested on a variety of prototype problems, that include MHD duct flows, an unstable hydromagnetic Kelvin–Helmholtz shear layer, and a 3D island coalescence problem used to model magnetic reconnection. Initial results that explore the scaling of the solution methods are also presented on up to 128K processors for problems with up to 1.8B unknowns on a CrayXK7.},
doi = {10.1016/j.cma.2016.01.019},
journal = {Computer Methods in Applied Mechanics and Engineering},
number = C,
volume = 304,
place = {United States},
year = {Wed Feb 10 00:00:00 EST 2016},
month = {Wed Feb 10 00:00:00 EST 2016}
}

Journal Article:

Citation Metrics:
Cited by: 37 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations
journal, May 1998

  • Dai, Wenlong; Woodward, Paul R.
  • Journal of Computational Physics, Vol. 142, Issue 2
  • DOI: 10.1006/jcph.1998.5944

A Divergence‐free Upwind Code for Multidimensional Magnetohydrodynamic Flows
journal, December 1998

  • Ryu, Dongsu; Miniati, Francesco; Jones, T. W.
  • The Astrophysical Journal, Vol. 509, Issue 1
  • DOI: 10.1086/306481

Divergence-Free Adaptive Mesh Refinement for Magnetohydrodynamics
journal, December 2001


The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes
journal, July 2000


Implicit and semi-implicit schemes: Algorithms
journal, June 1999


An implicit algorithm for compressible three-dimensional magnetohydrodynamic calculations
journal, May 1985


Nonlinear simulation studies of tokamaks and STs
journal, June 2003


Implicit solution of the four-field extended-magnetohydrodynamic equations using high-order high-continuity finite elements
journal, May 2005

  • Jardin, S. C.; Breslau, J. A.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1864992

Semi-implicit method for three-dimensional compressible magnetohydrodynamic simulation
journal, August 1985


Semi-implicit magnetohydrodynamic calculations
journal, June 1987


Accurate semi-implicit treatment of the Hall effect in magnetohydrodynamic computations
journal, July 1989


Nonlinear magnetohydrodynamics simulation using high-order finite elements
journal, March 2004

  • Sovinec, C. R.; Glasser, A. H.; Gianakon, T. A.
  • Journal of Computational Physics, Vol. 195, Issue 1
  • DOI: 10.1016/j.jcp.2003.10.004

IRMHD: an implicit radiative and magnetohydrodynamical solver for self-gravitating systems
journal, July 1998


ALEGRA: An Arbitrary Lagrangian-Eulerian Multimaterial, Multiphysics Code
conference, June 2012

  • Robinson, Allen; Brunner, Thomas; Carroll, Susan
  • 46th AIAA Aerospace Sciences Meeting and Exhibit
  • DOI: 10.2514/6.2008-1235

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

An Implicit, Nonlinear Reduced Resistive MHD Solver
journal, May 2002

  • Chacón, L.; Knoll, D. A.; Finn, J. M.
  • Journal of Computational Physics, Vol. 178, Issue 1
  • DOI: 10.1006/jcph.2002.7015

Approximate Riemann solver for the two-fluid plasma model
journal, May 2003


Coalescence of Magnetic Islands in the Low-Resistivity, Hall-MHD Regime
journal, April 2006


Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods
journal, October 2010

  • Shadid, J. N.; Pawlowski, R. P.; Banks, J. W.
  • Journal of Computational Physics, Vol. 229, Issue 20
  • DOI: 10.1016/j.jcp.2010.06.018

Advanced physics calculations using a multi-fluid plasma model
journal, September 2011


Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas
journal, February 2012


Mixed finite elements in ?3
journal, September 1980


Simulation of magnetohydrodynamic flows - A constrained transport method
journal, September 1988

  • Evans, Charles R.; Hawley, John F.
  • The Astrophysical Journal, Vol. 332
  • DOI: 10.1086/166684

Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids
journal, December 1997


Mixed finite element methods for stationary incompressible magneto?hydrodynamics
journal, February 2004


Hall MHD effects on the 2D Kelvin–Helmholtz/tearing instability
journal, February 2003


An adaptive finite element method for magnetohydrodynamics
journal, July 2007

  • Lankalapalli, S.; Flaherty, J. E.; Shephard, M. S.
  • Journal of Computational Physics, Vol. 225, Issue 1
  • DOI: 10.1016/j.jcp.2006.12.010

On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics
journal, May 1991


A stabilized finite element method for the incompressible magnetohydrodynamic equations
journal, November 2000


Singularities of Electromagnetic Fields¶in Polyhedral Domains
journal, April 2000

  • Costabel, Martin; Dauge, Monique
  • Archive for Rational Mechanics and Analysis, Vol. 151, Issue 3
  • DOI: 10.1007/s002050050197

Weighted regularization of Maxwell equations in polyhedral domains
journal, December 2002


A conservative stabilized finite element method for the magneto-hydrodynamic equations
journal, March 1999


Stabilized Finite Element Approximation of the Stationary Magneto-Hydrodynamics Equations
journal, February 2006


Approximation of the thermally coupled MHD problem using a stabilized finite element method
journal, February 2011


On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics
journal, February 2013


Hyperbolic Divergence Cleaning for the MHD Equations
journal, January 2002

  • Dedner, A.; Kemm, F.; Kröner, D.
  • Journal of Computational Physics, Vol. 175, Issue 2
  • DOI: 10.1006/jcph.2001.6961

Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks
journal, January 1976


A four-field model for tokamak plasma dynamics
journal, January 1985

  • Hazeltine, R. D.; Kotschenreuther, M.; Morrison, P. J.
  • Physics of Fluids, Vol. 28, Issue 8
  • DOI: 10.1063/1.865255

Nonlinear reduced fluid equations for toroidal plasmas
journal, January 1984

  • Drake, J. F.; Antonsen, Thomas M.
  • Physics of Fluids, Vol. 27, Issue 4
  • DOI: 10.1063/1.864680

Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
journal, September 1982

  • Brooks, Alexander N.; Hughes, Thomas J. R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 32, Issue 1-3
  • DOI: 10.1016/0045-7825(82)90071-8

A new finite element formulation for computational fluid dynamics: V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations
journal, November 1986

  • Hughes, Thomas J. R.; Franca, Leopoldo P.; Balestra, Marc
  • Computer Methods in Applied Mechanics and Engineering, Vol. 59, Issue 1
  • DOI: 10.1016/0045-7825(86)90025-3

Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods
journal, November 1995


The variational multiscale method—a paradigm for computational mechanics
journal, November 1998

  • Hughes, Thomas J. R.; Feijóo, Gonzalo R.; Mazzei, Luca
  • Computer Methods in Applied Mechanics and Engineering, Vol. 166, Issue 1-2
  • DOI: 10.1016/S0045-7825(98)00079-6

A New Approximate Block Factorization Preconditioner for Two-Dimensional Incompressible (Reduced) Resistive MHD
journal, January 2013

  • Cyr, Eric C.; Shadid, John N.; Tuminaro, Raymond S.
  • SIAM Journal on Scientific Computing, Vol. 35, Issue 3
  • DOI: 10.1137/12088879X

On stabilized finite element methods for linear systems of convection–diffusion-reaction equations
journal, July 2000


Stabilized finite element approximation of transient incompressible flows using orthogonal subscales
journal, August 2002


A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics
journal, August 2015


A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems
journal, November 1986

  • Hughes, Thomas J. R.; Mallet, Michel
  • Computer Methods in Applied Mechanics and Engineering, Vol. 58, Issue 3
  • DOI: 10.1016/0045-7825(86)90152-0

The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations
journal, May 1980


A method for incorporating Gauss' law into electromagnetic PIC codes
journal, January 1987


Convergence Theory of Nonlinear Newton–Krylov Algorithms
journal, May 1994

  • Brown, Peter N.; Saad, Youcef
  • SIAM Journal on Optimization, Vol. 4, Issue 2
  • DOI: 10.1137/0804017

Inexact Newton Methods
journal, April 1982

  • Dembo, Ron S.; Eisenstat, Stanley C.; Steihaug, Trond
  • SIAM Journal on Numerical Analysis, Vol. 19, Issue 2
  • DOI: 10.1137/0719025

Choosing the Forcing Terms in an Inexact Newton Method
journal, January 1996

  • Eisenstat, Stanley C.; Walker, Homer F.
  • SIAM Journal on Scientific Computing, Vol. 17, Issue 1
  • DOI: 10.1137/0917003

Globally Convergent Inexact Newton Methods
journal, May 1994

  • Eisenstat, Stanley C.; Walker, Homer F.
  • SIAM Journal on Optimization, Vol. 4, Issue 2
  • DOI: 10.1137/0804022

An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport
journal, October 1997

  • Shadid, John N.; Tuminaro, Ray S.; Walker, Homer F.
  • Journal of Computational Physics, Vol. 137, Issue 1
  • DOI: 10.1006/jcph.1997.5798

Globalization Techniques for Newton–Krylov Methods and Applications to the Fully Coupled Solution of the Navier–Stokes Equations
journal, January 2006


An overview of the Trilinos project
journal, September 2005

  • Heroux, Michael A.; Phipps, Eric T.; Salinger, Andrew G.
  • ACM Transactions on Mathematical Software, Vol. 31, Issue 3
  • DOI: 10.1145/1089014.1089021

Large-scale stabilized FE computational analysis of nonlinear steady-state transport/reaction systems
journal, February 2006

  • Shadid, J. N.; Salinger, A. G.; Pawlowski, R. P.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 195, Issue 13-16
  • DOI: 10.1016/j.cma.2005.05.047

On a multilevel preconditioning module for unstructured mesh Krylov solvers: two-level Schwarz
journal, March 2002

  • Tuminaro, R. S.; Tong, C. H.; Shadid, J. N.
  • Communications in Numerical Methods in Engineering, Vol. 18, Issue 6
  • DOI: 10.1002/cnm.478

Performance of fully coupled domain decomposition preconditioners for finite element transport/reaction simulations
journal, May 2005

  • Shadid, J. N.; Tuminaro, R. S.; Devine, K. D.
  • Journal of Computational Physics, Vol. 205, Issue 1
  • DOI: 10.1016/j.jcp.2004.10.038

Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport
journal, January 2006

  • Lin, Paul T.; Sala, Marzio; Shadid, John N.
  • International Journal for Numerical Methods in Engineering, Vol. 67, Issue 2
  • DOI: 10.1002/nme.1624

A parallel fully coupled algebraic multilevel preconditioner applied to multiphysics PDE applications: Drift-diffusion, flow/transport/reaction, resistive MHD
journal, September 2010

  • Lin, Paul T.; Shadid, John N.; Tuminaro, Raymond S.
  • International Journal for Numerical Methods in Fluids, Vol. 64, Issue 10-12
  • DOI: 10.1002/fld.2402

Self-focusing of local plasma currents
journal, September 1965


Coalescence of magnetic islands, sloshing, and the pressure problem
journal, March 2006

  • Knoll, D. A.; Chacón, L.
  • Physics of Plasmas, Vol. 13, Issue 3
  • DOI: 10.1063/1.2173515

Works referencing / citing this record:

Pattern formation and self-organization in plasmas interacting with surfaces
journal, September 2016


Dimension reduction in magnetohydrodynamics power generation models: Dimensional analysis and active subspaces: GLAWS
journal, August 2017

  • Glaws, Andrew; Constantine, Paul G.; Shadid, John N.
  • Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. 10, Issue 5
  • DOI: 10.1002/sam.11355

On the performance of Krylov smoothing for fully coupled AMG preconditioners for VMS resistive MHD
journal, August 2019

  • Lin, Paul T.; Shadid, John N.; Tsuji, Paul H.
  • International Journal for Numerical Methods in Engineering, Vol. 120, Issue 12
  • DOI: 10.1002/nme.6178