DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability

Abstract

We simulated the global mean 1900–2015 warming by 42 Coupled Models Inter-comparison Project, phase 5 (CMIP5) climate models varies between 0.58 and 1.70 °C. The observed warming according to the NASA GISS temperature analysis is 0.95 °C with a 1200 km smoothing radius, or 0.86 °C with a 250 km smoothing radius. The projection of the future 2015–2100 global warming under a moderate increase of anthropogenic radiative forcing (RCP4.5 scenario) by individual models is between 0.7 and 2.3 °C. The CMIP5 climate models agree that the future climate will be warmer; however, there is little consensus as to how large the warming will be (reflected by an uncertainty of over a factor of three). Moreover, a parsimonious statistical regression model with just three explanatory variables [anthropogenic radiative forcing due to greenhouse gases and aerosols (GHGA), solar variability, and the Atlantic Multi-decadal Oscillation (AMO) index] accounts for over 95 % of the observed 1900–2015 temperature variance. This statistical regression model reproduces very accurately the past warming (0.96 °C compared to the observed 0.95 °C) and projects the future 2015–2100 warming to be around 0.95 °C (with the IPCC 2013 suggested RCP4.5 radiative forcing and an assumed cyclic AMO behavior). The AMOmore » contribution to the 1970–2005 warming was between 0.13 and 0.20 °C (depending on which AMO index is used) compared to the GHGA contribution of 0.49–0.58 °C. During the twenty-first century AMO cycle the AMO contribution is projected to remain the same (0.13–0.20 °C), while the GHGA contribution is expected to decrease to 0.21–0.25 °C due to the levelling off of the GHGA radiative forcing that is assumed according to the RCP4.5 scenario. Therefore, the anthropogenic contribution and natural variability are expected to contribute about equally to the anticipated global warming during the second half of the twenty-first century for the RCP4.5 trajectory.« less

Authors:
 [1];  [2];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Par Associates, Las Cruces, NM (United States); New Mexico State Univ., Las Cruces, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1304704
Report Number(s):
LA-UR-14-27366
Journal ID: ISSN 0930-7575
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Climate Dynamics
Additional Journal Information:
Journal Name: Climate Dynamics; Journal ID: ISSN 0930-7575
Publisher:
Springer-Verlag
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Planetary Sciences

Citation Formats

Chylek, Petr, Klett, James D., Dubey, Manvendra K., and Hengartner, Nicolas. The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability. United States: N. p., 2016. Web. doi:10.1007/s00382-016-3025-7.
Chylek, Petr, Klett, James D., Dubey, Manvendra K., & Hengartner, Nicolas. The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability. United States. https://doi.org/10.1007/s00382-016-3025-7
Chylek, Petr, Klett, James D., Dubey, Manvendra K., and Hengartner, Nicolas. Tue . "The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability". United States. https://doi.org/10.1007/s00382-016-3025-7. https://www.osti.gov/servlets/purl/1304704.
@article{osti_1304704,
title = {The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability},
author = {Chylek, Petr and Klett, James D. and Dubey, Manvendra K. and Hengartner, Nicolas},
abstractNote = {We simulated the global mean 1900–2015 warming by 42 Coupled Models Inter-comparison Project, phase 5 (CMIP5) climate models varies between 0.58 and 1.70 °C. The observed warming according to the NASA GISS temperature analysis is 0.95 °C with a 1200 km smoothing radius, or 0.86 °C with a 250 km smoothing radius. The projection of the future 2015–2100 global warming under a moderate increase of anthropogenic radiative forcing (RCP4.5 scenario) by individual models is between 0.7 and 2.3 °C. The CMIP5 climate models agree that the future climate will be warmer; however, there is little consensus as to how large the warming will be (reflected by an uncertainty of over a factor of three). Moreover, a parsimonious statistical regression model with just three explanatory variables [anthropogenic radiative forcing due to greenhouse gases and aerosols (GHGA), solar variability, and the Atlantic Multi-decadal Oscillation (AMO) index] accounts for over 95 % of the observed 1900–2015 temperature variance. This statistical regression model reproduces very accurately the past warming (0.96 °C compared to the observed 0.95 °C) and projects the future 2015–2100 warming to be around 0.95 °C (with the IPCC 2013 suggested RCP4.5 radiative forcing and an assumed cyclic AMO behavior). The AMO contribution to the 1970–2005 warming was between 0.13 and 0.20 °C (depending on which AMO index is used) compared to the GHGA contribution of 0.49–0.58 °C. During the twenty-first century AMO cycle the AMO contribution is projected to remain the same (0.13–0.20 °C), while the GHGA contribution is expected to decrease to 0.21–0.25 °C due to the levelling off of the GHGA radiative forcing that is assumed according to the RCP4.5 scenario. Therefore, the anthropogenic contribution and natural variability are expected to contribute about equally to the anticipated global warming during the second half of the twenty-first century for the RCP4.5 trajectory.},
doi = {10.1007/s00382-016-3025-7},
journal = {Climate Dynamics},
number = ,
volume = ,
place = {United States},
year = {Tue Nov 01 00:00:00 EDT 2016},
month = {Tue Nov 01 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability
journal, April 2012

  • Booth, Ben B. B.; Dunstone, Nick J.; Halloran, Paul R.
  • Nature, Vol. 484, Issue 7393
  • DOI: 10.1038/nature10946

Surface warming by the solar cycle as revealed by the composite mean difference projection
journal, January 2007

  • Camp, Charles D.; Tung, Ka Kit
  • Geophysical Research Letters, Vol. 34, Issue 14
  • DOI: 10.1029/2007GL030207

Aerosol indirect effect over the Indian Ocean
journal, January 2006

  • Chylek, Petr; Dubey, M. K.; Lohmann, U.
  • Geophysical Research Letters, Vol. 33, Issue 6
  • DOI: 10.1029/2005GL025397

Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic Multidecadal Oscillation: AMO AND ICE CORE DATA
journal, July 2011

  • Chylek, Petr; Folland, Chris K.; Dijkstra, Henk A.
  • Geophysical Research Letters, Vol. 38, Issue 13
  • DOI: 10.1029/2011GL047501

Isolating the anthropogenic component of Arctic warming
journal, May 2014

  • Chylek, Petr; Hengartner, Nicholas; Lesins, Glen
  • Geophysical Research Letters, Vol. 41, Issue 10
  • DOI: 10.1002/2014GL060184

The Atlantic Multidecadal Oscillation as a dominant factor of oceanic influence on climate: CHYLEX ET. AL.; ATLANTIC MULTI-DECADAL OSCILLATION
journal, March 2014

  • Chylek, Petr; Klett, James D.; Lesins, Glen
  • Geophysical Research Letters, Vol. 41, Issue 5
  • DOI: 10.1002/2014GL059274

Indirect Aerosol Effect Increases CMIP5 Models’ Projected Arctic Warming
journal, February 2016

  • Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.
  • Journal of Climate, Vol. 29, Issue 4
  • DOI: 10.1175/JCLI-D-15-0362.1

Oceanic influences on recent continental warming
journal, July 2008


Observed and simulated multidecadal variability in the Northern Hemisphere
journal, September 2000


A Hemispheric Mechanism for the Atlantic Multidecadal Oscillation
journal, June 2007

  • Dima, Mihai; Lohmann, Gerrit
  • Journal of Climate, Vol. 20, Issue 11
  • DOI: 10.1175/JCLI4174.1

Climate sensitivity of the Earth to solar irradiance: CLIMATE SENSITIVITY OF THE EARTH TO SOLAR IRRADIANCE
journal, August 2002

  • Douglass, David H.; Clader, B. David
  • Geophysical Research Letters, Vol. 29, Issue 16
  • DOI: 10.1029/2002GL015345

Global temperature evolution 1979–2010
journal, January 2011


North Atlantic Multidecadal Climate Variability: An Investigation of Dominant Time Scales and Processes
journal, July 2010

  • Frankcombe, Leela M.; von der Heydt, Anna; Dijkstra, Henk A.
  • Journal of Climate, Vol. 23, Issue 13
  • DOI: 10.1175/2010JCLI3471.1

The role of Atlantic-Arctic exchange in North Atlantic multidecadal climate variability: MULTIDECADAL ATLANTIC-ARCTIC EXCHANGE
journal, August 2011

  • Frankcombe, L. M.; Dijkstra, H. A.
  • Geophysical Research Letters, Vol. 38, Issue 16
  • DOI: 10.1029/2011GL048158

A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D.: RECONSTRUCTED ATLANTIC MULTIDECADAL OSCILLATION
journal, June 2004

  • Gray, Stephen T.; Graumlich, Lisa J.; Betancourt, Julio L.
  • Geophysical Research Letters, Vol. 31, Issue 12
  • DOI: 10.1029/2004GL019932

The effects of solar variability on the Earth's climate
journal, November 2002

  • Haigh, Joanna D.
  • Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 361, Issue 1802
  • DOI: 10.1098/rsta.2002.1111

Global trends of measured surface air temperature
journal, January 1987


Global Surface Temperature Change
journal, January 2010


Identifying natural contributions to late Holocene climate change
journal, October 2011


Analyses of global sea surface temperature 1856-1991
journal, August 1998

  • Kaplan, Alexey; Cane, Mark A.; Kushnir, Yochanan
  • Journal of Geophysical Research: Oceans, Vol. 103, Issue C9
  • DOI: 10.1029/97JC01736

AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations
journal, March 2013


How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006
journal, January 2008

  • Lean, Judith L.; Rind, David H.
  • Geophysical Research Letters, Vol. 35, Issue 18
  • DOI: 10.1029/2008GL034864

Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice
journal, January 2014

  • Li, Xichen; Holland, David M.; Gerber, Edwin P.
  • Nature, Vol. 505, Issue 7484
  • DOI: 10.1038/nature12945

Impact of the Atlantic Meridional Overturning Circulation (AMOC) on Arctic Surface Air Temperature and Sea Ice Variability
journal, December 2011

  • Mahajan, Salil; Zhang, Rong; Delworth, Thomas L.
  • Journal of Climate, Vol. 24, Issue 24
  • DOI: 10.1175/2011JCLI4002.1

An empirical model of global climate – Part 2: Implications for future temperature
journal, January 2012

  • Mascioli, N. R.; Canty, T.; Salawitch, R. J.
  • Atmospheric Chemistry and Physics Discussions, Vol. 12, Issue 9
  • DOI: 10.5194/acpd-12-23913-2012

Imprints of climate forcings in global gridded temperature data
journal, January 2015

  • Mikšovský, J.; Holtanová, E.; Pišoft, P.
  • Earth System Dynamics Discussions, Vol. 6, Issue 2
  • DOI: 10.5194/esdd-6-2339-2015

Decadal variations in the global atmospheric land temperatures: DECADAL TEMPERATURE VARIATIONS
journal, June 2013

  • Muller, Richard A.; Curry, Judith; Groom, Donald
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 11
  • DOI: 10.1002/jgrd.50458

Are stronger North-Atlantic southwesterlies the forcing to the late-winter warming in Europe?
journal, January 2002

  • Otterman, J.; Atlas, R.; Chou, S. -H.
  • International Journal of Climatology, Vol. 22, Issue 6
  • DOI: 10.1002/joc.681

Decadal to multidecadal variability and the climate change background
journal, January 2007

  • Parker, David; Folland, Chris; Scaife, Adam
  • Journal of Geophysical Research, Vol. 112, Issue D18
  • DOI: 10.1029/2007JD008411

Arctic decadal and interdecadal variability
journal, December 2000

  • Polyakov, Igor V.; Johnson, Mark A.
  • Geophysical Research Letters, Vol. 27, Issue 24
  • DOI: 10.1029/2000GL011909

Phenomenological solar contribution to the 1900–2000 global surface warming
journal, January 2006

  • Scafetta, N.; West, B. J.
  • Geophysical Research Letters, Vol. 33, Issue 5
  • DOI: 10.1029/2005GL025539

An oscillation in the global climate system of period 65–70 years
journal, February 1994

  • Schlesinger, Michael E.; Ramankutty, Navin
  • Nature, Vol. 367, Issue 6465
  • DOI: 10.1038/367723a0

Ocean circulation in a warming climate
journal, January 2008


Atlantic hurricanes and natural variability in 2005
journal, January 2006

  • Trenberth, Kevin E.; Shea, Dennis J.
  • Geophysical Research Letters, Vol. 33, Issue 12
  • DOI: 10.1029/2006GL026894

Using data to attribute episodes of warming and cooling in instrumental records
journal, January 2013

  • Tung, K. -K.; Zhou, J.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 6
  • DOI: 10.1073/pnas.1212471110

Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean
journal, January 2009

  • van Oldenborgh, G. J.; te Raa, L. A.; Dijkstra, H. A.
  • Ocean Science, Vol. 5, Issue 3
  • DOI: 10.5194/os-5-293-2009

The influence of anthropogenic aerosol on multi-decadal variations of historical global climate
journal, June 2013


Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature?
journal, January 2007

  • Zhang, Rong; Delworth, Thomas L.; Held, Isaac M.
  • Geophysical Research Letters, Vol. 34, Issue 2
  • DOI: 10.1029/2006GL028683

Have Aerosols Caused the Observed Atlantic Multidecadal Variability?
journal, April 2013

  • Zhang, Rong; Delworth, Thomas L.; Sutton, Rowan
  • Journal of the Atmospheric Sciences, Vol. 70, Issue 4
  • DOI: 10.1175/JAS-D-12-0331.1

Deducing Multidecadal Anthropogenic Global Warming Trends Using Multiple Regression Analysis
journal, January 2013


AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations
journal, March 2013


Ocean circulation in a warming climate
journal, January 2008


Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability
journal, April 2012

  • Booth, Ben B. B.; Dunstone, Nick J.; Halloran, Paul R.
  • Nature, Vol. 484, Issue 7393
  • DOI: 10.1038/nature10946

An empirical model of global climate – Part 1: A critical evaluation of volcanic cooling
journal, January 2013

  • Canty, T.; Mascioli, N. R.; Smarte, M. D.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 8
  • DOI: 10.5194/acp-13-3997-2013

Works referencing / citing this record:

Ice Core Records of West Greenland Melt and Climate Forcing
journal, April 2018

  • Graeter, K. A.; Osterberg, E. C.; Ferris, D. G.
  • Geophysical Research Letters, Vol. 45, Issue 7
  • DOI: 10.1002/2017gl076641

Global Contributions of Incoming Radiation and Land Surface Conditions to Maximum Near-Surface Air Temperature Variability and Trend: TEMPERATURE VARIABILITY AND TREND
journal, May 2018

  • Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.
  • Geophysical Research Letters, Vol. 45, Issue 10
  • DOI: 10.1029/2018gl077794

Causes of East Asian Temperature Multidecadal Variability Since 850 CE
journal, December 2018

  • Wang, Jianglin; Yang, Bao; Osborn, Timothy J.
  • Geophysical Research Letters, Vol. 45, Issue 24
  • DOI: 10.1029/2018gl080725