DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rational Design of Bi Nanoparticles for Efficient Electrochemical CO2 Reduction: The Elucidation of Size and Surface Condition Effects

Abstract

Here we report an efficient electrochemical conversion of CO2 to CO on surface-activated bismuth nanoparticles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst’s size and surface condition on organic phase electrochemical CO2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi3+ species) formed during the synthesis and purification process hinders the CO2 reduction, leading to a 20% drop in Faradaic efficiency for CO evolution (FECO). Bi particle size showed a significant effect on FECO when the surface of Bi was air-oxidized, but this effect of size on FECO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO2 to CO (96.1% FECO), and a mass activity for CO evolution (MACO) of 15.6 mA mg–1, which is three-fold higher than the conventional Bi-ED, at ₋2.0 V (vs Ag/AgCl). Ultimately, this work elucidates the importance of the surface activation for an efficient electrochemical CO2 conversion on metal NPs andmore » paves the way for understanding the CO2 electrochemical reduction mechanism in nonaqueous media.« less

Authors:
 [1];  [2];  [3];  [1];  [1];  [4];  [1];  [5];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
  4. Univ. of Delaware, Newark, DE (United States). Dept. of Chemistry and Biochemistry
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1302937
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 6; Journal Issue: 9; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 30 DIRECT ENERGY CONVERSION; Keywords: bismuth nanoparticle; CO; electrochemical CO2 reduction; ionic liquid; surface activation

Citation Formats

Zhang, Zhiyong, Chi, Miaofang, Veith, Gabriel M., Zhang, Pengfei, Lutterman, Daniel A., Rosenthal, Joel, Overbury, Steven H., Dai, Sheng, and Zhu, Huiyuan. Rational Design of Bi Nanoparticles for Efficient Electrochemical CO2 Reduction: The Elucidation of Size and Surface Condition Effects. United States: N. p., 2016. Web. doi:10.1021/acscatal.6b01297.
Zhang, Zhiyong, Chi, Miaofang, Veith, Gabriel M., Zhang, Pengfei, Lutterman, Daniel A., Rosenthal, Joel, Overbury, Steven H., Dai, Sheng, & Zhu, Huiyuan. Rational Design of Bi Nanoparticles for Efficient Electrochemical CO2 Reduction: The Elucidation of Size and Surface Condition Effects. United States. https://doi.org/10.1021/acscatal.6b01297
Zhang, Zhiyong, Chi, Miaofang, Veith, Gabriel M., Zhang, Pengfei, Lutterman, Daniel A., Rosenthal, Joel, Overbury, Steven H., Dai, Sheng, and Zhu, Huiyuan. Mon . "Rational Design of Bi Nanoparticles for Efficient Electrochemical CO2 Reduction: The Elucidation of Size and Surface Condition Effects". United States. https://doi.org/10.1021/acscatal.6b01297. https://www.osti.gov/servlets/purl/1302937.
@article{osti_1302937,
title = {Rational Design of Bi Nanoparticles for Efficient Electrochemical CO2 Reduction: The Elucidation of Size and Surface Condition Effects},
author = {Zhang, Zhiyong and Chi, Miaofang and Veith, Gabriel M. and Zhang, Pengfei and Lutterman, Daniel A. and Rosenthal, Joel and Overbury, Steven H. and Dai, Sheng and Zhu, Huiyuan},
abstractNote = {Here we report an efficient electrochemical conversion of CO2 to CO on surface-activated bismuth nanoparticles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst’s size and surface condition on organic phase electrochemical CO2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi3+ species) formed during the synthesis and purification process hinders the CO2 reduction, leading to a 20% drop in Faradaic efficiency for CO evolution (FECO). Bi particle size showed a significant effect on FECO when the surface of Bi was air-oxidized, but this effect of size on FECO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO2 to CO (96.1% FECO), and a mass activity for CO evolution (MACO) of 15.6 mA mg–1, which is three-fold higher than the conventional Bi-ED, at ₋2.0 V (vs Ag/AgCl). Ultimately, this work elucidates the importance of the surface activation for an efficient electrochemical CO2 conversion on metal NPs and paves the way for understanding the CO2 electrochemical reduction mechanism in nonaqueous media.},
doi = {10.1021/acscatal.6b01297},
journal = {ACS Catalysis},
number = 9,
volume = 6,
place = {United States},
year = {Mon Aug 08 00:00:00 EDT 2016},
month = {Mon Aug 08 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 168 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Catalysis of the electrochemical reduction of carbon dioxide
journal, January 2013

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35360A

A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
journal, January 2014

  • Qiao, Jinli; Liu, Yuyu; Hong, Feng
  • Chem. Soc. Rev., Vol. 43, Issue 2
  • DOI: 10.1039/C3CS60323G

Electrochemical CO2 Reduction on Metal Electrodes
book, January 2008


Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide
journal, April 2016


Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media
journal, August 1994

  • Hori, Yoshio; Wakebe, Hidetoshi; Tsukamoto, Toshio
  • Electrochimica Acta, Vol. 39, Issue 11-12, p. 1833-1839
  • DOI: 10.1016/0013-4686(94)85172-7

Aqueous CO 2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles
journal, November 2012

  • Chen, Yihong; Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309317u

Exceptional Size-Dependent Activity Enhancement in the Electroreduction of CO 2 over Au Nanoparticles
journal, November 2014

  • Mistry, Hemma; Reske, Rulle; Zeng, Zhenhua
  • Journal of the American Chemical Society, Vol. 136, Issue 47
  • DOI: 10.1021/ja508879j

Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO 2 to CO
journal, October 2013

  • Zhu, Wenlei; Michalsky, Ronald; Metin, Önder
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja409445p

Active and Selective Conversion of CO 2 to CO on Ultrathin Au Nanowires
journal, November 2014

  • Zhu, Wenlei; Zhang, Yin-Jia; Zhang, Hongyi
  • Journal of the American Chemical Society, Vol. 136, Issue 46
  • DOI: 10.1021/ja5095099

Mesostructure-Induced Selectivity in CO 2 Reduction Catalysis
journal, November 2015

  • Hall, Anthony Shoji; Yoon, Youngmin; Wuttig, Anna
  • Journal of the American Chemical Society, Vol. 137, Issue 47
  • DOI: 10.1021/jacs.5b08259

A selective and efficient electrocatalyst for carbon dioxide reduction
journal, January 2014

  • Lu, Qi; Rosen, Jonathan; Zhou, Yang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4242

Achieving Selective and Efficient Electrocatalytic Activity for CO 2 Reduction Using Immobilized Silver Nanoparticles
journal, October 2015

  • Kim, Cheonghee; Jeon, Hyo Sang; Eom, Taedaehyeong
  • Journal of the American Chemical Society, Vol. 137, Issue 43
  • DOI: 10.1021/jacs.5b06568

Insights into the electrocatalytic reduction of CO 2 on metallic silver surfaces
journal, January 2014

  • Hatsukade, Toru; Kuhl, Kendra P.; Cave, Etosha R.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 27
  • DOI: 10.1039/C4CP00692E

Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO 2 Reduction
journal, July 2015


Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
journal, August 2014

  • Kuhl, Kendra P.; Hatsukade, Toru; Cave, Etosha R.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja505791r

Ionic Liquid-Mediated Selective Conversion of CO2 to CO at Low Overpotentials
journal, September 2011

  • Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.
  • Science, Vol. 334, Issue 6056, p. 643-644
  • DOI: 10.1126/science.1209786

Selective Conversion of CO 2 to CO with High Efficiency Using an Inexpensive Bismuth-Based Electrocatalyst
journal, June 2013

  • DiMeglio, John L.; Rosenthal, Joel
  • Journal of the American Chemical Society, Vol. 135, Issue 24
  • DOI: 10.1021/ja4033549

Efficient Conversion of CO 2 to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts
journal, April 2015

  • Medina-Ramos, Jonnathan; Pupillo, Rachel C.; Keane, Thomas P.
  • Journal of the American Chemical Society, Vol. 137, Issue 15
  • DOI: 10.1021/ja5121088

Size-Dependent Electrocatalytic Reduction of CO 2 over Pd Nanoparticles
journal, March 2015

  • Gao, Dunfeng; Zhou, Hu; Wang, Jing
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/jacs.5b00046

Particle Size Effects in the Catalytic Electroreduction of CO 2 on Cu Nanoparticles
journal, May 2014

  • Reske, Rulle; Mistry, Hemma; Behafarid, Farzad
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja500328k

Tailoring Copper Nanocrystals towards C 2 Products in Electrochemical CO 2 Reduction
journal, April 2016

  • Loiudice, Anna; Lobaccaro, Peter; Kamali, Esmail A.
  • Angewandte Chemie International Edition, Vol. 55, Issue 19
  • DOI: 10.1002/anie.201601582

Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel
journal, January 2016


Tin Oxide Dependence of the CO 2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts
journal, January 2012

  • Chen, Yihong; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 4
  • DOI: 10.1021/ja2108799

CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films
journal, April 2012

  • Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 17, p. 7231-7234
  • DOI: 10.1021/ja3010978

Controlling H + vs CO 2 Reduction Selectivity on Pb Electrodes
journal, November 2014

  • Lee, Chang Hoon; Kanan, Matthew W.
  • ACS Catalysis, Vol. 5, Issue 1
  • DOI: 10.1021/cs5017672

Grain-Boundary-Dependent CO 2 Electroreduction Activity
journal, April 2015

  • Feng, Xiaofeng; Jiang, Kaili; Fan, Shoushan
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/ja5130513

Large-Scale Synthesis and Characterization of the Size-Dependent Thermoelectric Properties of Uniformly Sized Bismuth Nanocrystals
journal, December 2010

  • Son, Jae Sung; Park, Kunsu; Han, Mi-Kyung
  • Angewandte Chemie International Edition, Vol. 50, Issue 6
  • DOI: 10.1002/anie.201005023

Efficient Reduction of CO 2 to CO with High Current Density Using in Situ or ex Situ Prepared Bi-Based Materials
journal, May 2014

  • Medina-Ramos, Jonnathan; DiMeglio, John L.; Rosenthal, Joel
  • Journal of the American Chemical Society, Vol. 136, Issue 23
  • DOI: 10.1021/ja501923g

Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts
journal, February 2007


Surfactant Removal for Colloidal Nanoparticles from Solution Synthesis: The Effect on Catalytic Performance
journal, June 2012

  • Li, Dongguo; Wang, Chao; Tripkovic, Dusan
  • ACS Catalysis, Vol. 2, Issue 7
  • DOI: 10.1021/cs300219j

Trioctylphosphine as Both Solvent and Stabilizer to Synthesize CdS Nanorods
journal, June 2009


Structural, Optical, and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally or with Simple Amines
journal, May 2008

  • Law, Matt; Luther, Joseph M.; Song, Qing
  • Journal of the American Chemical Society, Vol. 130, Issue 18
  • DOI: 10.1021/ja800040c

PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors
journal, October 2005


Highly Dense Cu Nanowires for Low-Overpotential CO2 Reduction
journal, September 2015


Selectivity on Etching: Creation of High-Energy Facets on Copper Nanocrystals for CO 2 Electrochemical Reduction
journal, March 2016


A Highly Selective Copper-Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO 2 to CO
journal, December 2014

  • Rasul, Shahid; Anjum, Dalaver H.; Jedidi, Abdesslem
  • Angewandte Chemie International Edition, Vol. 54, Issue 7
  • DOI: 10.1002/anie.201410233

New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
journal, January 2012

  • Kuhl, Kendra P.; Cave, Etosha R.; Abram, David N.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21234j

Concave Rhombic Dodecahedral Au Nanocatalyst with Multiple High-Index Facets for CO 2 Reduction
journal, July 2015


Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles
journal, September 2014

  • Kim, Dohyung; Resasco, Joaquin; Yu, Yi
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5948

In Situ Spectroscopic Examination of a Low Overpotential Pathway for Carbon Dioxide Conversion to Carbon Monoxide
journal, July 2012

  • Rosen, Brian A.; Haan, John L.; Mukherjee, Prabuddha
  • The Journal of Physical Chemistry C, Vol. 116, Issue 29, p. 15307-15312
  • DOI: 10.1021/jp210542v

Structural Transition in an Ionic Liquid Controls CO 2 Electrochemical Reduction
journal, July 2015

  • García Rey, Natalia; Dlott, Dana D.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 36
  • DOI: 10.1021/acs.jpcc.5b03397

Switching the Reaction Course of Electrochemical CO 2 Reduction with Ionic Liquids
journal, May 2014

  • Sun, Liyuan; Ramesha, Ganganahalli K.; Kamat, Prashant V.
  • Langmuir, Vol. 30, Issue 21
  • DOI: 10.1021/la5009076

Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells
journal, November 2007


The effect of size and size distribution on the oxidation kinetics and plasmonics of nanoscale Ag particles
journal, April 2010


Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation with Single Particle Mass Spectrometry
journal, April 2005

  • Park, K.; Lee, D.; Rai, A.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 15
  • DOI: 10.1021/jp048041v

Works referencing / citing this record:

Ionic-caged heterometallic bismuth–platinum complex exhibiting electrocatalytic CO 2 reduction
journal, January 2020

  • Yoshida, Takefumi; Ahsan, Habib Md.; Zhang, Hai-Tao
  • Dalton Transactions, Vol. 49, Issue 8
  • DOI: 10.1039/c9dt04817k

Revealing structural evolution of PbS nanocrystal catalysts in electrochemical CO 2 reduction using in situ synchrotron radiation X-ray diffraction
journal, January 2019

  • Zhang, Zhiyong; Liu, Chang; Brosnahan, John T.
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/c9ta06750g

Nanostructured β‐Bi 2 O 3 Fractals on Carbon Fibers for Highly Selective CO 2 Electroreduction to Formate
journal, October 2019

  • Tran‐Phu, Thanh; Daiyan, Rahman; Fusco, Zelio
  • Advanced Functional Materials, Vol. 30, Issue 3
  • DOI: 10.1002/adfm.201906478

Monodisperse nanoparticles for catalysis and nanomedicine
journal, January 2019

  • Muzzio, Michelle; Li, Junrui; Yin, Zhouyang
  • Nanoscale, Vol. 11, Issue 41
  • DOI: 10.1039/c9nr06080d

3D hierarchical porous indium catalyst for highly efficient electroreduction of CO 2
journal, January 2019

  • Luo, Wen; Xie, Wei; Li, Mo
  • Journal of Materials Chemistry A, Vol. 7, Issue 9
  • DOI: 10.1039/c8ta11645h

Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective
journal, January 2018

  • Zhou, Jun-Hao; Zhang, Ya-Wen
  • Reaction Chemistry & Engineering, Vol. 3, Issue 5
  • DOI: 10.1039/c8re00111a

Self-supported ultrathin bismuth nanosheets acquired by in situ topotactic transformation of BiOCl as a high performance aqueous anode material
journal, January 2019

  • Zhu, Qiancheng; Cheng, Mingyu; Yang, Xianfeng
  • Journal of Materials Chemistry A, Vol. 7, Issue 12
  • DOI: 10.1039/c8ta11979a

The p-Orbital Delocalization of Main-Group Metals to Boost CO 2 Electroreduction
journal, November 2018

  • He, Sisi; Ni, Fenglou; Ji, Yujin
  • Angewandte Chemie International Edition, Vol. 57, Issue 49
  • DOI: 10.1002/anie.201810538

Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction
journal, January 2019

  • Shao, Qi; Wang, Pengtang; Liu, Shangheng
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/c9ta07016h

Phosphomolybdic Acid‐Assisted Growth of Ultrathin Bismuth Nanosheets for Enhanced Electrocatalytic Reduction of CO 2 to Formate
journal, February 2019


Recent advances in the nanoengineering of electrocatalysts for CO 2 reduction
journal, January 2018

  • Li, Fengwang; MacFarlane, Douglas R.; Zhang, Jie
  • Nanoscale, Vol. 10, Issue 14
  • DOI: 10.1039/c7nr09620h

Electrochemical reduction of CO 2 on defect-rich Bi derived from Bi 2 S 3 with enhanced formate selectivity
journal, January 2018

  • Zhang, Ying; Li, Fengwang; Zhang, Xiaolong
  • Journal of Materials Chemistry A, Vol. 6, Issue 11
  • DOI: 10.1039/c8ta00023a

Recent Advances in Electrochemical CO 2 -to-CO Conversion on Heterogeneous Catalysts
journal, August 2018

  • Zheng, Tingting; Jiang, Kun; Wang, Haotian
  • Advanced Materials, Vol. 30, Issue 48
  • DOI: 10.1002/adma.201802066

Enhancing electroreduction of CO 2 over Bi 2 WO 6 nanosheets by oxygen vacancies
journal, January 2019

  • Chu, Mengen; Chen, Chunjun; Guo, Weiwei
  • Green Chemistry, Vol. 21, Issue 10
  • DOI: 10.1039/c9gc00479c

Progress in development of electrocatalyst for CO 2 conversion to selective CO production
journal, March 2020

  • Nguyen, Dang Le Tri; Kim, Younghye; Hwang, Yun Jeong
  • Carbon Energy, Vol. 2, Issue 1
  • DOI: 10.1002/cey2.27

Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO 2 Fixation Reactions
journal, April 2018

  • Bhanja, Piyali; Modak, Arindam; Bhaumik, Asim
  • Chemistry – A European Journal, Vol. 24, Issue 29
  • DOI: 10.1002/chem.201800075

Copper-Tin Alloys for the Electrocatalytic Reduction of CO2 in an Imidazolium-Based Non-Aqueous Electrolyte
journal, August 2019

  • Sacci, Robert; Velardo, Stephanie; Xiong, Lu
  • Energies, Vol. 12, Issue 16
  • DOI: 10.3390/en12163132

Highly selective electrochemical CO 2 reduction to CO using a redox-active couple on low-crystallinity mesoporous ZnGa 2 O 4 catalyst
journal, January 2019

  • Zhao, Meiming; Gu, Yaliu; Chen, Ping
  • Journal of Materials Chemistry A, Vol. 7, Issue 15
  • DOI: 10.1039/c9ta00562e

Selective CO 2 Reduction on 2D Mesoporous Bi Nanosheets
journal, October 2018


Plasma engraved Bi0.1(Ba0.5Sr0.5)0.9Co0.8Fe0.2O3−δ perovskite for highly active and durable oxygen evolution
journal, March 2019


The p‐Orbital Delocalization of Main‐Group Metals to Boost CO 2 Electroreduction
journal, October 2018


Progress and Perspective of Electrocatalytic CO 2 Reduction for Renewable Carbonaceous Fuels and Chemicals
journal, September 2017


Electrochemical reduction of CO 2 to formic acid on Bi 2 O 2 CO 3 /carbon fiber electrodes
journal, January 2020

  • Puppin, Lara G.; Khalid, Mohd.; da Silva, Gelson T. T.
  • Journal of Materials Research, Vol. 35, Issue 3
  • DOI: 10.1557/jmr.2020.16

Significant enhancement of cathode-ray scintillation for a conductive Bi-SMOF via in situ partial rare earth ion replacement
journal, January 2019

  • Lu, Jian; Zhao, Xiu-Hui; Bai, Bing
  • Journal of Materials Chemistry C, Vol. 7, Issue 36
  • DOI: 10.1039/c9tc03858b

Nitrogen-Doped Graphene Quantum Dots Enhance the Activity of Bi 2 O 3 Nanosheets for Electrochemical Reduction of CO 2 in a Wide Negative Potential Region
journal, August 2018

  • Chen, Zhipeng; Mou, Kaiwen; Wang, Xiaohan
  • Angewandte Chemie International Edition, Vol. 57, Issue 39
  • DOI: 10.1002/anie.201807643

Plasma engraved Bi0.1(Ba0.5Sr0.5)0.9Co0.8Fe0.2O3−δ perovskite for highly active and durable oxygen evolution
journal, March 2019