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Abstract. DIII-D experiments using new detailed magnetic diagnostics show that linear, 

ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic 

structure (as measured externally) of three-dimensional equilibria resulting from applied 

fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force 

balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar 
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agreement. These tests are carried out near ITER baseline parameters, providing a 

validated basis on which to exploit 3D fields for plasma control development. Scans of 

the applied poloidal spectrum and edge safety factor confirm that low-pressure, n =1 non-

axisymmetric tokamak equilibria are determined by a single, dominant, stable 

eigenmode. However, at higher beta, near the ideal kink mode stability limit in the 

absence of a conducting wall, the qualitative features of the 3D structure are observed to 

vary in a way that is not captured by ideal MHD.  

PACS Nos.: 52.55.-s, 52.55.Fa, 52.30.Cv, 52.55.Tn, 52.65.Kj and 52.30.Ex 
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I. INTRODUCTION 

Tokamaks are principally axisymmetric. However, global and local plasma stability is 

greatly affected by small toroidal asymmetries of the magnetic field. Understanding the 

physics of these small 3D distortions is needed to project control strategies to next step 

fusion reactors. The application of non-axisymmetric perturbations, intentionally or 

unintentionally, stimulates the plasma to respond by amplification and/or diamagnetic 

screening of the applied field [1]. The stable “plasma response” due to these effects 

represents a stable three-dimensional equilibrium, which is often assumed to depend only 

on the least stable eigenmode, with all other modes having negligible amplitude [2]. 

These 3D equilibria can have beneficial or deleterious effects on tokamak 

performance. For instance, error fields, resulting from imperfect machine construction, 

can reduce the stabilizing toroidal plasma rotation through viscous drag [3], resonant 

braking [4] and magnetic island formation [5]. Alternatively, 3D equilbria have been 

identified that allow neoclassical effects to accelerate plasma rotation and promote global 

stability [6]. Also, the pedestal pressure gradient and current density profiles in H-mode 

discharges [7] can be controlled using applied magnetic field asymmetries [8]. The 

physical mechanism giving rise to this control is only beginning to be understood [9], but 

it is observed that within a resonant window of pedestal safety factor [10], 3D fields may 

alter the edge transport, yielding pressure profiles that are stable to edge localized 

peeling-ballooning modes [11] (ELMs). This phenomenon is known as resonant magnetic 

perturbation (RMP) ELM suppression [12]. 

A number of numerical and physical models have been devised to computationally 

describe 3D equilibria in existing tokamaks. Unfortunately, appreciable disparities 
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between linear model formulations and a non-linear model (the VMEC code) [13] have 

persisted [14,15]. Determining if this discrepancy is due to non-linear physics or an issue 

with numerical implementation has, until now, remained an open question. Comparing 

the predicted external response with new magnetic measurements [16] spanning most of 

the poloidal extent of DIII-D allows the principal physics responsible for 3D equilibria to 

be identified, and ipso facto the validity of individual models to be tested.  

The empirical correction of toroidal mode number n = 1 error fields in DIII-D is 

consistent with the hypothesis that a 3D equilibrium is principally determined by a single 

dominant kink mode that amplifies the external non-axisymmetric field [17]. In this 

single-mode description [18,19] the plasma 3D structure only depends on the structure of 

the dominant eigenmode, and not on the details of the external 3D field. This implies that 

any externally applied poloidal spectrum, with some toroidal coupling to the dominant 

mode, can eliminate the error induced kink response [20]. Despite widespread success of 

the single-mode description for error field correction and other applications, direct 

observation confirming the invariance of poloidal mode structure with the applied 

poloidal spectrum has been lacking. Here we present confirmation of this structural 

rigidity for low beta, rapidly rotating discharges with n = 1 fields. However, at pressures 

near the no-wall ideal stability limit (the beta limit in the absence of a stabilizing 

conducting boundary), the 3D equilibrium transitions to a qualitatively different structure 

suggesting a possible breakdown of the single-mode model.  

This work provides a quantitative comparison of detailed magnetic plasma response 

measurements [16] with multiple model predictions to assess the validity of each physical 
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model and numerical implementation describing 3D equilibria. To assess the domain of 

validity of the model predictions, these tests span a diverse range of applied poloidal field 

spectra, and a variety of plasma pressures and current profiles. The method of 

experimentally generating and measuring 3D equilibria in the DIII-D tokamak is 

described in Sec. II. Also, the preparation of model inputs is explained. In Sec. III a brief 

introduction of each physical model is provided. Linear and non-linear computations of 

the response are compared with detailed structural measurements in section IV. Section V 

shows q95 and poloidal spectral dependencies are accurately described by linear ideal 

MHD and are consistent with a single stable eignenmode. This ideal MHD description is 

seen to break down as pressures are increased beyond the no-wall ideal stability limit in 

section VI. Finally, a brief discussion and summary is presented in Sec. VII. 

II. EXPERIMENTAL METHOD 

Observations of tolerably small deviations from toroidal symmetry in tokamaks 

(δB/B<10-3) have been previously studied using a variety of diagnostic and experimental 

techniques [21-23]. Here we examine the stable plasma response to externally applied 

non-axisymmetric (n=1) fields using new detailed magnetic measurements of 3D 

tokamak equilibria [16]. The application of these fields relies on two active sets of 6 

“picture-frame” coils inside the DIII-D tokamak [24], referred to as I-coils. These coils 

may be connected to power supplies in circuits allowing the application of toroidal mode 

numbers n = 1, 2 and 3. An illustration of the I-coils, and the 3D equilibrium they are 

expected to generate, is shown in Fig. 1. The color contours correspond to the amplitude 

of the field component normal to a toroidally axisymmetric flux surface (δBn). Toroidal 

effects lead to a strong asymmetry between large and small major radius sides of the 
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torus, with eigenmodes generally having a shorter poloidal wavelength on the small-

radius side – also referred to as the high-field side (HFS). We therefore focus on this HFS 

region of detailed eigenstructure. The locations of new magnetic sensors are illustrated in 

blue in Fig. 1(a). To improve measurement statistics the n = 1 applied fields are rotated at 

10 Hz. This allows synchronous Fourier detection of the external response [25]. 

DIII-D has two sets of I-coils, allowing the applied poloidal spectrum to be adjusted 

by changing the pitch of the applied field. Here pitch refers to the toroidal angle between 

two poloidally displaced I-coils that are applying the same field amplitude. This is also 

known as I-coil phasing and examples of 60˚, 180˚, 240˚ and 300˚ phasings are shown in 

Fig. 1(b). Also shown is the “un-rolled” low field side (LFS) vessel wall along with an 

n = 1 kink structure for a plasma with q95 ~ 4.3 (where q95 is the safety factor at the 

surface enclosing 95% of the poloidal flux). This alignment of the I-coil phasings with 

respect to the LFS kink mode, and the corresponding changes in mode stability and 

structure, are described in Sec. V and VI. 

Understanding the stability and structure of 3D equilibria requires exploration of 

multiple key plasma parameters. Previous work has found that resistive wall mode 

(RWM) stability is reduced as pressure rises [26]. However, the structural dependence of 

3D equilibria has not been observed to change significantly. How, or if, the structure 

depends on pressure is not known. To test this, normalized beta is scanned over a wide 

range of values relative to the no-wall stability limit (beta is the ratio of plasma pressure 

to magnetic field pressure and normalized beta is βN =β(aB/I), where a is the plasma 

minor radius, B is the toroidal field and I is the plasma current). Weakly shaped plasmas 

with low internal inductance (li) are used, so that the no-wall stability limit occurs at an 
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easily accessible value of βN. While the kink mode is a global mode, not localized at one 

rational surface, in diverted H-mode plasmas the pitch of the mode, as observed 

externally at the LFS, is similar to that of the magnetic field near the plasma edge at the 

LFS. The internal plasma current profile determines the location of additional internal 

rational surfaces. During all parameter scans the q-profile was maintained essentially 

constant. Internal diamagnetic screening of applied fields at rational surfaces, where 

plasma resistivity is small, is implicitly included in some of the models tested, but no 

effort to directly measure this effect is presented in this paper. Finally, the poloidal 

spectrum of the applied field is known to impact the resulting response amplitude [27]. 

Considering a single dominant kink mode, when the upper and lower I-coils are both 

applying a normal field that is in phase with the poloidal eigenstructure, the amplification 

increases by an amount proportional to the degree of alignment. By adjusting the toroidal 

phase difference of the upper and lower I-coils (phasing) for constant plasma conditions 

the single mode model may be rigorously tested. 

The measured and modeled final 3D equilibrium state is tested here; we do not 

consider the dynamics of the transition to this state. The EFIT code [28] is used to 

generate 2D experimental equilibrium reconstructions constrained by external magnetic 

data and radial profile measurements of ne, Te, Ti, and B-field pitch. Without including 

internal profile constraints the uncertainty in these EFIT reconstructions would be too 

great to make meaningful model comparisons [29]. This is because these 2D equilibria 

serve as an input for the linear models and an initial condition for the nonlinear model. 

For these 2D equilibrium reconstructions, the edge bootstrap current density (jedge, BS) is 

not directly measured on DIII-D, requiring estimation using the Sauter model [30], which 
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approximates the jedge, BS with edge temperature and density gradient measurements. 

Work has shown this to be a reliable estimate [31], but intrinsic profile uncertainties must 

be taken into account to quantitatively compare with models. The uncertainty in the 

reconstructed current profiles may be determined by accounting for differences in the 

pedestal gradient terms. Scaling jedge, BS by a constant multiplier Cboot while holding total 

plasma current constant, a new free boundary equilbrium may be computed. The χ2 

values associated with multiple scaled equilibria are parabolically distributed with respect 

to Cboot. The width of the parabolic fit corresponds to the standard deviation of the 

reconstructed current profile according to the relation 

χ 2 Cboot χ0
2( )±σ!

"
#
$= χ

2 Cboot χ0
2( )!

"
#
$+1 , where χ0

2  is the minimum χ2. This relation 

between the uncertainty and χ2 is shown for an experimental equilibrium in Fig. 2(a). The 

reconstructed current density profiles for the minimum χ2(Cboot = 0.96) and the  

±1σ(Cboot = 1.04 and 0.88) are shown in Fig. 2(b). These profiles represent an effective 

error bar in the reconstructed current density.  

 The three equilibria corresponding to the optimum χ2 value, and the ±1σ values 

are each modeled. The bounds of these model predictions outline an envelope of possible 

response values, seen for the VMEC code in Fig. 2(c). It is important to note that these 

response variations are due to the uncertainty in the experimental input and not an error 

in any particular model. This strategy for accounting for errors in reconstructed equilibria 

was determined based on analysis of the largest sensitivity for the 3D model predictions 

and known deficiencies in the diagnostic constraints for DIII-D tokamak equilibria.  

 

III. 3D EQUILIBRIUM MODELS 
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It is unknown to what extent experimental 3D equilibria are the result of laminar 

“flux-frozen” (ideal) displacements, resistive formation of magnetic islands, or 

nonlinearly distorted field lines. Previous work has found that linear ideal MHD 

successfully predicts the outer midplane response for plasma pressure (βN) below the no-

wall stability limit [1]. Does this linear description capture the full structure at all 

poloidal locations, or does the 3D structure require non-linear considerations? Does finite 

resistivity need to be included to describe the observed plasma response? As pressure is 

increased beyond the no-wall limit, does the structure of the equilibrium change, and if 

so, is this a consequence of non-ideal effects?  

To assess these possibilities, we consider 4 unique models. These models are all 

formulated to handle poloidally shaped tokamak geometry. The code names associated 

with each model are IPEC, MARS-F, M3D-C1, and VMEC. The IPEC code 

approximates the 3D equilibrium as a linear perturbation to an ideal (perfectly 

conducting) plasma. Comparing the IPEC predicted response with measurement at 

multiple poloidal locations allows us to determine if linear ideal MHD correctly predicts 

the 3D equilibrium. Similarly MARS-F computations neglecting resistivity provide an 

additional linear ideal MHD response prediction employing a numerical strategy different 

from IPEC. The M3D-C1 code is used to identify the potential impact of resistive and 

two-fluid effects. Finally the potential non-linear response is assessed using the VMEC 

code, which is a stellarator equilibrium solver that has been modified to solve 3D force 

balance in tokamaks.  

The 2D equilibrium code EFIT [28], which solves the Grad-Shafranov equation, 

provides a starting point for all non-axisymmetric modeling. The solution to the Grad-
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Shafranov equation may include non-ideal effects [32,33]. Here fast ion pressures, and 

other non-ideal effects, are included through separate transport calculations to modify the 

1D profile inputs ahead of the equilibrium reconstruction. Additional inputs to EFIT 

include axisymmetric coil currents, Motional Stark effect pitch angle measurements [34], 

external magnetic sensor measurements [35], Thomson scattering profiles of electron 

density and temperature, and charge exchange recombination profiles of ion temperature. 

The code VMEC [13] indirectly solves 𝑗×𝐵 = −∇𝑝 in full 3D. Specifically, VMEC 

minimizes the ideal MHD energy functional while maintaining a key topological 

constraint that all flux surfaces are nested. It is unique from the other models as it 

nonlinearly computes the helically altered flux surfaces, instead of assuming a linear 

perturbation to an initial axisymmetric field. The full 3D geometry of the perturbing I-

coils, as well as axisymmetric coils, is included in the model and the measured 

experimental coil currents are used to compute the resulting 3D equilibrium state. The 

code is run with and without currents in the non-axisymmetric I-coils. The DIAGNO 

code [36] provides a method to calculate the fields outside the last closed flux surface, 

which is necessary to determine the detected field strength at the locations of the 

magnetic sensors. The difference is taken between the 2D (no I-coil) and 3D (with I-coils 

energized) predicted sensor measurements to isolate the 3D plasma response component 

along the wall.  

IPEC [19] solves the time-independent ideal perturbed equilibrium by finding the 

linear combination of ideal MHD eigenmodes, computed by the stability code DCON 

[37], that is consistent with the applied fields. Because this is a purely ideal calculation 

the resonant Fourier components of the perturbed normal fields at rational surfaces are 
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completely shielded. This shielding highlights a shortcoming of the ideal plasma 

assumption, which is that singular currents arise at rational surfaces. To avoid non-

physical Pfirsch-Schlüter currents associated with the Glasser effect [38,39] a narrow 

radial region near the rational surface must be “jumped”. Note that these currents are only 

non-physical in the ideal limit. This jump limits the resolution of ideal calculations to 

factors greater than 10-5 times the plasma radius. However, the validity of MHD in 

general requires that spatial scales be larger than both the ion and electron gyroradius. 

Here we consider plasmas with gyroradii that are factors of 10-2 and 10-3 times the plasma 

radius, such that higher order effects, associated with Pfirsch-Schlüter currents, do not 

alter the response. Detailed studies have shown that global amplification computations, 

like those presented here, are insensitive to these local currents [40].  

The MARS-F code [41,42] solves the set of linear single fluid MHD equations 

including plasma resistivity and toroidal rotation terms (the full system of equations is 

presented in Ref [43]). However, MARS-F can also be run with resistivity and rotation 

set to zero, as has been done in this paper, allowing for ideal MHD response calculations 

using a different numerical approach from the IPEC code. Specifically, the MARS-F 

code solves a forced eigenvalue problem for an applied external vacuum field spectrum. 

This vacuum field is modeled as a source surface current in the poloidal plane at the 

location of the I-coils. To account for induced eddy currents in the vacuum vessel wall, 

the MARS-F code includes a conformal resistive wall that is modeled as a thin-shell.  

Here, M3D-C1 is used to solve the time-independent perturbed equilibrium using a 

compressible, linear, resistive, two-fluid model [44]. In other words, the linearized set of 

MHD equations is solved subject to boundary conditions imposed by the applied non-
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axisymmetric fields. This is different from typical M3D-C1 computations, which use an 

initial-value strategy. M3D-C1 uses high-order finite elements in (R,Z) coordinates. The 

input resistivity profiles are empirically determined from the measured Te profiles using 

the classical Spitzer resistivity model, which is based on electron-ion collisions. For the 

cases considered here, the viscosity and perpendicular thermal conductivity are each 

~ 10 m2/s. In general, the thermal conductivity is strongly anisotropic with 𝜒// 𝜒
!
~  10!. 

Unlike the ideal MHD codes, the 𝐸×𝐵 equilibrium rotation profiles are also used in the 

computation. These calculations also include a resistive wall of finite thickness and 

variable resistivity [45]. Unique from the other codes, the computational domain contains 

the X-point and the cold scrape-off layer (SOL) plasma. 

Beyond experimental uncertainty, described in Section II, there are practical model 

limitations and sensitivities. The M3D-C1 model includes the open field-line region in its 

computational domain, and therefore may be sensitive to equilibrium conditions there; 

however all other models considered here do not extend beyond the separatrix, and treat 

the open-field line region as a perfect vacuum. For these codes, the axisymmetric 

equilibrium must be truncated inside the separatrix. Here, this truncation encloses 99.7% 

of the normalized poloidal flux such that the foot of the edge pressure pedestal is 

included. Truncated equilibria are ideal MHD unstable when the safety factor at the 

truncation surface (qa) is sufficiently close to a rational value m/n, where m is poloidal 

mode number and n is toroidal mode number. To obtain a finite solution, the ideal MHD 

codes (VMEC, IPEC, and MARS-F) require that the equilibrium be truncated such that 

qa ≠ m/n. An additional consideration is that truncation causes a small non-zero pressure 

gradient at the boundary. This gradient is not physical and the equilibrium must be 
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recomputed to ensure ∇p = 0 . This new equilibrium is computed using the CORSICA 

code [46]. 

 
IV. MULTIPLE MODEL VALIDATION 

Despite the numerous numerical and physical models that have been devised to 

computationally describe 3D equilibria in tokamaks and stellarators, a lack of 

experimental constraints has permitted disparities between models to remain unresolved. 

Now, dedicated magnetic measurements [16], covering most of the poloidal extent of 

DIII-D, are beginning to provide definitive answers concerning the validity of these 

models and the 3D physics they predict. 

Comparing the models mentioned in Sec. III with new 3D magnetic measurements 

shows that linear models accurately predict the plasma response near ITER baseline beta. 

In Fig. 3, the predicted and measured poloidal component of the plasma response (δBp) is 

compared for all available poloidal locations on DIII-D. The regions along the LFS 

correspond to the 5 facets of the DIII-D vacuum vessel and the corresponding sharp 

variations in the response profiles are a consequence of the angle discontinuities at each 

corner of the machine. On the HFS, the machine is a cylinder such that there are no 

response discontinuities. The amplitude of the response is normalized to the perturbing 

field strength. The phase has been referenced to the lower DIII-D I-coil located at 30˚ in 

the machine toroidal angle. Each response profile is plotted versus the distance from the 

machine midplane, which can be seen above in Fig. 1(d), along with the approximate 

locations of the measurement sensor pairs (blue).  

The amplitude profiles along the HFS show that the linear predictions of IPEC, 

MARS-F, and M3D-C1 computations generally agree with measurement. While some 
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differences are seen, this agreement between three unique physical and numerical 

formalisms is remarkable and required a careful simultaneous benchmarking effort to 

ensure each model used the same starting inputs. Indeed, it is found that the linear models 

can be quite sensitive to the axisymmetric equilibrium, and high-resolution equilibria are 

required to obtain quantitative agreement. Additional modeling with M3D-C1, 

considering only a single fluid, showed no appreciable difference in the response. 

Therefore two-fluid effects are not critical to this plasma and do not explain the 

differences seen between it and the ideal model predictions. This is also reasonable to 

expect since these discharges were rapidly rotating such that resistive effects would be 

minimal. Of particular importance are the IPEC and MARS-F linear ideal MHD 

predictions that quantitatively agree with measurement along the entire height of the HFS 

wall. This agreement continues onto the LFS, with the exception of the midplane, where 

both predictions differ from measurement by ~15%. However, the measurement falls 

between the two predictions. The plasma parameters for this discharge are comparable to 

those in the ITER baseline scenario, with βN ~1.6 and q95 ~ 3.3 . 

The nonlinear VMEC code is also in good agreement with measurement; however 

higher order toroidal modes must be included in the computation [47]. Despite their 

inclusion, these higher order modes contribute less than 10% to the plasma response 

amplitude. For calculations only including the applied n = 1, VMEC over predicts the 

response. Similar comparisons of JET plasma boundary displacements resulting from 

n = 2 RMPs, show VMEC predictions differ with measurement by a factor of three [48]. 

Unlike the other three codes, the VMEC code does not resolve currents near rational 

surfaces, which should impact external response. However, the low order of this n = 1 
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perturbation gives rise to only a few enclosed rational surfaces, suggesting additional 

factors may be contributing to this discrepancy. This motivated additional studies that 

find a numerical artifact [49] at the magnetic axis. Specifically an erroneous m = 1, n = 1 

current filament is predicted. This artifact dominates the response when zero beta 

plasmas are considered [50]. Though core localized, the amplitude of this current is 

sufficiently large to contribute to the external response at the vacuum vessel wall. The 

physical and/or numerical reason for requiring these higher toroidal mode numbers is still 

under investigation. We suspect the higher n modes permit the surfaces to distort near the 

edge, where it is believed the linear response begins to break down.  

The simultaneous benchmarking of the four models with one another was carried out, 

however some differences between linear model predictions are still apparent. 

Discrepancies between M3D-C1 predictions and data may be due to a difference in the 

input 2D equilibrium. M3D-C1 requires a non-zero temperature in the scrape-off layer 

(SOL). To best match the truncated inputs used in the other models, an arbitrary non-zero 

temperature is reduced until the predicted response profile asymptotes. The resulting 

profile is presented in Fig 3. Unfortunately, measurements of the SOL temperature can 

provide no additional constraint, as their uncertainties are greater than this M3D-C1 edge 

temperature sensitivity. While the MARS-F and IPEC codes agree with data they do 

differ from one another slightly, which may be due to differences in the numerical 

strategy employed. Nevertheless, based on this comparison, we conclude ideal MHD is 

sufficient to describe this low beta case no matter the numerical formalism.  

 

V. SINGLE MODE MODEL CONFIRMATION AT LOW PRESSURE  
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A. Changes in response as 

€ 

q95 is varied 

 The structure of any kink mode depends on the q-profile, and the least stable kink 

depends in part on q95. Until now experiments have mostly assumed the presence of a 

single dominant kink mode, and that all other eigenmodes are far from marginal stability 

and therefore only weakly excited. If only a single eigenmode is important, any toroidal 

array of active coils can control the 3D equilibrium, as long as there is some coupling. 

Modifications to the poloidal alignment of the applied field only change the strength of 

the coupling and not the structure of the mode.  

Previous work [27] has shown that aligning the pitch of the perturbing field with the 

kink mode perturbation along the LFS results in stronger LFS response, and that a 

phasing of 240˚ is better aligned with the ideal predicted kink mode when q95 ~ 3 than 

when q95 ~ 4. As mentioned in Sec. II, DIII-D has two sets of I-coils that allow the pitch 

of the applied field to be varied. If the 3D structure is determined by a single least stable 

eigenmode, then aligning the applied LFS perturbation with the LFS kink structure 

should result in stronger HFS response. In Fig. 4, the HFS modeled and measured peak 

amplitude is largest when the perturbing field is aligned with the least stable kink mode 

along the LFS, supporting the idea that these 3D equilibria each are dominated by of a 

single stable eigenmode. For both cases a constant n = 1 field is applied with phasing of 

240˚. A constant βN = 1.3 is maintained while q95 is stepped from 3.2 to 4.1. The peak 

HFS response is seen to be 35 % larger when q95 = 3.2 as compared to the less aligned 

q95= 4.1 case. 

 The MARS-F ideal MHD model predictions are in quantitative agreement with 

measurement at most poloidal locations for both cases. Furthermore, the slope of the 
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phase along the height of the wall is greater for the higher q95 case, which is consistent 

with a smaller LFS poloidal pitch.  

 
B. Changes in response as phasing is varied 

 To confirm that pressure and external field coupling only impact stability and not 

3D equilibrium structure at values of beta less than the no-wall limit, three discharges are 

considered where both pressure and coupling are modified to maintain a constant plasma 

response. This provides a direct experimental test of the utility of the single dominant 

kink mode model. While maintaining q95 constant at 4.1 the measured response profiles 

along the HFS are compared. In Fig. 5, the HFS plasma response amplitude and phase are 

largely the same for these 3 discharges with significantly different conditions. 

Specifically, these discharges have been tuned to maintain approximately the same peak 

amplitude by simultaneously increasing the kink coupling (phasing) while decreasing the 

drive pressure (βN). The LFS kink structure for these discharges is comparable to that 

seen in Fig. 1(b). The maximum kink alignment for this q95 is associated with applied 

fields having approximately 300˚ phasing. For the largest kink misalignment (180˚) and 

highest pressure (βN = 2.1) the structure is nearly the same as is seen for kink alignment 

(300˚) and the lowest pressure (βN = 1.7). Besides similar phase profiles the amplitude 

profiles all show two local maxima at around Z ~ - 0.1 m and Z ~ + 0.4 m.  

 These measurements confirm that the single mode model holds at low values of 

pressure. In other words, the same plasma structure is maintained despite applying 

different 3D field structure. This implies almost any coil set can cancel an error field of 

the same n number. The shot-to-shot variations in the profiles are likely due to slight 

differences in the q-profiles for each case, which change the location of rational surfaces 
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where fields are screened. Also, the case with 180˚ phasing shows a noticeable difference 

in the phase along the height of the wall. This shift in the phase is consistent with 

previous LFS observations near the no-wall limit [1] and suggest some non-ideal effects 

are beginning to play a role. Here the no-wall limit is estimated at βN ~ 2.2. Despite these 

moderate differences, the structure of the modes is nearly identical. This provides direct 

evidence that only a single eigenmode exists for pressures less than the no-wall limit.  

 
VI. HIGH PRESSURE RESPONSE TRANSITION 

In the presence of a resistive wall and sufficient toroidal plasma rotation, the no-wall 

beta limit (βN
no-wall) may be exceeded [51]. However no evidence of 3D equilibrium 

structural variation has previously been seen. In fact, previous LFS MHD spectroscopic 

measurements suggest the single mode model applies even when βN > βN
no-wall [25]. 

 However, for constant applied fields, new HFS mode structures are found to 

emerge as βN exceeds the no-wall stability limit. For the discharges considered, 

βN
no-wall ~ 2.2. In Fig. 6, the HFS amplitude profiles for 7 discharges scanning βN for two 

different values of q95 are presented. Only the amplitude profiles are presented as the 

phase profiles show little variation from those presented in Fig. 4. For βN < βN
no-wall the 

response scales by a constant multiplier. As the pressure approaches and exceeds βN
no-wall 

the structures for both values of q95 undergo a qualitative transition to a new 3D 

equilibrium. Specifically, for q95 = 4.2, [Fig. 6(a)] the two local maxima located at  

Z = -0.1 m and Z = +0.4 m assume a new state with a single maximum value peaked at  

Z = +0.3 m. For the q95 = 3.3 case, Fig. 6(b) shows different βN < βN
no-wall profiles 

consisting of a single peak at Z = + 0.3 m and a plateau in the response for  

-0.3 m < Z < -0.1 m that transitions to two local maxima at Z = -0.4 m and Z = + 0.1 m. 
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The transition in the response for the q95 = 3.3 case occurs before the no-wall limit is 

surpassed suggesting non-ideal effects may be impacting mode stability even in an ideal 

stable regime. 

 Changes in the ideal-MHD response structure are expected if the underlying 2D 

equilibrium changes with pressure. For example, Shafranov shift [52] can modify the 

q-profile altering the radial location of the perturbed flux surfaces relative to the magnetic 

sensors. To determine if the observed structural transition is due to non-ideal effects the 

ideal response is computed.  

Ideal MHD does not capture this pressure-driven eigenmode transition for either 

value of q95. The computed ideal MHD stable response profiles are shown in Fig. 6(c,d) 

for uniformly scaled pressure profiles. To model this experiment, the pressures of the 

experimental equilibria for the βN = 2.5 discharges were scaled down below the no-wall 

limit while maintaining other profile parameters largely constant. The poloidal structure 

is qualitatively different than the measured high beta response [Fig. 6(a,b) – black]. Also, 

the predicted response shows no appreciable variation as a function of pressure, instead 

the response uniformly scales. While there is some qualitative resemblance of the ideal 

predictions with the low beta response profiles for each q95, there is not the same 

quantitative agreement seen in the previous cases where the actual experimental 

equilibria are used. The peak amplitude of the higher beta cases are much larger than seen 

in experiment, which is consistent with previous work showing that outboard midplane 

predictions diverge from measurement when the ratio βN/βN
no-wall > 80% [1]. The modest 

differences are likely due to variations in the experimentally realized q-profiles between 

the low and high beta cases in the scan. Specifically these ideal predictions include 
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changes in the q-profile associated with the high beta case, indicating non-ideal effects 

are required to explain this beta driven structural transition.  

 Based on these comparisons non-ideal effects modify not only the amplitude of 

the response but also the structure, for beta above the no-wall limit. It has been 

hypothesized that kinetic wave-particle interactions may modify a single eigenvector, 

which could explain the observed transition. However, further work has shown that the 

response variation is due to contributions by one or more additional stable eigenmodes 

[53], and is thought to be due to kinetic effects altering the relative mode stability such 

that multiple stable modes may be amplified. This multiple stable mode finding [53] is 

supported by previous observations of the loss of mode rigidity during unstable RWM 

growth and suppression in the NSTX and HBT-EP devices [54,55].  

 
VII. DISCUSSION AND CONCLUSIONS 

 Early experimental [56] and analytical theory [57,58] work identified tokamak 

coil asymmetries as contributing to mode locking, and motivated efforts to eliminate 3D 

distortions. Concurrently, 3D fields were found to positively influence edge particle and 

heat fluxes, as well as impurity exhaust [59]. These competing impacts on tokamak 

plasma performance called for a deeper physical understanding.  

This work identifies linear MHD as providing a valid basis for integrated 3D control 

development for maximizing tokamak performance. 3D equilibria arising from applied 

n = 1 fields are observed to respond in a purely ideal manner at low plasma pressure. The 

predictions of the IPEC linear ideal MHD code and the single-fluid MARS-F code both 

quantitatively agree with new detailed 3D magnetic response measurements at nearly 

every poloidal location on DIII-D. Specifically their domain of validity is near ITER 
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baseline parameters (q95 = 3.3 and βN = 1.6). Although these findings are isolated to 

global n = 1 kink modes in H-mode discharges, recent validation efforts covering edge 

radially localized n = 3 perturbations show similar agreement with the MARS-F code in 

L-mode discharges [60], suggesting truly predictive capabilities may be close at hand. 

In these lower pressure plasmas the 3D equilibria are dominated by a single 

eigenmode, and changes in the coupling strength (coil phasing) increase mode 

amplification, but have no impact on the structure of the mode. Similarly, plasma 

pressure only serves as a drive term for the least stable mode. It is important to note that 

these findings only confirm the physical concept that the form of a 3D equilibrium is 

defined by a single eigenmnode. The results presented here do not definitively validate 

the energy principle contained in the Boozer model [61], which has been challenged 

[62, 63, 64]. Nevertheless, a quantitative comparison in future DIII-D experiments, 

focused on measured plasma response changes as a function of the mode rotation, could 

provide this proof [65]. Furthermore, it is seen that this rigid mode description is not 

appropriate at pressures near the no-wall limit. At these higher pressures a qualitative 

transition is seen in the structure of the plasma response that is inconsistent with ideal 

MHD predictions. This implies that the coil geometry for n = 1 error field correction as 

designed in ITER will be more than sufficient during initial Q = 10 baseline operations, 

but steady state goals, calling for higher beta (3.0 < βN < 4.0), may require consideration 

of non-ideal contributions to the poloidal structure of the plasma response.  

The simultaneous optimization of 3D fields to correct error fields, impart torque, 

suppress ELMs and stabilize RWMs may be facilitated through the use of validated 3D 

models. Note that the tests reported here were carried out in rapidly rotating plasmas. In 



	   	  22	  

future large volume tokamak reactor plasmas the moment of inertia is expected to be 

large, while neutral beam injected torque is expected to be small. In the absence of 

alternative torque sources, it follows that the plasma rotation in these reactors will be 

much less than the discharges considered here. It is thought that plasma rotation can 

significantly influence mode stability at low beta through finite resistivity at rational 

surfaces, and at high beta through kinetic resonances. Further validation work is needed 

to confirm the importance of these non-ideal effects. 
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List of Figure Captions 

Fig. 1. (Color online) Illustrations of (a) a full 3D n=2 normal field displacement δBn for 

a three-dimensional tokamak equilibria perturbation (contours), DIII-D I-coils (green), 

new HFS magnetic sensor locations (blue), and (b) The “un-rolled” LFS δBn due to am 

n=1 kink mode with q95 = 4.3 and overlaid I-coil locations (white) and I-coil phasings 60˚ 

(black), 180˚ (dark gray), 240˚ (light gray) and 300˚ (white). 

Fig. 2. (Color online) (a) The magnetics χ2 values for Cboot bootstrap current multipliers 

between 80% and 115%, a parabolic fit, and the 96%, 104%, and 88% Cboot values 

corresponding to equilibrium reconstructions optimum and +/- 1 σ, respectively (b) the j// 

for these error bars (c) the window of VMEC code predictions for these 3 j// inputs (d) A 

cross section the DIII-D tokamak showing an axisymmetric 2D equilibrium (red) and the 

poloidal locations of a new comprehensive set of magnetic field sensors (blue). Discharge 

153485. 

Fig. 3. (Color online) The amplitude (top) and phase (bottom) of the poloidal field 

component of the n = 1 plasma response measured (circles with error bars) and calculated 

by the MARS-F (blue), M3D-C1 (purple), IPEC (green) and VMEC (red) codes along the 

(a) LFS at 5 vacuum vessel surfaces, including those containing the upper (IU) and lower 

(IL) I-coils and (b) HFS of DIII-D. Discharge 153485. 

Fig. 4. (Color online) MARS-F prediction and 3D magnetic measurement of the HFS 

plasma response amplitude and phase of a least stable kink (a) aligned with the external 

coil perturbation and (b) misaligned. 
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Fig. 5. (Color online) The amplitude (top) and phase (bottom) of the poloidal plasma 

response measured along the HFS (a) for βN< βN
no-wall kink-aligned low beta (black, 

153491.1650), mild kink-misalignment at slightly higher beta (blue, 153485.1400), and 

kink-misalignment at higher beta (green, 153486.1500).  

Fig. 6. (Color online) The response amplitude profiles along the HFS for plasmas with 

phasing = 240˚ (a) measured for discharges with q95 = 4.2 – not kink aligned and βN = 1.5 

(red), 1.8 (blue), and 2.5 (black), (b) measured for discharges with q95 = 3.3 – kink 

aligned and βN = 1.3 (red), 1.5 (blue), 2.0 (green), and 2.5 (black). Spline fits to the data 

are also plotted. (c) ideal MHD (MARS-F) predictions for discharges with q95 = 4.2 – not 

kink aligned and βN = 1.5 (red), 1.8 (blue), and 2.0 (black), (d) ideal MHD (MARS-F) 

predictions for discharges with q95 = 3.3 – kink aligned and βN = 1.5 (red), 1.9 (blue), 2.0 

(green), and 2.1 (black). Discharges 153480 and 153485. 
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